Abstract. This paper presents novel English sluicing data that challenge even the most successful existing theories of the relationship between antecedent and elided content in sluicing constructions. The data supply robust evidence for a previously unobserved phenomenon in which the elided content and antecedent content in a sluicing construction contain opposite polarity. The data challenge current accounts of identity conditions on ellipsis by demonstrating that a greater mismatch between antecedent and elided content is possible than previously thought; specifically, the paper shows that the identity condition for sluicing must be sensitive to pragmatic – i.e. non-truth-conditional – content as well as to semantic content. This observation motivates a proposal in which sluicing is treated as a pragmatics-sensitive phenomenon licensed by local contextual entailment.

1. Introduction

1.1 Overview of the Current Project

Sluicing, first noted by Ross (1969), is an ellipsis phenomenon in which the TP of an interrogative is elided under some identity condition, stranding an overt wh-phrase in the CP domain. An example is given in (1) below.

(1) Bernie knows that someone in Iowa voted, but he doesn't know who.

Research on sluicing mainly focuses on (at least) two major questions: whether or not there is syntactic material present in the ellipsis site, and how we should characterize the nature of the identity condition that licenses elision. This paper does not contribute anything new to the former question, and I assume an account of underlying syntactic structure elided at phonological form as presented in Merchant (2001) (cf. Hardt 1993, Chung et al. 1995, Ginzburg & Sag 2001, Barker 2013). The focus of this paper is on the latter question, the nature of the licensing condition for sluicing. The empirical contribution of the paper is to introduce a sluicing phenomenon that has previously gone unnoticed; I'll refer to this as polarity reversals under sluicing.\footnote{I use this label pre-theoretically and for convenience. As we will see, no actual “reversal” of polarity takes place.} Polarity reversals are sluices in which the presumed antecedent content (A) and the ellipsis site (E) differ in polarity. For example, the presumed antecedent in (2) below, California
will comply, has positive polarity while the interpretation of the ellipsis site, California won't comply, has negative polarity.2

(2) I don't think that [California will comply]\textsubscript{A}, but I don't know why [TP California won't comply]\textsubscript{E}.

Similarly, the presumed antecedent in (3), John didn't do an extra credit problem, has negative polarity, while the interpretation of the ellipsis site, he did do, has positive polarity.

(3) **Context:** Students were given the option to do an extra credit problem, but were required to mark which problem they did next to their name on a spreadsheet. There is no mark next to John’s name. The TA says:

Sluice: Either [John didn’t do an extra credit problem]\textsubscript{A}, or he didn’t mark which one, [he did do]\textsubscript{E}.

The polarity reversal data show a greater mismatch between antecedent and elided content than has been previously thought possible. Because such mismatches were not believed possible, data like (2) and (3) challenge even the most successful existing theories of the licensing condition for sluicing. Specifically, I show that the polarity reversal data are unable to be accounted for under theories that require any type of strict identity between the elided content and an antecedent in the discourse. The account presented here builds on the many successes of previous licensing conditions, but allows greater flexibility in the relationship between material preceding the sluice and the elision site by proposing that sluices rely on contextual entailment to license their elision sites. The account draws on theories from dynamic semantics and discourse coherence, which are traditionally largely unconnected with ellipsis.3 However, the tools used here have been independently established and well-motivated in their individual domains. Overall, this paper demonstrates that new and initially challenging data can be accounted for by combining traditional theories of ellipsis with insights from other areas in the literature.

1.2 Methodological Preliminaries

A methodological aside on the data used throughout: The corpus examples given here were reviewed by at least eight members of the Santa Cruz Ellipsis Project.4 The initial round of annotation was conducted by either two or three independent undergraduate research assistants and the results were reviewed by a faculty supervisor. In the second phase of the annotation procedure, the initial annotations were reviewed by three undergraduate research assistants working with a faculty supervisor. The specific examples and judgments used here were additionally discussed and verified by a separate research group of two faculty members and four graduate students, in consultation with naïve speakers. Many of the examples presented here have more than one possible interpretation for the pre-sluice (that is, the unelided form of the

2 Note that there is a reading of the ellipsis site in (2) in which the antecedent and ellipsis sites include the matrix clause, but this reading is pragmatically odd.
3 Though see Elliott & Sudo (2016) for an exception for dynamic semantics.
4 http://ohlone.ucsc.edu/SCEC/
sentence). The claim here is not that the pre-sluices provided for these examples are the only interpretation available, but merely that they are a felicitous, freely available interpretation in the context in which the sluice was found or constructed.

Additionally, I exclude here three types of sluices that, to my knowledge, have not been explicitly excluded from previous analyses. The first is root sluices, like those in (4) and (5):

(4) A: John bought a new sailboat.
Q: How long?

(5) **Context:** Taken from a post on the blog Jezebel about a particular kind of concert Miley Cyrus has announced she will be holding:

“Miley has yet to confirm the news or provide further details—including, for example, ‘why.’”

I exclude these sluices here because their range of use is clearly wider than that of embedded sluices. For example, there is no obvious linguistic antecedent for the *why* sluice in (5), though the meaning of the sluice is recoverable in context. While root sluices deserve to be studied in more detail, their analysis should be separate from that given here.

The second group of sluices I exclude is semi-idiomatic uses like that in (6):

(6) Mary got a new climbing partner – guess who!

Although these examples go as far back as Ross (1969) and are more recently discussed in Barros (2014), they should be considered separately from the examples discussed here. Most obviously, these examples are special in requiring no linguistic antecedent, i.e. they are acceptable in out-of-the-blue contexts. For example, “Guess who!” can accompany an unexpected knock on the door, and “Guess what?” can be uttered at the start of a discourse with no antecedent—linguistic or otherwise—at all. Because these examples appear to have different licensing requirements, I put them aside here.

The last group of examples I set aside is *why*-stripping examples, such as the exclamation “Why Trump?” *7* Stripping, or bare argument ellipsis, is a construction in which everything in a clause is deleted under identity with an antecedent except for one constituent. See Ross (1969) and Hankamer & Sag (1976) for general discussion, and Yoshida et al. (2014) for an analysis of *why*-stripping examples.

The paper proceeds as follows. Section 2 provides an overview of existing theories of

5 Root sluices are interrogative forms that do not occur as complements of question-embedding verbs. While it is debated whether or not root sluices are derived via TP deletion (Bechhofer 1976, Hankamer 1977, Merchant 2001), they are distinct from the examples under consideration here in occurring only in root (non-embedded) contexts.

6 http://jezebel.com/a-miley-cyrus-nude-concert-is-the-most-miley-idea-ever-1736444064

7 Headline on Huffington Post: http://www.huffingtonpost.com/george-lakoff/why-trump_1_b_9372450.html
sluicing and demonstrates that they are unable to account for the polarity reversal sluicing data. Section 3 proposes an alternative theory called Local Givenness and demonstrates that it makes the correct predictions for sluicing examples that have been discussed in the literature. Section 4 provides derivations for four polarity reversal examples, each of which motivates the current theory in two ways: (1) by showing that the theory makes the correct predictions, and (2) by showing that alternative theories would make incorrect predictions. Section 5 addresses concerns that arise for non-structural accounts of sluicing, §6 discusses the possibility that polarity reversal sluices are non-isomorphic sluices, and §7 concludes.

2. Sluicing in the Literature

Numerous theories of sluicing have been proposed since the original syntactic isomorphy approach given in Ross (1969). A large part of the debate in the literature has been oriented around the question of licensing: what is the relationship between the content of an ellipsis site and the preceding discourse that licenses the elision of the site's material. Traditionally, this licensing has been approached as a relationship between some salient antecedent and the interpretation of the ellipsis site. The identity condition underlying many approaches in the recent literature is that of semantic entailment. Originally proposed in Merchant (2001), the semantic entailment identity condition has held much weight as it is flexible enough to allow for attested structural mismatches, such as the finiteness mismatch in (7), but restrictive enough to rule out most impossible interpretations.

(7) [Sally rock climbs]ₐ. She learned how [to rock climb]ₑ from her father.

I show here that a semantic entailment identity condition is too restrictive to account for the polarity reversal data, and therefore cannot be the identity condition we need. This section discusses the predictions of Merchant's (2001) semantic entailment condition as well as the predictions of theories that rely in part on such an identity condition.

2.1 e-GIVENness

Merchant's (2001) theory of ellipsis, called e-GIVENness, is a theory of both the syntax and the licensing conditions for ellipsis constructions. e-GIVENness proposes that sluiced clauses contain syntactic structure within the ellipsis site that goes unpronounced; that is, is deleted at phonological form. The unpronounced structure within the ellipsis site consists of a TP missing a wh-constituent, called a remnant or wh-remnant, that has moved up and out of the TP prior to the TP's deletion. The licensing condition of e-GIVENness is indebted to Schwarzschild's (1999) theory of GIVENness, which is not itself a theory of ellipsis, but one of focus and deaccenting. GIVENness proposes that an expression can be deaccented if its existential focus closure is contextually entailed by the existential closure of an antecedent. e-GIVENness modifies the
GIVENness theory of deaccenting into a theory of ellipsis (Rooth 1985, 1992; Romero 1997) by modifying the GIVENness entailment condition from a contextual, unidirectional entailment condition to a bidirectional semantic entailment condition. Specifically, e-GIVENness proposes that in order for a TP to be elided it must stand in a bidirectional semantic entailment relationship with some salient antecedent. The account is given formally as follows:

Focus condition on TP-ellipsis: A TP α can be deleted only if α is e-GIVEN.

e-GIVENness: An expression E counts as e-GIVEN iff E has a salient antecedent A and, modulo \exists type-shifting, i) A entails F-clo(E), and ii) E entails F-clo(A).

Note that the entailment requirement here is that of semantic entailment and, unlike GIVENness, does not leave room for contextual entailment.

The semantic identity condition of e-GIVENness is permissive enough to allow for certain observed syntactic mismatches between ellipsis sites and their antecedents, such as tense (Merchant 2001); however, the bidirectional entailment requirement is too restrictive to allow for polarity mismatches. Let's look again at (2), repeated below as (8).

(8) I don't think that [TP California will comply], but I don't know why [TP California won't comply].

Applying e-GIVENness to A and E yields the following:

\[
\begin{align*}
A & \text{ entails } F\text{-clo}(E): \text{ No.} \\
E & \text{ entails } F\text{-clo}(A): \text{ No.} \\
A = \lambda w. \text{comply}(c)(w) \\
E = \lambda w. \neg \text{comply}(c)(w) \\
F\text{-clo}(E) = \lambda w. \neg \text{comply}(c)(w) \\
F\text{-clo}(A) = \lambda w. \text{comply}(c)(w)
\end{align*}
\]

Neither the antecedent expression nor the elided expression in (8) entails the other, and so e-GIVENness incorrectly predicts that we should not be able to elide the TP.

A skeptical reader might propose that, instead of the antecedent given in (8), we should consider the entire first conjunct to be the antecedent, as doing so will capture the negation in the antecedent expression. However, as (9) shows, expanding the antecedent to include the matrix negation still does not yield semantic entailment in either direction.11

(9) [TP I don't think that California will comply], but I don't know why [TP California won't comply].

A entails F-clo(E): No.

\[
\begin{align*}
A = \lambda w'. \neg \forall w [w \in \text{DOX}(s)(w') \rightarrow \text{comply}(c)(w)] \\
F\text{-clo}(E) = \lambda w. \neg \text{comply}(c)(w)
\end{align*}
\]

11 For a discussion of the relevance of the neg-raising property of the data, see §4.1-§4.2.
E entails F-clo(A): No.

\[E = \lambda w. \neg \text{comply}(c)(w) \]

\[\text{F-Clo(A)} = \lambda w'. \neg \forall w [w \in \text{DOX}(s)(w') \rightarrow \text{comply}(c)(w)] \]

2.2 Hybrid Theories

Merchant (2005, 2013b) and Chung (2006/2013) argue that e-GIVENness alone is too weak an identity condition on sluicing, as it fails to rule out impossible sluices such as the active/passive mismatch in (10).

(10)
\[\#[\text{John was kicked}]_A, \text{but I don't know who} [f_i \text{ kicked John}]_E. \]

The authors propose to rule out sluices such as (10) by including substantive syntactic restrictions on sluicing in addition to the bidirectional semantic entailment condition of e-GIVENness. As the accounts presented in these works are by their very purpose more restrictive than e-GIVENness, the objections in the last section regarding the too-restrictive nature of e-GIVENness apply equally to these accounts, as well.

2.3 Inquisitive Entailment

AnderBois (2014) criticizes e-GIVENness for failing to predict the impossibility of sluicing out of doubly-negated indefinites and appositives. AnderBois argues that while examples (11) and (12) satisfy bidirectional entailment, they are not well-formed sluices (AnderBois pgs. 19 & 23, respectively, brackets added):

(11)
\[[\text{It's not the case that no one left}]_A, \text{but I don't know who} [\text{left}]_E. \]

(12)
\[\#\text{Joe, [who once killed a man in cold blood]}_A, \text{doesn't even remember who} [\text{he once killed in cold blood}]_E. \]

AnderBois proposes a modified account of sluicing based on inquisitive semantic entailment over CPs (Groenendijk & Roelofsen 2009). Inquisitive semantic entailment is a more restrictive identity requirement than e-GIVENness and rules out examples (11) and (12): neither antecedent contains inquisitive content and therefore cannot entail the inquisitive content of the question CP (see AnderBois §3.4 and §4 for discussion).

Recent work has challenged the inquisitive semantic entailment account on empirical grounds. Collins et al. (2014) provide experimental evidence that sluices out of doubly-negated constructions and appositives are indeed possible,12 and Barros (2014) observes that (12) above, modified below in (13), is acceptable when the remnant who is replaced with the d-linked wh-expression which man (see also Dayal & Schwarzschild (2010) and discussion in §3.1 below).

12 The results show that while speakers in the experiment did not judge the examples highly, they judged them no worse than the equivalent pre-sluice examples.
(13) Joe, [who once killed a man in cold blood], doesn't even remember which man [he once killed in cold blood].

Additionally, Inquisitive Entailment was created to be a more restrictive entailment identity account than e-GIVENness. As I have shown that e-GIVENness is too restrictive to permit polarity reversal sluices, it follows that an account that was created to predict a subset of those constructions predicted by e-GIVENness is also too restrictive to permit the polarity reversals. Thus, while contributing many insights into the semantics and pragmatics of sluicing, particularly regarding which sluices out of disjunctive clauses, inquisitive entailment is too strict an identity condition to correctly predict the full range of sluicing possibilities.

2.4 Scopability

Barker (2013) analyzes sluicing as anaphora to the semantic remnant of a clause from which a subconstituent has been removed (a continuation). Under this proposal, sluicing constructions contain gaps and silent proforms but no internal syntactic structure in the ellipsis site. This analysis, called scopability, uses a type logical (categorial) grammar that allows a tight connection between syntactic and semantic content (Barker 2007). Certain facts about scope and case matching behavior in sluicing therefore fall out naturally from the system.

Scopability focuses on the scope facts of sluicing originally observed in Chung et. al (1995). Chung et al. notice that an example like (14) only allows a reading in which the indefinite a book takes wide scope over the quantifier everyone (Barker pg. 191).

(14) Everyone selected a book, but I don't know which book.

Chung et al. propose that in sluicing constructions the correlate (their inner antecedent: the optionally-present constituent in the antecedent of a sluicing construction that corresponds to the wh-remnant) must take scope over the antecedent clause. This scope fact follows in the system of scopability because a sluicing antecedent is created by allowing the correlate to take scope over the rest of the antecedent clause. In (14), this means that the indefinite correlate [a book] must take wide-scope over the antecedent [everyone selected __]; the scope facts then follow naturally.

I argue that scopability, too, is too restrictive to capture the polarity reversal data. While scopability rejects the semantic entailment condition, Barker argues that scopability avoids overgeneration by imposing effectively the same restriction through different means: “...the net effect of the mutual entailment requirement [of e-GIVENness] is that once we subtract the inner antecedent from the antecedent clause, and once we subtract the wh-phrase from the sluice, the remainders must be semantically equivalent—exactly what is guaranteed by the anaphoric [scopability] analysis” (213). Indeed, it is clear that Barker intends scopability to deliver semantic equivalency between a sluice and its antecedent. However, we have seen that a condition which imposes semantic equivalency between an ellipsis site and its antecedent is too restrictive to predict the novel data contributed by polarity reversal sluices.
In summary, bidirectional semantic entailment accounts such as e-GIVENness, and theories that impose semantic identity between an ellipsis site and its antecedent, are too restrictive and fail to predict the existence of polarity reversal data. The next section proposes an alternative account that builds off the insights provided by the accounts discussed here.

3. A Modified Account

This section proceeds in two parts. The first subsection discusses a constraint proposed in Dayal & Schwarzschild (2010) that explains certain data that have been used to motivate a bidirectional entailment account. I propose that since these data can be ruled out on independent grounds, they should not be ruled out by a sluicing theory specifically. Section 3.2 then proposes a new identity condition on sluicing called Local Givenness, which argues that sluices are licensed by local contextual entailment. Section 3.2 also spells out the assumptions of the account, and derives several standard (i.e. non-polarity reversal) sluicing examples.

3.1 The Well-Formedness Condition

This subsection shows that we can rule out certain forms of unacceptable sluices independently from our sluicing licensing condition. Indeed, there are many reasons why a particular sluice may be unacceptable. Importantly, the reason a given sluice may be unacceptable is not always because of its failure to satisfy an ellipsis licensing condition. Dayal and Schwarzschild (2010) observed in their investigation of sluices with definite correlates that one reason a sluice may be unacceptable is because its pre-sluice—or, the unelided form of the sluice—is also unacceptable (see also Romero 1998). They therefore propose that sluices that are infelicitous as pre-sluices will also be infelicitous as sluices. For example, (15a) is infelicitous, or pragmatically anomalous (in this case, because it contains two generally contradictory clauses). It is not surprising, then, that the corresponding sluice in (15b) is also infelicitous.

(15) a. #Hillary, knows that the President lives in the White House, but she, doesn't know where the President lives.

b. Hillary, knows that the President lives in the White House, but she, doesn't know where, #[the President lives \(t_1\)].

For ease of reference, I will call this observation the Well-Formedness Condition (see also discussion in Romero 1998, Dayal & Schwarzschild 2010, Tancredi 1992, and Merchant 2013a):

(16) The Well-Formedness Condition:
If a pre-sluice is infelicitous, then the corresponding sluice will not be well-formed.

13 Note that Ginzburg & Sag (2001) and Barros (2014) take a slightly different approach, combining syntactic and pragmatic constraints.
The Well-Formedness Condition is, to the extent of my knowledge, both empirically verifiable and intuitively satisfying. It seems desirable that a question that is infelicitous when uttered overtly will remain infelicitous when partially elided. The importance of this observation is that it rules out certain examples that we do not want to force our sluicing theory to rule out. The observation is not specific to polarity reversal sluices, but is helpful to keep in mind when considering the scope of the data that any theory of sluicing needs to account for. By adopting the Well-Formedness Condition, we are able to rule out examples like (15b) independently, obviating the need to account for such sluices in our theory of ellipsis.14

3.2 Local Givenness

This section proceeds in three parts. The first outlines the basic formal assumptions used in the current account. The second presents a first pass at the sluicing theory that is developed and argued for in this paper, called Local Givenness. The third independently motivates the theory by applying it to several non-polarity reversal sluices. The reader who is familiar with dynamic theories of context update can safely skip to the second section on Local Givenness.

Context Update and Dynamic Interpretation Systems

I use here a dynamic interpretation system outlined in Kadmon (2001) and based on Heim's File Card Semantics (1983a) and Context Change Potential (CCP) system (1983b). The main idea behind a dynamic interpretation system is that semantic content updates the context incrementally. More specifically, dynamic interpretation systems aim to capture the observation that clausal interpretation may crucially rely on the interpretation of previous intrasentential clauses. Put another way, the context need not be updated only at the end of a sentence as in a static system; instead, semantic content can incrementally update the context at the completion of a proposition or earlier. Because of this incremental updating, the second clause of a sentence—such as in a sentence containing conjoined clauses—can be interpreted in a different context from the first clause of the same sentence, and in a different context from the global conversational context. Theories of incremental updating have been of particular interest in studies of presupposition projection (Stalnaker 1973, 1974; Karttunen 1974; Gazdar 1979; Karttunen & Peters 1979; Heim 1983b; Soames 1989; Beaver 2001; a.m.o.) and anaphora (Geach 1962, Evans 1977, Roberts 1989, Heim 1990, Kamp & Reyle 1993, Simons 1997, van Rooij 1997/2006, Nouwen 2007, Murray 2014, a.m.o.).

In order to be able to clearly refer to the context of an entire sentence versus the context in which a particular clause is interpreted, Karttunen (1973) first distinguished *global* contexts, contexts at which the current sentence is interpreted, from *local* contexts, contexts at which the current clause (or possibly some smaller constituent) is interpreted. This terminology is adopted

14 We may ask why examples like (15a) are infelicitous. I follow previous researchers who propose it is because it is infelicitous to ask a question that already has (at least) a partial answer available in the discourse (Romero 1997, Fitzpatrick 2005, Ginzburg 2012, Barker 2013, Barros 2014). For example, B's question in (i) is infelicitous without the inclusion of *other*, because A has already asserted that she has seen some tigers that day at the zoo, which is a partial answer to the question 'What animals did you see today at the zoo?'.

(i) A: I saw some tigers today at the zoo.
B: {What/which} #(OTHER) animals did you see today at the zoo?
in Heim (1983b) and Kadmon (2001) under a similar meaning. It is further developed under the motivation of processing parsimony in Schlenker (2009, 2010a, 2011b). As mentioned above, the local context in which a clause is interpreted is not necessarily identical to the global context of its containing sentence. One effect of distinguishing between the two types of context is that propositions can be entered into local contexts without being entered into the discourse common ground or context set (Stalnaker 2002), i.e. without being accepted as true by the speakers of the discourse for purposes of the discourse. Note that this means that, throughout a discourse, a local context is not necessarily a continually narrowing set of worlds. I notate local contexts throughout as c_L to distinguish them from global contexts, though the reader is asked to keep in mind that this serves merely as a reminder that we are concerned with updating our derivations incrementally.

In Heim's (1983b) CCP system, the context is defined as a set of worlds (or, alternatively, the context can be defined as a set of world-assignment pairs). Instead of a standard truth-conditional semantics, operators contribute a context change potential (CCP), which is a partial function from contexts to contexts. CCPs express partial functions because a new context is defined only when the presuppositions of the entering expression are defined (entailed by the context), or are accommodated. The basic assumptions I make here are given as follows:

A context c and a proposition p are defined as sets of worlds. Because c is a set of worlds, entailment is defined by the subset relation, such that if a context c entails a proposition p, then $c \subseteq p$. A context is updated with a new proposition p by conjoining, or intersecting, with p. Context updating is defined as follows:

Context update:

a. If c entails the presuppositions of p, then $c + p = c \cap p$

b. If c does not entail the presuppositions of p, then c is undefined\(^{15}\)

Some Heimian rules for basic English propositional operators are given below (see e.g. Karttunen 1974, Heim 1983b, Kadmon 2001):

- **Negation:** $c + \neg p = c \setminus (c + p)$\(^{16}\)
- **Conjunction:** $c + (p \land q) = (c + p) + q$
- **Disjunction:** $c + (p \lor q) = (c + p) + (c + (c \setminus p) + q)$
- **Conditional:** $c + (\text{If } p, q) = c \setminus (c + p \setminus ((c + p) + q))$

Note that the final results of applying these rules to the context is an updating of the global sentence context, or the context resulting from the interpretation of the entire expression.

\(^{15}\) Heim (1988), following Lewis (1979), also allows for the possibility of accommodation of the presuppositions of p if c is undefined. Accommodation is defined as follows: $c + p = (c \cap \text{ps}(p)) \cap p$. As Heim notes, accommodation is not a mechanism of the formal system, but instead an act that a speaker chooses to do to avoid a breakdown in communication (pg. 401). Because accommodation is not required in this paper, I refer the interested reader to the works cited here for further discussion.

\(^{16}\) Where $c \setminus p$ indicates the intersection of c with the complement of p. This is notated in Kadmon (2001) as \neg, though the traditional notation is kept here.
Importantly, the CCPs of these complex expressions are derived compositionally from the CCPs of their constituents.17

Let's look at the conditional example in (17) to illustrate.18

(17) If [the tax bill passes]\textsubscript{p}, [the University of California will be concerned]\textsubscript{q}.

Let's assume for expositional simplicity that the context at the beginning of the sentence in (17) is the set of all worlds, \(W\):

i. \(c = W\), or the set of all worlds and the local context of the antecedent \(p\).

ii. \(c + p\): We intersect \(p\) with \(W\), which yields the set of worlds in which the tax bill passes. This is the local context of \(q\).

iii. \(c + p + q\): This intersects \(W\) with the propositions expressed by \(p\) and \(q\), which yields the set of worlds in which the tax bill passes and UC is concerned.

iv. We intersect the results of (ii) with the complement of the results of (iii), which gives us the worlds in which the tax bill passes and UC is not concerned.

v. Finally, we intersect (i) with the complement of the results of (iv), which gives us the set of worlds in which the tax bill passes and UC is concerned.

While there is debate in the literature over the correct formalization of some of these rules, the differing implementations of the rules does not impact in any crucial way the ellipsis derivations that concern us here. The interested reader is encouraged to reference Karttunen (1974), Heim (1983b), Kadmon (2001), and Schlenker (2010a, 2011a) for additional discussion of these operator rules, as well as their respective benefits and drawbacks.

In summary, I use a basic Heimian account here because the CCP account is widely known and is sufficient to capture the data we are concerned with. However, the Local Givenness account that is developed here crucially does not rely on the use of this particular system. Other developed dynamic theories, such as the closely related Discourse Representation Theory (Kamp 1981) and its expansions and Dynamic Predicate Logic (Groenendijk & Stokhof 1990), could alternatively be used. Also available as alternatives are non-dynamic accounts that

17 A reviewer asks about the predictability of the local context. While the motivation and explanatory power of the rules above are discussed in the literature on presupposition projections, the field does not currently have an exhaustive set of CCPs; thus, I acknowledge that the theory presented here might over or under-generate once we have exhaustively documented the full set of natural language constructions. However, I have used in this paper existing CCP rules to describe every category of polarity reversal sluicing examples found by the Santa Cruz Ellipsis Project. I additionally show that these examples are problematic for existing ellipsis accounts. The use of local contexts is motivated here by examples in which the local licensing context is substantively different from the global licensing context; that is, cases in which the antecedent material updates the local context, but is not preserved in the global context. Local contexts are used extensively in dynamic update systems, where general criteria for their predictions are discussed in a depth that this paper is unfortunately unable to cover. I refer the interested reader to the in-text citations given throughout this section.

18 I thank a reviewer for noting that discussions of examples such as (17) and (18) would be helpful.
use local contexts to compute incremental processing, such Schlenker (2009, 2010a, 2011b).

LOCAL GIVENNESS

The theory of sluicing presented here eschews semantic identity in favor of pragmatics-based entailment. The spirit of the proposal is indebted to those accounts already discussed and to the contextual entailment allowance that was included, though not given an exposition, in Schwarzschild's (1999) GIVENness theory. Informally, I propose that the TP of an interrogative can be elided if and only if the proposition expressed by the TP, modulo existential closure, is entailed by the context in which the sentence expressing the proposition would be uttered. Recall that the notation c_L is used to indicate the local context of p; that is, the context into which p is entered. Formally, Local Givenness is expressed as follows:

Local Givenness (preliminary): A TP α can be deleted iff $\operatorname{ExClo}(\llbracket \alpha \rrbracket^e)$ expresses a proposition p such that $c_L \subseteq p$.

Because the theory uses contextual entailment as its licensing requirement, there is no reliance on antecedents built into the theory. For expositional clarity and in deference to the historical importance antecedents hold in accounts of ellipsis, I use antecedent labels throughout in the derivations of sluices in this paper. I ask the reader to please keep in mind, though, that this is a notational convenience and not a requirement of the theory. The propositions labelled as antecedents should be thought of more accurately as licensers, in that they provide the main propositional content constraining the local context of the sluiced proposition. There are no actual antecedent requirements built into the account, however, other than what content impacts the local context of the elided proposition.

APPLICATION OF LOCAL GIVENNESS

This subsection applies the theory of Local Givenness to non-polarity reversal examples. The examples were chosen to display the generalizability of the theory and to show that it correctly accounts for examples that are not polarity reversals. The first example is one in which the elided content is clearly not entailed by the global discourse context.

(18) Roy says that he received a PhD, but from whom? Probably no-one. It's debatable whether he even graduated from high school.

There are two possible interpretations of the sluicing site:

a. Roy says that he received a PhD, but from whom? [does Roy say that he received a PhD?]

b. Roy says that he received a PhD, but from whom? [did he receive a PhD?]

I take the reading in (a) to be straightforwardly calculable as entailed in its context under a standard treatment of conjunction in which $p = \text{Roy says that he received a PhD.}$. I focus then on the embedded reading given in (b). Note that, as follows from the rules given above, a local

19 For a contemporary analysis of the denotation of *but* as a conjunction, see Toosarvandani (2014).
context of an expression \(p \) is not influenced by information following \(p \) in the discourse (see also discussion in Schlenker 2010a). Therefore, the fact that the sluice is followed by information that suggests that the speaker disbelieves Roy’s claim is irrelevant to our derivation. Recall that Local Givenness does not require the elided proposition to be entailed by the global context or the context set of the conversation, but only that it is entailed by the local context (see discussion earlier in this section). I argue that in (b), we interpret the elided proposition in a context which entails the proposition that Roy received a PhD; that is, the local context for \(E \) is the set of worlds in which Roy received a PhD.

I assume here the following (simplified) denotation of \(\text{say} \):

\[
[\text{say}]^p = \lambda p. \lambda x. \lambda w. \text{say}(p)(x)(w)
\]

I also assume throughout a function \(C \) that takes a given function \(f \) and returns a set such that for any <s,t> function \(f \), \(C(f) = \{w : f(w) = 1\} \). This is merely a notational convenience, which allows us to move between function and set notation.

Let’s assume for maximal generality that our starting context is \(W \), the set of all possible worlds:

i. \(c = W \)

We have the following proposition expressed by the first clause of the conjunction in (b):

ii. \(\lambda w. \text{say}(\lambda w'. \exists x[\text{phd}(x)(w') \wedge \text{received}(x)(r)(w')])(r)(w) \)

Step (ii) provides the derivation of the entire first conjunct. We can now ask what effect on the local context this clause has. The matrix verb \(\text{say} \), in particular, is in the set of communicative assertive verbs. These verbs have long been observed to be able to assert their complement as true in a local context, although the truth is not necessarily projected up to a global context (for recent discussions see Schlenker 2010a, Anand & Hacquard 2014). In this example, the proposition expressed by the embedded clause, that Roy received a PhD (i.e., \(\lambda w'. \exists x[\text{phd}(x)(w') \wedge \text{received}(x)(r)(w')] \)), or \(C(\lambda w'. \exists x[\text{phd}(x)(w') \wedge \text{received}(x)(r)(w')]) = \{w' : \exists x[\text{phd}(x)(w') \wedge \text{received}(x)(r)(w')] \} \), is entered into the local context produced by the first conjunct.

Step (iii) shows that the proposition in (ii) restricts the local context to worlds in which Roy received a PhD; this is achieved by intersecting the context \(W \) with the proposition that Roy

20 A reviewer raises a concern about the assumption used in step (i) that the context is the set of all possible worlds. This does not hold of most conversations, as we rarely if ever start a conversation with the assumption of total ignorance of the real world. I make this assumption here in order to be maximally generalizable. Adding additional propositions into the context in step (i) will not alter the derivations in any significant way, as the context need only be a subset of the entailed proposition. In the case of a more complex context than given above, the context will be a strict subset of the entailed proposition. In fact, assuming a starting context of all possible worlds is the most difficult case facing the theory, as all restrictions of the set in order to meet the entailment condition must be generated by the content preceding the sluice.
received a PhD.

iii. \(W \cap C(\lambda w. \exists x[\text{phd}(x)(w') \land \text{received}(x)(r)(w')])(r)(w)) \approx \text{via assertive content} \)

\[W \cap C(\lambda w. \exists x[\text{phd}(x)(w) \land \text{received}(x)(r)(w)]) \]
\[\{ w: \exists x[\text{phd}(x)(w) \land \text{received}(x)(r)(w)] \} \]

The local context for \(q \) is now the set of worlds in which Roy received a PhD. This entails the proposition expressed by \(q \), and we predict felicitous elision of the proposition.

iv. \(\{ w: \exists x[\text{phd}(x)(w) \land \text{received}(x)(r)(w)] \} \subseteq \text{ExClo}(\lceil E \rceil^x) \)

As already mentioned, the derivation here is an example of a communicative assertive verb asserting its complement clause into the local context. This is one example of a larger, more general observation that embedding verbs are able to assert their clausal complement as either true or as the main point of the utterance. This observation has been discussed in detail by Hooper (1975) and Simons (2007, 2013). The observation more specifically is that clausal complements of embedding verbs such as see, think, and believe can behave in discourse as independent propositions that can be asserted, responded to, and questioned independently of the matrix clause. Because this issue is discussed at length elsewhere, and because the current theory has no new contribution to this topic, I assume here existing proposals and treat the complements of such verbs as entering into the local context.\(^{21}\)

The next example shows that the account correctly predicts sluicing out of appositives, as is shown to be empirically available in example (13). While appositives are canonically considered to be not-at-issue content, it has been widely observed that they participate in discourse level activities—including ellipsis—in the same manner as matrix or at-issue content. Appositives can also in the right circumstances behave like as-issue content in their projection and truth conditional behavior (Potts 2005, Amaral et al. 2007, Syrett & Koev 2015, AnderBois et al. 2015, a.o.). I assume here that appositive relative clauses are propositional (Potts 2005), stand in an anaphoric referential relationship with their main clause anchor (notated here by the superscript \(x \)) (Nouwen 2007), and differ from main clause content in that appositive content is automatically added to the global context, while main clause content is added in the local context and introduced as a proposal to update the global context (Murray 2014, AnderBois et al. 2015).\(^{22}\) A slightly simplified version of example (13) is repeated below in (19).

(19) \[\text{Joe}_j^x, [\text{who}^x \text{ killed a man in cold blood}]_A, \text{ doesn't know which man,} \]
\[[\text{he}_j^x \text{ killed } t_i^x \text{ in cold blood }]_E. \]

\(^{21}\) This can be achieved formally via a form of local accommodation, see discussions in Roberts (1989, 2015) and Kadmon (2001, Chapter 9).

\(^{22}\) See AnderBois et al. (2015) for a detailed exposition of the theory which is simplified here for expositional purposes. Note that while their account is created to allow for the free occurrence of ellipsis over borders, they rely on the account of AnderBois (2014) to rule out sluicing specifically. See discussion above on why we want an ellipsis theory to derive this example.
i. The appositive content of (19) immediately updates the global context set \(c \):

\[
c = W \cap \{ w : \exists x [\text{man}(x)(w) \land \text{kill in cold blood}(x)(j)(w)] \}
\]

\[
= \{ w : \exists x [\text{man}(x)(w) \land \text{kill in cold blood}(x)(j)(w)] \}
\]

ii. The existential closure of \(E \) is given as follows:

\[
\text{ExClo}(\|E\|) = \{ w : \exists x [\text{man}(x)(w) \land \text{kill in cold blood}(x)(j)(w)] \}
\]

iii. As there are no intervening updates (no intervening operators or propositions), the local context for the expression following the appositive is identical to the global context, and we correctly predict entailment and elision of the sluiced clause:

\[
\{ w : \exists x [\text{man}(x)(w) \land \text{kill in cold blood}(x)(j)(w)] \} \subseteq \text{ExClo}(\|E\|)
\]

Note that entering the appositive content immediately into the global context in this way correctly predicts the projection behavior of appositives and the existence of anaphoric and ellipsis possibilities across appositive and main clause content. The interested reader is referred to Potts (2005), del Gobbo (2007), Nouwen (2007, 2014), Schlenker (2010b), and AnderBois et al. (2015), a.o. for additional details.

This subsection has independently motivated the Local Givenness theory using examples that are also predicted by Merchant's e-GIVENness theory. The contextual entailment condition of Local Givenness is a less restrictive condition than the bidirectional semantic entailment condition of e-GIVENness, and therefore predicts not only those sluices predicted by e-GIVENness, but also sluices that the bidirectional entailment condition is too restrictive to capture. The following section turns to deriving polarity reversal sluices.

4. Deriving Polarity Reversal Sluices

The following sub-sections apply Local Givenness to three main categories of polarity reversal sluices.\(^{23}\) The categories are formed by grouping the data based on a salient similarity. For example, polarity reversal sluices are easily constructed with neg-raising verbs, so one category is Neg-Raising Polarity Reversals. While I believe that these categorizations hold theoretical significance, I remain uncommitted to them as holding final explanatory power or as comprising an exhaustive subcategorization.\(^{24}\)

\(^{23}\) See Appendices A and B for derivations of polarity reversal examples containing *doubt* and *until.*

\(^{24}\) Many polarity reversal examples given here contain *why* and *which NP* correlates. The paucity of correlate types may raise concerns that polarity reversals comprise a restricted set of data and are not generalizable to a wider theory of sluicing. Polarity reversal examples are, however, available with a greater class of remnants. For example, manner how polarity reversal sluices are possible and have been found in corpus data:

(i) [corpus example, Santa Cruz Ellipsis Project]

Context: No one expects Apple to stand still, however, and that fuels the speculation. “I don't think Steve Jobs will let it be a boring MacWorld,”
4.1. Polarity Reversals Are Not Semantic Entailment: Neg-Raising Polarity Reversals

One class of polarity reversal sluices contains neg-raising verbs. For example, (2) is repeated below as (20):

(20) [I don't think that California, will comply]_A, but I don't know why [Tp it, won't comply]_E.

That neg-raising is the relevant property in (20) can be seen by the minimal pair comparison in (21) and (22). Example (22) swaps the neg-raising verb \textit{think} with the non-neg raising verb \textit{hope}. While the neg-raising and non-neg-raising interpretations are both available for (21), (22) cannot receive the polarity reversal interpretation in (a). Instead, the only available interpretation is the matrix clause reading, given in (22b).

(21) a. Mary doesn't think that California, will comply, but she can't explain why [it, won't comply]_E.
 b. Mary doesn't think that California, will comply, but she can't explain why [she, doesn't think it will comply]_E.

(22) a. Mary doesn't hope that California, will comply, but she can't explain why #[it, won't comply]_E.
 b. Mary doesn't hope that California will comply, but she can't explain why [she, doesn't hope that California will comply]_E.

Neg-raising verbs are clause-embedding verbs that when negated allow a reading in which matrix negation takes scope in an embedded clause. As it is one of the dominant approaches in the literature, I use here the account of neg-raising given in Gajewski (2007).\footnote{Gajewski’s account draws importantly on an idea from Bartsch (1973) that the inference from the literal interpretation of a neg-raising sentence like (20), where negation takes matrix scope, to the neg-raised interpretation, where negation takes embedded scope, is a pragmatic inference. Specifically, Bartsch argues that neg-raising verbs license an excluded middle presupposition as a pragmatic inference. For a sentence like (20) that contains the neg-raising verb \textit{think}, the presupposition is that the subject either believes that the proposition expressed by the complement of the verb is true, or believes that it is false. The assertion of (20) combined with this presupposition then pragmatically entails that the speaker in (20) has a belief that California will not comply. The pragmatic nature of the reasoning involved explains how negation comes to be interpreted low and also explains why the neg-raised reading is cancellable in context. The criticism leveled against Bartsch's original account is that no principled reason is given for why some verbs are neg-raising verbs and others are not (Horn 1978). For example, no explanation is Sluice: “we just don't know how [he won't let it be a boring MacWorld].” Degree how polarity reversal sluices are also possible, as given below in (59). Examples containing argument remnants are also possible: (ii) I don't think that NO one came to the party, I'm just not sure WHO, [t, came to the party].} I ask my syntactically-inclined readers to please preview §4.2 to assuage objections to this choice.
given for why the verb *think* can neg-raise while the epistemically stronger verb *know* cannot, or why neg-raising verbs are idiosyncratically distributed across different languages.

Gajewski proposes to alleviate this objection by categorizing the excluded middle presupposition of neg-raising verbs as a soft-trigger presupposition in the sense of Abusch (2009). Abusch’s soft-trigger presuppositions are presuppositions that are easily cancellable in context and as such are distinct from hard-trigger presuppositions, which cannot be cancelled. Soft trigger presuppositions are carried by predicates that invoke lexically-stipulated alternatives as a matter of convention. The invocation of these alternatives triggers a pragmatic presupposition that one of the alternatives is true. In the case of neg-raising verbs, the alternatives invoked are the literal interpretation of the sentence and the neg-raised interpretation of the sentence. In summary, Gajewski proposes to treat neg-raising predicates as soft triggers that invoke a pragmatic excluded-middle presupposition. This proposal intends to capture the behavior described in Bartsch’s account while providing a more principled explanation for why some verbs allow neg-raising and others do not.

With this theoretical background in place we can return to example (20). I have proposed that the assertion of (20A) combined with the excluded-middle presupposition invoked by the verb *think* entails that the speaker in (20) has the belief that California will not comply. Formally, this is expressed as follows:

(20)
\[I \text{ don't think that California will comply} \]A, but I don't know why [it won't comply]E.

(20')
\[I \text{ don't think that California will comply} \]g =
\[\lambda w'. \neg \forall w[w \in \text{DOX}(s)(w') \rightarrow \text{comply}(c)(w)] \]

DOX(s)(w) indicates the set of worlds compatible with the doxastic state of the speaker. Via the excluded middle presupposition conventionally associated with the verb *think*, A presupposes that the world of evaluation of *think* meets the following restriction:

Excluded Middle Presupposition of (20A):
\[\lambda w'. [\forall w[w \in \text{DOX}(s)(w') \rightarrow \text{comply}(c)(w)] \lor \forall w[w \in \text{DOX}(s)(w') \rightarrow \neg \text{comply}(c)(w)]]] \]

The denotation of *think* assumed here is given as follows (following Uegaki 2015):

\[[\text{think}]^g = \lambda p. \lambda s. \lambda w'. [\forall w[w \in \text{DOX}(s)(w') \rightarrow p(w)] \lor \forall w[w \in \text{DOX}(s)(w') \rightarrow \neg p(w)]]. \]

Because A expresses that the first disjunct of the excluded middle presupposition is false, the presupposition of A and the assertion of A together entail the second disjunct of the presupposition. This entailment produces the stronger reading that the speaker uttering (20) has a belief that California will not comply.
The following steps apply Local Givenness to (20).

i. **Starting Context:**
 \[c = W \]

ii. \((20_{\lambda})\) asserts that it is not true that the speaker believes that California will comply.

 Semantic Denotation of \((A)\):
 \[[A]^{g} = \lambda w'. \neg \forall w [w \in \text{DOX}(s)(w') \rightarrow \text{comply}(c)(w)] \]

iii. The pragmatic excluded middle presupposition of \((20_{\lambda})\)—conventionally associated with the verb *think*—requires that the speaker either believes that California will comply or believes that California will not comply.\(^{26}\)

 Excluded Middle Presupposition of \((A)\):
 \[
 \lambda w'. \forall w [w \in \text{DOX}(s)(w') \rightarrow \text{comply}(c)(w)] \lor \\
 \forall w [w \in \text{DOX}(s)(w') \rightarrow \neg \text{comply}(c)(w)]
 \]

iv. Step (ii) + (iii) derive the strengthened neg-raised interpretation: Because (ii) asserts that it is not true that the speaker believes that California will comply, it follows from (iii) that the speaker believes that California will not comply. The utterance of \((20_{\lambda})\) thus asserts the strengthened meaning given below.

 Strengthened Neg-Raised Interpretation of \((A)\):
 \[
 \lambda w'. \forall w [w \in \text{DOX}(s)(w') \rightarrow \neg \text{comply}(c)(w)]
 \]

v. Step (iv) pragmatically asserts that California will not comply. This assertion creates a local context \(c_L\) in which the worlds under consideration are only those in which California does not comply.\(^{27}\)

 \(c_L\) for \(E\):
 \[W \cap C(\lambda w. \neg \text{comply}(c)(w)) = W \cap \{ w : \neg \text{comply}(c)(w) \} = c_{LE} \]

vi. The existential closure of \(E\) yields the set of worlds in which California does not comply.\(^{28}\)

26 Note that the derivation does not fail here because the presupposition is "soft" in Abusch's (2005) sense. That is, the presupposition is not a definedness requirement of the context, but is introduced by the lexical item, which invokes alternatives as a matter of convention. Thank you to a reviewer for requesting clarification on this step.

27 See discussion of assertive verbs above.

28 The observation that adjunct wh-traces do not participate in semantic parallelism relationships in ellipsis is part of an ongoing discussion in the literature (see Schwarzschild 1999, Merchant 2001, Hartman 2011, Barros 2014, Messick & Thoms 2016, and Rudin to appear). This project has nothing to add beyond the current state of the literature on this question, and I refer the interested reader to the given citations. However, we might think that every event entails a reason (as well as a time, place, and manner) that it occurred even if that reason is not
Denotation of (E):
\[ExClo[\llbracket E \rrbracket^g] = \{ w: \neg \text{comply}(c)(w) \}\]

vii. The local context given in v. entails the elided proposition that California will not comply, and Local Givenness is satisfied.

Local Givenness:
\[c_{LE} \subseteq \{ w: \neg \text{comply}(c)(w) \}\]

The entailment satisfies the Local Givenness requirement that the elided proposition be entailed by its local context, and we predict felicitous elision of the proposition expressed by (20e).

4.2 Polarity Reversals Are Not Syntactic: Remember Polarity Reversals

The reader may at this point raise the objection that the previous example wrongly dismissed the possibility of a syntactic account of neg-raising as an explanation for the inference from \(\neg \varphi(p) \rightarrow \varphi(\neg p)\) as the classic analysis of neg-raising—originally advanced by, among others, Fillmore (1963) and Ross (1973), and revived recently by Collins and Postal (2014)—argues for a syntactic explanation. This section shows that an appeal to a syntactic account of neg-raising will not save a semantic entailment account of sluicing. Instead, the inference \(\neg \varphi(p) \rightarrow \varphi(\neg p)\) must, at least in some cases, be pragmatic in nature.

Example (23) is a corpus polarity reversal sluice containing *remember.*

(23) [corpus example 91594, Santa Cruz Ellipsis Project]

Context: On the day the Japanese invaded Pearl Harbor, Hummel was rounded up and locked in an internment camp along with about 2,000 other foreigners. . . So he and a British friend engineered an escape with the help of Nationalist guerrillas concealed nearby. He crawled over barbed-wire and walked most of the night and the next day. He was 20 and had no military training. But he was handed a small Belgian pistol, and he had little choice but to stay and help, harassing Japanese patrols by night and trying to defend a small patch of land against a communist takeover.

Sluice: “I really can't remember being scared, but I don't know why [I wasn't scared].” [Hummel] said. “It all seemed like great fun.”

Example (23) is illustrative in that it appears to behave like the neg-raising examples: known, such that existentially closing over that variable does not alter the entailment relations with other event denotations. Existentially closing over such a variable in (20) would yield the following: \(\{ w: \exists e[\neg \text{comply}(c)(e)(w)] \land \exists r[\text{reason}(r)(e)(w)]\}\).

29 Example (23) is modified from the original corpus example, which was cataphoric. As the non-cataphoric version is equally acceptable, I do not investigate the interesting properties of cataphora, as it requires a much closer examination and detailed discussion than can be provided here.
¬remember p is interpreted in context as entailing ¬p. However, remember is not classified as a neg-raising verb in the literature and, indeed, the inference is more contextually dependent than that carried by neg-raising verbs. For example, A's utterance in (24) is perfectly acceptable, while A's utterance in (25) is grammatical but a bit unwieldy.

(24) I don't remember being scared, but apparently I was!

(25) I don't think that John went to the party last night, but that's because I don't know anything about his whereabouts last night.

Karttunen (1971) classifies remember as an implicative verb. As such, remember has the following properties when taking an infinitival complement: remember p → p, ¬remember p → ¬p. For example, in (26) below there is a strong intuition that the assertion of the sentence commits the speaker to believing that she did not shut the door.

(26) I didn't remember to shut the door.

Higginbotham (2003) proposes that remember (along with imagine) in its usage with a gerund complement carries an obligatory de se reading when the embedded subject is PRO. For example, while (27) has both a possible de re and a possible de se reading, (28) carries only the de se reading, under which John remembers he himself going to the movies.

(27) John remembered his going to the movies.
(28) John remembered going to the movies. [Higginbotham 7&10]

Based on these discussions, I propose that the inference ¬remember p → ¬p in (23) is licensed by two defeasible contextual assumptions. The first assumption is that the speaker has a memory about the particular event represented by p.30 That is, the speaker is informed about the event under discussion. This is parallel to the Competence Assumption that is used by researchers in computing scalar implicatures (van Rooij & Schulz 2004, Geurts 2009, a.o.). I argue that this assumption is stronger in cases in which the subject of remember is remembering their own experience of the particular event, as in Higginbotham's de se examples. The second assumption is based on the idea that insofar as our memory of eventualities track with our beliefs about those eventualities, a speaker's memory represents the speaker's beliefs about the way the actual world was in the past. An assertion of memory can therefore in context be taken as doxastic evidence for or against a description of a particular eventuality, and can license inferences from memory to belief. These assumptions are defeasible in that a speaker can have the reliability of their memory challenged.

30 I abstract away here from concerns about negative events, and assume that the event in question in (23) exists and that it was either an event of being scared or an event of being not scared. Another way to approach this is to say that the speaker either remembers the event e or remembers the maximal eventuality S of all eventualities e' in the relevant time period and e \not\subseteq S (cf. Krifka (1989) and de Swart (1996) in which the following definition of event negation is used: λP. λs. [MAX(s) ∧ ¬∃e[P(e) ∧ e \subseteq s]]).
The following steps apply Local Givenness to (23).

(23)
[I can't remember being scared]ₐ, but I don't know why [I wasn't scared]ₑ.

i. **Starting Context:**

 \[c = W\]

ii. The pragmatic assumption associated with \(A\) is that the speaker has a memory of the particular event being discussed, namely an event of being scared or being not scared. \(\text{MEM}(s)(w)\) here acts as an information state of the speaker containing all those worlds compatible with the memory of the speaker.

Assumption of Speaker Memory

\[\lambda w'. \forall w [w \in \text{MEM}(s)(w') \rightarrow \exists e \exists t [\neg \text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)]] \lor \forall w [w \in \text{MEM}(s)(w') \rightarrow \exists e \exists t [\text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)]\]

iii. The semantics of \(A\) expresses that the speaker does not remember an event of being scared: in all the worlds compatible with the memory of the speaker there was no event (in the relevant time period) in which the speaker was scared.

Semantic Denotation of \(A\):

\[
\llbracket A \rrbracket^S = \lambda w'. \neg \forall w [w \in \text{MEM}(s)(w') \rightarrow \exists e \exists t [\neg \text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)]] \lor \forall w [w \in \text{MEM}(s)(w') \rightarrow \exists e \exists t [\text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)]
\]

iv. Steps (ii) and (iii) together entail the proposition that the speaker remembers an event of his being not scared. Therefore, an assertion of \(A\) expresses the following:

Enriched Denotation of \(A\):

\[
\lambda w'. \forall w [w \in \text{MEM}(s)(w') \rightarrow \exists e \exists t [\neg \text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)]] \lor \forall w [w \in \text{MEM}(s)(w') \rightarrow \exists e \exists t [\text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)]
\]

v. Under the assumption that the speaker's memories of the past represent the speaker's beliefs about the history of the actual world, we can infer the following from Step (iv).

Assumption of Speaker Consistency:

\[
\lambda w'. \forall w [w \in \text{DOX}(s)(w') \rightarrow \exists e \exists t [\neg \text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)]] \lor \forall w [w \in \text{DOX}(s)(w') \rightarrow \exists e \exists t [\text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)]
\]

vi. Step (v) pragmatically asserts that the speaker was not scared. The context is then updated with this proposition in the same manner as in example (20).

Context Update:

\[
W \cap C(\lambda w [\exists e \exists t [\neg \text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)]]) =
W \cap \{ w : \exists e \exists t [\neg \text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)] \} =
\{ w : \exists e \exists t [\neg \text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)] \} = c_{LE}
\]

31 Contextual domain restriction assumed throughout.
vii. **Existential Closure of E:**

\[\text{ExClo}(\|E\|) = \{ w: \exists e \exists t [\neg\text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)] \} \]

viii. **Local Givenness:**

\[c_L \subseteq \text{ExClo}(\|E\|) \]

\[\{ w: \exists e \exists t [\neg\text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)] \} \subseteq \{ w: \exists e \exists t [\neg\text{scared}(s)(e)(w) \land \text{AT}(t)(e)(w)] \} \]

The existential closure of E is entailed by its local context, and we correctly predict felicitous elision of E.

A reviewer correctly observes that the derivation here is very similar to the derivation of the neg-raising example in (20), as both rely on the excluded middle. However, while I follow Gajewski in the proposal that neg-raising verbs induce an excluded middle presupposition, the pragmatic inferences utilized for *remember* are less automatic and more easily defeasible than the presuppositions for neg-raising verbs. We can easily find contexts in which both the Assumptions of Speaker Memory and Speaker Consistency fail to hold; as expected in such contexts, the inference \(\neg\text{remember } p \rightarrow \neg p \) also fails to hold.

4.3 Polarity Reversals are not Bidirectional Pragmatic Entailment: Disjunction Polarity Reversals

The resourceful reader might at this point object that, instead of jettisoning our familiar bidirectional entailment account, a simpler path is to simply enrich the bidirectional entailment condition to include pragmatic and not merely semantic content. This section shows that a pragmatically enriched bidirectional entailment account still fails to generate the full range of polarity reversal data. Consider example (29) below containing disjunction.

\[\text{(29) Context: } \text{Students in a semantics class were given the option to do an extra credit problem, and were required to mark the number of the problem that they did on a spreadsheet accessible by the course's professor and TA. Both the professor and TA thought that John, a student in the class, would have chosen to do a problem. They look at the spreadsheet and see that nothing is marked down under John's name. The TA says to the professor:} \]

\[\text{Sluice: } \text{Either [John}_j \text{ didn't do an extra credit problem], or he}_j \text{ didn't mark which one, [he}_j \text{ did -t].} \]

In (29), we see that negation is present in the antecedent but not in the ellipsis site.32 An utterance of (29) asserts that either (A) *John didn't do an e.c. problem* or (E) *John did an e.c. problem*. The disjunction contains contrary propositions: they cannot both be true at the same time. Although

32 Thank you to Jason Merchant (p.c.) for pointing out that these data run counter to the claim made in Merchant (2013a, 15) that negation present in the antecedent of a sluicing construction requires a corresponding negation present in the ellipsis site.
we are unable in principle to tell whether the disjunction is inclusive or exclusive, as the two cases collapse in this instance, an inclusive rule of disjunction would fail to make the correct predictions for the update of the local context of (29). The dynamic literature provides an existing rule for exclusive disjunction, however, that we can use in this case (Karttunen 1974; Heim 1983b; Kadmon 2001).

Disjunction for Propositions:

For propositions \(p, q \) such that \(p \text{ or } q \) is uttered in a context \(c \):

- \(c_L \) for \(p = c \),
- \(c_L \) for \(q = c + (c \setminus p) \)

The proposal says that the local context for the first disjunct of an exclusive disjunction construction is the context \(c \) of the conversation at the time at which \(p \) is uttered. The local context for the second disjunct is \(c \) intersected with the complement of the first disjunct. The intuition for this proposal is that the context for the second disjunct must be allowed to include worlds incompatible with the first disjunct, in order to correctly predict that the second disjunct is defined.

The steps below show how Local Givenness correctly predicts the availability of the sluice in (29).

i. **Starting Context:**

\(c = W \)

ii. **Denotation of A:**

\[
C(\llbracket A \rrbracket^g) = \{ w : \neg \exists x[\text{extra credit problem}(x)(w) \land \text{do}(x)(j)(w)] \}
\]

iii. **Denotation and Existential Closure of E:**

\[
\text{ExClo}(\llbracket E \rrbracket^g) = \{ w : \exists x[\text{extra credit problem}(x)(w) \land \text{do}(x)(j)(w)] \}
\]

iv. **Local Contexts for A and E:**

\[
c_{LA} = c = W
\]

\[
c_{LE} = W \cap \{ w : \neg \exists x[\text{extra credit problem}(x)(w) \land \text{do}(x)(j)(w)] \}
\]

33 Note that this fact holds regardless of whether the example contains ellipsis.

34 Note that the \(wh \)-phrase \(\text{which one} \) is d-linked in the sense of Pesetsky (1987), meaning that it ranges over a salient set in the discourse. One could assume here, following Cinque (1989), that d-linked \(wh \)-phrases are referential and therefore leave behind a referentially indexed trace. Existentially closing over this trace would then restrict the possible identity of the thing to which the existentially bound variable can refer to a member of a particular set present in the discourse. However, as the d-linking is orthogonal to the example here, I suppress this issue for the sake of expositional clarity.
v. Local Givenness:

\[c_{LE} \subseteq ExClo(\langle E \rangle_g) = \{ w: \neg \exists x[\text{extra credit problem}(x)(w) \land do(x)(j)(w)] \} \]

Local Givenness is satisfied in step (v) because the local context for E entails the proposition expressed by E, assuming a classical logic in which a doubly negated proposition equals its unnegated equivalent. We therefore correctly predict felicitous elision of E.

The possibility of polarity reversal sluices in disjunction constructions illustrates the necessity of local contextual entailment in the current account. The global context of (29) does not entail the proposition that John did any extra credit problems, as both possibilities—of John having done extra credit problems and of him not having done any—are being entertained as possibilities. It is only in the local context of the second disjunct that the proposition that John did extra credit problems is entailed, as the local context excludes those worlds in which John didn't do any extra credit problems. Furthermore, examples such as (29) show that a pragmatically-enriched bidirectional entailment account is insufficient to explain the polarity reversal data, as no pragmatic enrichment of the semantic content of A and E in (29) will yield bidirectional entailment of the propositions. Instead, the crucial licensing factor in this example is the disjunctive operator—which contributes its heritage properties to A and E—and not the propositional content of A and E themselves.

4.4 Polarity Reversals are not Entailment at LF: More Disjunction Polarity Reversals

I have so far addressed concerns that the polarity reversal examples might be explained by appeals to syntactic accounts of neg-raising or to a pragmatically enriched bi-directional entailment account, and I have shown that both possibilities fail to account for the entirety of the polarity reversal data. A third possibility is that negation is scoped out of the relevant antecedent at logical form. Proponents of this view might argue that the example above is derived using the following LF form:

(29') Either [not [John\textsubscript{i} did an extra credit problem]_j], or he\textsubscript{i} didn't mark which one, [he\textsubscript{i} did t_j].

In such a construction, a standard bi-directional entailment account would predict the possibility of the sluice.

There are two reasons why this possibility does not save a bi-directional entailment account. First, it has for some time been observed that the scope of negation is fixed by its surface position, unlike quantifiers and modals (see an early discussion in Ladusaw 1988 and more recent discussions in Iatridou & Sichel 2011 and Potsdam 2013). That is, negation does not raise or lower at LF. Second, polarity reversal examples are also found in which negation is added into the ellipsis site. For example, the modified corpus example below:\footnote{See Karttunen and Peters (1979), Heim (1983b), and Kadmon (2001), a.o.}

\footnote{I thank an anonymous reviewer for encouraging the inclusion of such an example.}
(30) [modified corpus example]

Context: On Dec. 10, Senator McCain sent a letter to the FCC urging the five-member board to end two years of deliberations and decide whether Paxson Communications should be given a license for a Pittsburgh station. Angela J. Campbell, an attorney for opponents to the deal, told the Globe that McCain's letter likely 'tipped' the scales in favor of the decision.

Sluice: “Senator McCain said, 'Either the Board grants the license by December 15 or it explains why [the Board didn't grant the license by December 15]' and the commission jumped to it and did it that very day,” Campbell told the Globe.

In this example, the reversal takes place in the opposite direction of those discussed so far: the example contains a positive antecedent and a negative elided phrase. There is no possibility of scoping the negation out of the elided phrase; because it is unpronounced, the negation is uncontroversially inside of the ellipsis site. A derivation of the sluice is given below.

The following steps apply Local Givenness to the disjunction in (30).37

(30) Either [the Board, grants the license by December 15] \(A \) or it, explains why [the Board, didn't grant the license by December 15] \(E \):

i. **Starting Context:**
 \[c = W \]

ii. **Denotation of \(A \):**
 \[C([A]^\circ) = \{ w : \text{grant the license by December 15}(b)(w) \} \]

iii. **Denotation and Existential Closure of \(E \):**
 \[ExClo([E]^\circ) = \{ w : \neg \text{grant the license by December 15}(b)(w) \} \]

iv. **Local Context for \(A \) and \(E \):**
 \[c_{LA} = c = W \]
 \[c_{LE} = W \cap \{ w : \neg \text{grant the license by December 15}(b)(w) \} = \{ w : \neg \text{grant the license by December 15}(b)(w) \} \]

v. **Local Givenness:**
 \[c_{LE} \subseteq ExClo([E]^\circ) = \{ w : \neg \text{grant the license by December 15}(b)(w) \} \]
 \[\subseteq \{ w : \neg \text{grant the license by December 15}(b)(w) \} \]

37 Note that the disjunction does not consist of imperatives, as may appear at quick glance. Imperative subjects must refer to the addressee (Portner 2005, 2007; Kaufmann 2012; von Fintel & Iatridou 2017 a.o.). Additionally, imperatives are argued to express speaker preference (Condoravdi & Lauer 2011, 2012, a.o.). However, this construction does not require the speaker to have a preference for either disjunction. For example: Either Ohio State wins the football game or their fans riot (but both are terrible outcomes). The propositions instead express a simple present futurate (Prince 1971, Dowty 1979, Vetter 1973, Copley 2014, a.o.). For expositional clarity, and because concerns of tense are orthogonal to the current project, I set aside the interesting nature of this use of tense and focus on the core propositional content.
Local Givenness is satisfied in step (v) because the local context for E entails the proposition expressed by E, as they express identical propositions. We therefore correctly predict felicitous elision of E.

4.5 Failure to License

This section provides an example of the account's ability to correctly rule out an impossible ellipsis site. Examples (29) and (31) contain minimally different contexts and sluices; however, while the sluice in (29) is acceptable, the sluice in (31) is not.

(31) Context: Students in a semantics class were given a set of extra credit problems, which they could choose to do up to half of. All students were required to put a mark on a spreadsheet next to each question, indicating whether they did or didn’t do it. The professor and TA look at the spreadsheet and see that John has not put a mark next to all of the questions. The TA says to the professor:

Impossible Sluice: [John marked which problems he did]A, but he, didn’t mark which problems; [#he, didn’t do E].

While the example is acceptable in its un-elided form, the sluiced interpretation given in (31) is impossible. We predict this result because the conjunction in (31) does not yield the same local context for the second conjunct as the disjunction does in (29). Recall our dynamic rule of conjunction stated above, which is motivated in the literature on presupposition projection in conjoined clauses: c + (p ∧ q) = (c + p) + q. Because the local context for the elided phrase contains the global context plus the proposition expressed by A, \{w: ∃x[PL(x)(w)∧problem(x)(w)∧mark(x)(j)(w)∧do(x)(j)(w)]\}, the local context clearly does not entail the proposition expressed by E, \{w: ∃x[PL(x)(w)∧problem(x)(w)∧¬do(x)(j)(w)]\}. Local Givenness is therefore not satisfied and we correctly predict the infelicity of the sluice in (31).

This section has discussed the possibilities of accounting for the polarity reversal sluices with a bidirectional semantic entailment account, a bidirectional pragmatic entailment account, and accounts that scope negation outside of the relevant antecedents either syntactically or at LF. I have shown that none of these possibilities can capture the full scope of the polarity reversal examples. I have additionally shown that a contextual entailment condition like Local Givenness successfully accounts for the full range of examples. The next section addresses concerns that have historically been levied against non-structural ellipsis licensing conditions.

5. Structural Constraints on Sluicing

The analysis that has been proposed so far is necessarily more permissive than existing syntactic or semantic entailment accounts of sluicing. While this additional permissiveness is required in order to capture the structural and semantic differences between the preceding linguistic context and the elided phrases in polarity reversal sluices, it also invites concerns of overgeneration. There are two ways Local Givenness can avoid these concerns. The first is to follow existing
accounts in combining the contextual constraint of Local Givenness with an independent syntactic constraint. Section 5.2 outlines what such a syntactic constraint would need to look like. While this approach is promising, §5.3 shows that even combining Local Givenness with a syntactic constraint does not yield a theory sufficient to capture the data. Instead, some notion of salience must also be integrated into the account. Because a salience constraint is independently necessary, §5.4 proposes a way in which we might define a notion of propositional salience for ellipsis.

5.1 Data Motivating Syntactic Constraints on Sluicing

A concern levied at non-structural analyses of sluicing is that they fail to capture certain identity requirements of sluicing constructions that appear to have a syntactic basis. One of these requirements is case matching, which was first noted in Ross (1969) and is discussed at length in Merchant (2001). Case matching is the generalization that the remnant in a sluiced construction must match in case with its correlate. Merchant (2001) accounts for this behavior by proposing that the correlate is assigned case in the elided structure, before movement. The case matching facts are then an argument for the existence of syntactic structure in the elision site. Because I adopt the position that the elision site contains syntactic material, Merchant's account of case matching applies equally to the pragmatic theory outlined in this paper as it does to his own account of bidirectional semantic entailment.

A second syntactic identity condition, proposed in Chung (2006/2013), is a generalization that has since been named Chung's Generalization. The generalization states that a preposition can be stranded by a remnant in the ellipsis site only when the remnant corresponds to syntactic material in the antecedent clause. The Generalization captures the paradigm given below in (32-34).

\[
\begin{align*}
(32) & \quad [\text{John is flirting}]_A, \text{ but I don't know with who}, [\text{John is flirting with } t_i]_E. \\
(33) & \quad [\text{John is flirting}]_A, \text{ but I don't know #who}, [\text{John is flirting with } t_i]_E. \\
(34) & \quad [\text{John is flirting with someone}]_A, \text{ but I don't know who}, [\text{John is flirting with } t_i]_E.
\end{align*}
\]

These data present a difficulty for meaning-based accounts relying only on entailment licensing conditions. If we assume that the act of flirting entails the act of flirting with someone and vice versa, then bidirectional semantic entailment holds between the antecedent and elided clauses in (32-34). A meaning-based entailment condition would therefore fail to rule out the impossible sluice in (33). Since these observations, researchers advocating for meaning-based licensing conditions have opted to include a structural constraint in their theory in order to account for these facts. The next section discusses some ways in which this has been undertaken, and proposes a path forward that unites structural constraints of sluicing with Local Givenness.
5.2 Local Givenness plus Structural Constraints

Since Chung's observations of the facts above, meaning-based accounts have incorporated an independent structural constraint to account for the data. For example, AnderBois (2014) follows Merchant (2007) in using the constraint *No New Morphemes*, which states that the morphemes contained within the elided expression of a sluice must be a subset of the morphemes contained within the antecedent expression. The polarity reversal data show us, however, that No New Morphemes cannot be the generalization needed. For instance, example (30), repeated here as (35), contains a negation morpheme (bolded) in the ellipsis site that is not present in the antecedent site.

(35) Senator McCain said, “Senator McCain said, 'Either the Board grants the license by December 15 or it explains why [the Board did not grant the license by December 15]' and the commission jumped to it and did it that very day,” Campbell told the Globe”

The morphemes contained within the ellipsis site of (35) are not a subset of the morphemes contained within the antecedent, in opposition to the predictions of No New Morphemes.

While No New Morphemes is not the formulation we need, it is still possible to adopt a limited syntactic identity constraint that works in conjunction with Local Givenness to account for the facts. Such a path follows Chung (2013), Merchant (2013b), Barros (2014), and AnderBois (2014) in proposing a theory that relies on limited structural constraints *in conjunction with* a contentful meaning-based licensing constraint. One obvious way to proceed is to adopt into the current account Chung's more finely articulated constraints on which No New Morphemes is based. Chung proposes two constraints, given below:

(36) Limited Syntactic Identity in Sluicing:
 (i) Argument structure condition: If the interrogative phrase is the argument of a predicate in the ellipsis site, that predicate must have an argument structure identical to the corresponding predicate in the antecedent clause.

 (ii) Case condition: If the interrogative phrase is a DP, it must be Case-licensed in the ellipsis site by a head identical to the corresponding head in the antecedent clause.

Merchant (2013b) operationalizes these conditions to account for both verb phrase ellipsis (VPE) and sluicing facts by proposing a limited syntactic identity condition that holds between syntactic heads within an ellipsis site and syntactic heads within some preceding structure. While not aware of the polarity reversal data, Merchant's account proposes that the syntactic identity condition for sluicing holds over a greater swath of syntactic structure than it does for VPE. Specifically, sluicing requires syntactic identity from the bottom of the tree to a head above Voice, while VPE only requires matching from the bottom of the tree to vP.

While Merchant leaves open the exact formulation of the limited syntactic identity constraint needed, Rudin (to appear) and Kroll & Rudin (2018) propose one possible
implementation of Chung and Merchant's ideas. They propose that syntactic identity holds only over heads within the eventive core of the elided clause, namely heads including and below the highest vP that is associated with an event-introducing verb. Crucially, because their syntactic identity condition holds only over the eventive core of the elided clause (bolded in (37)), any mismatch in structure or lexical material is allowed above the highest vP domain. This account correctly predicts the possibility of polarity mismatches, as polarity nodes are located above the highest vP domain (Laka 1990, Ladusaw 1992). For example, (2) is repeated below as (37).

(37) I don't think that [California will comply], but I don't know why [California won't comply].

A: [TP California [T will [PolP [vP comply]]]]
E: [TP California [T will [PolP not [vP comply t]]]]

Kroll & Rudin's account also correctly rules out the data violating Chung's generalization. It is clear in (33), repeated below as (38), that the elided PP has no syntactically matching antecedent in the preceding discourse, and therefore violates the limited syntactic identity condition.

(38) [John is flirting]A, but I don't know #who [John is flirting with t].

A: [TP John [T [PolP [vP is [VP flirting]]]]]
E: [TP John [T [PolP [vP is [VP flirting PP with t]]]]]

To summarize this section, one way for the current account to deal with Chung's facts is to follow previous accounts and integrate into Local Givenness an independent limited syntactic identity constraint, as proposed in Chung (2013) and Merchant (2013b). Rudin (to appear) and Kroll & Rudin (2018) argue that their account presents one possible way of doing this. However, Local Givenness need not rely on any particular formalization of the syntactic facts discussed here. The data have presented tenacious challenges for purely meaning-based approaches to sluicing ever since the original observations. As Merchant (2013b) states, the exact form of a syntactic identity formulation for ellipsis remains to be fully explicated, and the proposal here is not intended to advance this particular line of research. I hope merely to point out the arguments that have been presented in favor of combining meaning-based sluicing accounts with a limited syntactic identity condition. Ultimately, any limited syntactic identity constraint that captures the facts is in principle available to us. The contribution of the current proposal is to observe that such a constraint, whatever its exact formulation, must be permissive enough to allow for high syntactic mismatches such as polarity.

5.3 Structure plus Pragmatics: A Full Picture?

In the previous section, we saw the arguments in favor of integrating an independent limited

38 Note that traces are not included in the structure-matching requirements of the theory. See Rudin (to appear) for an extensive defense of these claims. For space concerns and because the current account is not dependent upon the specific implementations of this theory, I omit the details here.
syntactic constraint into a meaning-based licensing account. However, even combining a meaning-based account with a syntactic constraint is not sufficient to alleviate overgeneration concerns. Consider (39a-b) below (Cantor 2013). In the desired interpretations, the remnants who are linked to a discourse referent that was introduced, via some pedestrian, within a discourse subordinated relative clause:

(39) a. #That John rented a car that hit some pedestrian surprised everyone, but the report didn’t say who, [that John rented a car that hit t, surprised everyone].

 b. #A car that hit some pedestrian crashed into the wall last night, but the report didn’t say who, [a car that hit t, crashed into the wall last night].

The sluices are easily judged to be infelicitous. Similarly, as we saw in (12), repeated as (40) below, sluicing with a simple wh-remnant out of a discourse subordinated appositive clause is also infelicitous.

(40) #Joe, who once killed a man in cold blood, doesn't even remember who [he once killed in cold blood].

Because (39a-b) and (40) all have matching linguistic antecedents, any theory that licenses sluiced clauses based only on the existence of an appropriately matched antecedent will fail to rule the examples out. Additionally, the infelicity of the examples is not due to a contextual licensing failure or a structural constraint failure: the examples have matching linguistic antecedents, satisfy Local Givenness, and do not violate any of the discussed syntactic constraints. We can confirm that there is no structural or licensing factor driving the infelicity of examples (39a-b) by noticing that they become acceptable with the d-linked remnants which pedestrian (Cantor 2013, pg. 27-28):

(41) a. That John rented a car that hit some pedestrian surprised everyone, but the report didn’t say which pedestrian, [that John rented a car that hit t, surprised everyone].

 b. A car that hit some pedestrian crashed into the wall last night, but the report didn’t say which pedestrian, [a car that hit t, crashed into the wall last night].

Additionally, we already observed in (13) the improvement of (40) with the d-linked remnant which man.39

(42) Joe, who once killed a man in cold blood, doesn't even remember which man, [he once killed t, in cold blood].

D-linking the remnant in (41) increases the acceptability of the sluice by providing an overt cue to the proposition that must be recovered. That is, the d-linked referent signals that the elided proposition contains an extracted argument with the semantic and syntactic properties

39 Recall the improvement in (42) has been attributed to the additional presupposition carried by the d-linked remnant, as discussed in §3.1.
given by the remnant, thereby making the most recent propositional content given about that argument salient at that point in the discourse (Karttunen 1977; Chung 1994; Hofmeister 2007, 2011; Martin & McElree 2011; a.o.). For comparison, the most salient correlate for the remnant in (39) is, due to a combination of recency and discourse status (see e.g. Jarvella 1971, Kintsch 1988, Anderson 2007, a.o.), everyone, which leads to an infelicitous interpretation of the question. Note the improvement if an existential quantifier is used as the correlate instead:

(43) That John rented a car that hit some pedestrian surprised someone, but the report didn’t say who, [that John rented a car that hit some pedestrian surprised t].

The ability of a d-linked remnant to link to a discourse subordinated correlate more easily than a bare wh-remnant is perhaps not surprising given the many years of careful experimental and theoretical work on related phenomena. Though I remain agnostic here about the particular analysis of d-linked phrases one may wish to take, the data here fit naturally with studies of anaphors showing that the more semantic content an anaphor has, the greater the distance that may separate the anaphor from its antecedent and the less prominent the antecedent can be while still maintaining successful reference (Givón 1983, Ariel 1990, Gundel et al. 1990, O'Brien et al. 1997, Foraker & McElree 2006, Harris 2019). The related observation that the amount of semantic information in an extracted element appears to affect its ability to be felicitously extracted has also been made in the theoretical literature (Karttunen 1977; Rizzi 1990; Cinque 1990; Pesetsky 1987; Chung 1994; Hofmeister 2007, 2011; a.o.). While these questions are still the subject of active research, I bring them up to demonstrate that the sluicing data fit within a much larger research project of the role of salience in anaphoric and syntactic dependencies in language.

The data discussed so far in this section demonstrate that structural and contextual/antecedent licensing requirements by themselves are not enough to constrain a theory of sluicing sufficiently to avoid overgeneration. This observation is not a novel one, and has been made by many previous researchers working on ellipsis. Because of this, explicit salience requirements are built into most if not all existing sluicing accounts, including each sluicing theory discussed in §2. For example, e-GIVENness (Merchant 2001) requires that the elided constituent, E, have “a salient antecedent,” Inquisitive Entailment (AnderBois 2014) requires “some salient antecedent CP,” and Barker’s (2013) scopability analysis requires “a silent proform that is anaphoric to some salient discourse object” (pg. 193). The thread tying all these accounts together is the recognition that salience is intricately tied to our ability to elide and recover propositional or sub-propositional expressions in conversation.

One option for the theory presented here is to follow in the footsteps of these successful analyses and build a notion of salience into Local Givenness. This constraint is given in (44).

(44) **Local Givenness (final):** A TP α can be deleted iff ExClo(⟦α⟧^c) expresses a proposition p, such that c_L ⊆ p and p is maximally salient.

40 Thank you to Shayne Sloggett (p.c.) for bringing these works to my attention.
The final version of Local Givenness proposes that a proposition can be elided if the existential closure of the proposition is entailed by the local context and is maximally salient.41 The requirement that the elided proposition must be maximally salient is motivated by the common sense principle that in order for a speaker to felicitously not pronounce some part of an utterance, the meaning of the unpronounced piece of the utterance must be recoverable in the discourse. Put another way, this principle encompasses the idea that the content of an elided phrase must be sufficiently salient in the discourse such that it is recoverable in the discourse even though it is unpronounced.42

I have argued in this section that, regardless of appeals to limited syntactic constraints, any theory of ellipsis must include a notion of salience in order to account for facts that cannot be explained by contextual, antecedent-based, or structural licensing conditions. As an exercise in parsimony, we might wonder whether the predictions of the salience constraint can also capture other facts, such as those that have been proposed to be syntactic in nature. For the remainder of this section, I preliminarily sketch some possible ways in which a salience condition could be used to account for the facts discussed in §5.1 and §5.2.

One identity condition discussed above is the Case condition, which is repeated below (Chung 2006/2013).

41 An earlier version of this theory used uniquely salient; this was changed after a reviewer asked about ambiguous readings of sluices such as in (i):

(i) John told me that Mary is going to Canada, but I don't know why [].
 a. why John told me Mary is going to Canada
 b. why Mary is going to Canada

The reviewer asks whether Local Givenness's salience constraint predicts the possibility of such readings, which are widely observed in ellipsis and anaphora. There are two possibilities for capturing these facts. The first is that the ambiguity is one of the context and, as is the case with anaphoric dependencies, the salience of (a) and (b) are partially established by non-linguistic top-down information such as conversational goals and expectations (Brown-Schmidt et al. 2005). Under this view, either (a) or (b) is maximally salient in a given particular context. The second possibility is that in a given linguistic context both (a) and (b) are salient to the same degree, in which case propositional salience can be modeled formally as a partial order in which both (a) and (b) are maximally salient. I am in principle open to either of these possibilities, and leave the decision of which more accurately captures the data to future research.

42 A reviewer brings up Jeremy Hartman's (2009) asymmetrical sluicing examples (also discussed in Merchant 2001) such as the following:

(i) Someone won the chess game, but I don't remember who ![[lost the chess game]].

While the propositions expressed by \textit{Someone won the chess game} and \textit{Someone lost the chess game} are (in most standard circumstances) denotationally equivalent, the account here does not predict that any denotationally equivalent propositions are interchangeable in the ellipsis site. This type of interesting observation is what motivates salience requirements in ellipsis theories. Even if we accept that such examples are properly entailed, they are ruled out by a salience requirement, as I can think of no argumentation for such a proposition being salient over the preceding proposition expressed by \textit{someone won the chess game}. See the discussion below for further exploration of the factors that make certain propositions more salient than others in discourse. Thank you to a different reviewer for also pointing out that these examples are given an alternative analysis in Merchant (2018, ft. 10), in which the mutual entailment condition of e-GIVENness is replaced by semantic equivalence modulo focus. However as the reviewer notes, this analysis is still too restrictive to account for the polarity reversal cases discussed here.

32
Case condition: If the interrogative phrase is a DP, it must be Case-licensed in the ellipsis site by a head identical to the corresponding head in the antecedent clause.

Chung (2013, 48) argues for the Case condition based in part on the data in (45):

(45)
\[
\#\text{The message said [to show up in the square at midnight]$_A$, but it didn’t say who, [t$_i$ should show up in the square at midnight]$_E$.}
\]

While the remnant here is a subject of a finite clause and will be assigned Case by the finite T in the ellipsis site, the corresponding T in the antecedent clause is non-finite and therefore will not assign case (antecedent bracketing and labelling my addition). However, naive speakers judge (45) to be perfectly felicitous in the following constructed context:

Scenario: There are two gangs fighting for turf, the Sharks and the Jets. After a verbal spar at the gym, the two gangs decide that each gang is going to send a single member to fight at a particular location and at a particular time in two nights time. Each gang gets to pick the member of the other gang that will fight. Additionally, the Sharks get to pick the time of the fight and the Jets get to pick the location of the fight. That night, the Jets send a message to the Sharks telling them to send the Shark gang leader to the West Side Square for the fight. The next night, the Jets receive a message from the Sharks in return. A Jet member opens the message and reads it. He says to the other members in an annoyed voice:

Sluice: "the message says to show up at the Square at midnight, but it doesn't specify who."

The judgment given for the continuation of the sluice is “who [should show up at the Square at midnight].” Note that no possible alternative antecedent is available in the discourse; that is, the discourse was constructed in such a way as to preclude the possibility that an antecedent for the sluice could be found not in the preceding sentence but in the preceding discourse.\(^\text{43}\) If the infelicity of (45) is truly rooted in syntactic ill-formedness, as the Case condition claims, it is unclear why the example becomes acceptable in context. A salience condition could possibly explain why additional context facilitates the sluiced structure.

Additional facts that remain difficult for meaning-based licensing conditions are examples like (33), repeated below.

(46)
\[
\text{[John is flirting]$_A$, but I don't know #who, [John is flirting with t$_i$]$_E$.}
\]

While a detailed analysis of these facts is outside the scope of the current paper, it is plausible that the ExClo(E) in (46) satisfies the entailment condition of Local Givenness but fails to satisfy

\(^{43}\) Note that pseudosluicing is a possible explanation for the lack of case connectivity effects observed here. However, such an argument would need to explain why pseudosluicing is not freely available in English and why such a strategy would only be available here in a specific context. See discussion in §6.
its salience condition, which is based not on entailment but on the prominence of the proposition expressed by E in the discourse. I leave this interesting question as an area of future research.

5.4 Salience

I have followed previous accounts by including a salience constraint in Local Givenness to account for certain facts that are not explained under purely meaning or structure-based accounts. I have also tentatively suggested that such a constraint can be expanded to encompass certain facts that have previously been attributed to constraints on syntactic structure. Because I have motivated the inclusion of a salience condition into Local Givenness, it is worth discussing what such a condition would look like and whether we can constrain it to have predictive power. This section outlines how we can begin to define a notion of propositional salience for a constraint of this kind. Determining the salience of a given proposition is, of course, not trivial. This paper does not attempt to provide an exhaustive theory of salience, which remains a challenging and important continuing line of research. Instead, I argue here for two points: that salience is indeed relevant to sluicing, and that a theory of propositional salience can be constrained in such a way as to offer concrete, testable predictions. The reader who is already familiar with these facts or is uninterested in accounting for salience can safely skip this section.

While there is currently no rigorous definition of what it means for a given proposition to be salient enough to license ellipsis, some existing theories encode salience in discourse organizational terms. For example, Ginzburg & Sag (2001) and Barros (2014) encode the notion of salience as relevance to a Question under Discussion (QUD) (Roberts 1996/2012), and require the interpretations of sluices to be resolved to a Maximal Question under Discussion. Similarly, Frazier & Clifton (2005) encode salience in the notion of main assertion. They claim that, ceteris paribus, comprehenders prefer to resolve ellipsis and anaphoric expressions to the main assertion of the preceding sentence (see also Syrett & Koev 2015). In their proposal, this preference follows from the greater salience, or availability, of the main assertion in the discourse structure.

As mentioned by Frazier & Clifton, the licensing for discourse anaphora is, along with ellipsis, known to be a linguistic phenomenon that is sensitive to discourse organization and salience. For example, the anaphor $that$ is known to specifically license propositional anaphora of salient propositions (Webber 1988, Gundel et al. 1990, Hwang 1992, Asher 1993, de Swart 1996, a.o.). As we can see in (47), B's response is more easily interpreted as a reply to the matrix assertion about Diane winning the race than it is as a reply to the claim about her age (see also Syrett & Koev 2015).

(47) A: Diane, who's 84 years old, will lose the race.
 B: That's not true!

We can tentatively note that this type of anaphoric reference to the sluiced content is also

44 Ginzburg & Sag also have an explicit saliency requirement, SAL-UTT, that requires a salient utterance to serve as the correlate for sluicing constructions.
possible in the polarity reversal cases, as shown in example (48) below.\footnote{The ability of elided content to contribute antecedents for discourse anaphora has been widely documented in the literature, notably in Hankamer & Sag (1976).}

(48) A: I don't know why [I wasn't scared], but I really can not remember being scared.
 B: That's impossible! You were just a child.

In (48), the deictic demonstrative that is anaphoric to the sluiced proposition I wasn't scared. That is, the meaning of the first sentence in B's utterance is “It's impossible that you weren't scared.”\footnote{We do not predict or expect, of course, a one-to-one correspondence between propositions that can be anaphorically referred to with that and propositions that can be sluiced. Additional requirements exist on sluicing that do not exist on that, such as entailment. For example, in (i) the proposition expressed by the sentence Roy would win the election can be referred to with that, but it is clearly not entailed by the local or global context.}

The ability to pick out the elided proposition with an anaphor that selects salient propositions provides independent evidence that, at least in the example above, the elided proposition is salient in the context.

Additional experimental and theoretical work on anaphora and ellipsis can also inform ways in which we can constrain our notion of salience. A reviewer points out the following contrast:

(49) a. Sue bought a car. It’s blue. ?/#I'm not sure where, though.
 b. Sue bought a car that is blue. I'm not sure where, though.

While the sluice is acceptable in (b), it is not in (a). It seems natural to attribute the difference to a matter of salience, as the reviewer suggests. And indeed, existing work on salience can help us understand why the first proposition is more difficult to target in (a) than in (b).

One way to explain such data is to appeal to a Frazier & Clifton-style account. Such an account predicts the availability of the sluice I'm not sure where \textbf{[she bought a car that is blue]} in (b), since the buying event is the main asserted content of the preceding sentence. That account would also rule out the sluice I'm not sure where \textbf{[she bought a car]} for (a), since the sentence It's blue intervenes between the sluice and its antecedent. However, many authors working on the relevance of discourse relations and structure to anaphora resolution and ellipsis have observed that, although recency is a strong tendency, it does not always hold that the most recently encountered proposition contains the most salient topic (Hobbs 1978; Polanyi 1985, 1988; Webber 1988; Asher 1993; Kehler 2000; Asher & Lascarides 2003; Hardt & Romero 2004; Asher 2008; a.m.o. See also Harris 2015 for experimental evidence of recency preferences in sluicing, specifically). For example, in (50) the elided content is about Mary kissing someone,
not about John leaving (Asher 2008, 9a):

(50) Mary kissed someone because John left for some other party. You’ll never guess who.

To account for such data, Hardt & Romero (2004) propose a Discourse Condition on Ellipsis Resolution, in which an antecedent clause must locally c-command the elided clause in the discourse tree. While Local Givenness cannot directly integrate such an account, as the theory has no explicit antecedent clause, the force of the proposal is to enforce a kind of local Right Frontier Constraint\(^47\) on a sluiced clause, which in turn requires the elided proposition to be salient or "on topic." Asher (2003, 2008) takes this approach to data such as (50), and proposes that the Right Frontier Constraint holds for sluiced and VPE clauses. Asher's theory of sluicing resolution requires two things: that the elided material of a clause be recovered from the discourse constituent that the clause is attached to, and that the ellipsis clause be attached to the antecedent clause by at least the structural relations Parallel or Contrast.

There are (at least) two interesting consequences of this theory. The first is that the theory, similar to a Frazier & Clifton-style account, imposes a type of locality restriction on sluiced clauses; that is, the clause containing the elided proposition must attach by a certain discourse relation to a discourse constituent on the right frontier of the discourse. This requirement forces the elided clause to be "about", in an atheoretical sense, a recent proposition in the discourse. Asher (2008) and Hardt & Romero (2004) argue convincingly that the locality constraint is not sensitive to mere discourse constituent adjacency, but to the richer representations given by theories of discourse relations. However, these constraints still result in a strong advantage given to the last discourse constituent introduced in the discourse (Jarvella 1971, van Dijk & Kintsch 1978, Kintsch 1988, a.o.), such that we generally try to resolve the ellipsis site to modifying the most recent constituent in the discourse. For example, in (49a) the oddness of the sluice disappears once the remnant is one that can plausibly be about the same topic as the previous proposition:

(51) Sue bought a car. It’s blue. I'm not sure on what parts [it's blue], though.

The second consequence of Asher's theory is that the elided clause must bear a contrasting or parallel relationship to the recent proposition in the discourse. This forces a particular type of relationship to hold between the elided proposition and the proposition to which it is attached in the discourse, and again requires that the elided proposition is salient or on topic in the discourse. An Asher-style account, for example, could rule out the sluice I'm not sure where [she bought a car] in (49a) above by arguing that it does not attach to its antecedent clause

\(^{47}\) The Right Frontier Constraint (RFC) (see Polanyi 1985, Webber 1988, Asher 1993, Asher & Lascarides 2003, a.m.o.) is a discourse structure constraint requiring new discourse constituents to attach into an existing discourse only by attaching to the last simple constituent in the discourse or by attaching to any constituent that dominates the last simple constituent in the discourse. It follows from this that once a discourse constituent \(\alpha\) is attached to a newer discourse constituent \(\beta\) by a coordinating discourse relation (as opposed to a subordinating discourse relation), \(\alpha\) is no longer available for constituent attachment by any discourse relation. That is, only the "Right Frontier" of a discourse is available for attachment by discourse relations. This constraint, very roughly, captures some notion of topicality.
by either a Parallel or Contrast relation.

I am not advocating here that an appeal to discourse relations will completely capture the full array of facts. However, theories of discourse relations are one existing way of spelling out in some detail what a theory of propositional salience may look like. There are challenges, however, in determining when certain propositions are subordinating or coordinating, and there is disagreement in the literature about the status of various relations (Kehler 2002, Asher & Lascarides 2003, Asher & Vieu 2005). The d-linking data also present a challenge to an account of salience that relies purely on subordinating and coordinating relationships in the discourse. For example, the remnant in (49a) can be interpreted as modifying the subordinated constituent if the remnant is modified such that this is the most salient interpretation:

(52) Sue bought a car that is blue. I'm not sure on what parts [it's blue], though.

The possibility of this reading indicates that the subordinated constituent content is in principle available in the discourse; the interpretation of the sluice is merely dependent on the remnant signaling the most salient and available interpretation of the elided material.

I have outlined here some possible ways to constrain a theory of propositional salience in relation to sluicing. The discussion here is not an attempt to exhaustively resolve this issue, which is an area of interesting future research. I hope merely to have convinced my reader of two things. The first is that salience is indeed relevant to sluicing, as has been argued by many researchers before. The second is that a theory of salience can be constrained in such a way as to offer concrete, testable predictions. The discussion here has presented some possible avenues for future research that operationalize propositional salience using two factors: the recency of discourse constituents, and the discourse status of propositions within an articulated framework of discourse organization and relations.

A reviewer mentions the possibility that the sluices discussed here are derived not by the underlying syntactic structure presented in this paper, but by some alternative, smaller structure that is pragmatically licensed by Local Givenness. That is, they raise the question of whether the polarity reversal sluices presented here are classical sluices or some related ellipsis construction. Since we cannot see what is elided in ellipsis constructions, we oftentimes cannot argue with certainty that the form proposed is indeed the actual underlying linguistic structure. However, previous research has laid out a landscape of possibilities for possible "short form" sluices, more generally called non-isomorphic sluices. This subsection discusses these possibilities and shows that, while it is possible that some polarity reversal sluices are of the non-isomorphic variety, it is implausible that all polarity reversal sluices are non-isomorphic. Therefore, at least some of the polarity reversal sluices presented here must have a richer underlying structure.\footnote{Alternatively, it could be possible that the polarity reversal cases embody some new form of ellipsis that is separate from those that are described as sluices in the literature. While I believe this is unlikely, it is an interesting topic for further exploration. However, I argue here that the polarity reversal data are indeed cases of classical sluicing.}
The possibility of non-isomorphic sluicing was first noted by Pollmann (1975) and Erteschik-Shir (1977). Much of the discussion since centers on the debate over whether or not sluicing ameliorates islands. For example, (53) below is judged as acceptable, but under an isomorphic reading contains extraction of the remnant from within a relative clause island (Merchant 2001, pg. 152):

(53) They want to hire someone who speaks a Balkan language, but I don't remember which Balkan language [they want to hire someone who speaks t].

Theories of non-isomorphic sluicing propose that, instead of the elided content in (53), such putatively island-violating examples are instead derived from a non-island-containing elided structure, such as that given in (54):\footnote{For clarity, I will refer to sluices such as (54) as \textit{non-isomorphic sluices}, though the reader should be aware that the term \textit{pseudosluicing} is often also used as a general term for non-isomorphic sluices (Merchant 2001); I follow Vicente (2014) here in using \textit{pseudosluicing} in the strictest sense in which it is used in the literature.}

(54) They want to hire someone who speaks a Balkan language, but I don't remember which Balkan language [it was t].

Because the elided clause does not contain a relative clause, we avoid any concerns about extraction from within an island.

Non-isomorphic sluices can be grouped into three main types. The first group is true pseudosluices, which are derived by a null copula and a null subject instead of by TP deletion (Vicente 2014). Pseudosluices have been argued to exist in Japanese (Kizu 1997, Merchant 1998) and in Uzbek (Gribanova 2013). However, since pseudosluices have not been argued to exist in English (Vicente 2014), I do not discuss them further here but refer the reader to the cited works.

The second group of non-isomorphic sluices contains those derived by the deletion of a copula clause. Two types of copular clause deletion have been proposed: specificational copular clause deletion (e.g. see Rodrigues et al. 2009 for arguments about Spanish) and predicational copular clause deletion (Barros et al. 2013). Specificational copular clause deletion is often discussed to account for the apparent violation of Merchant's (2001) P-stranding condition in languages such as Finnish, Indonesian, and Spanish (see Vicente 2014 and works cited within for extensive defenses of these claims). The proposal in summary is that the apparent violations of Merchant's generalization are not actual counter-examples because the underlying linguistic structure contains a specificational copular clause, as in (55):

(55) John is jealous of some woman, but I don't know who [she is t].

The concern with extending this analysis to the examples discussed here is that Merchant's
generalization does appear to hold in English. Therefore, if one wants to attribute all the sluices here to specificational copular deletion, one would need to have a theory of when such a strategy is and is not available in English and, moreover, why it is not freely available.

Predicational copular clause deletion is proposed by Barros et al. (2013) to be available as an island-evasion strategy in English. For example, they give the following sentence in (56a) in which the elided structure contains a predicational copular clause, instead of an isomorphic left branch extraction as in (56b) (ibid., 28):

(56)

a. Mary married a tall man, but I'm not sure how tall, \([he \text{ was } t]\).

b. *Mary married a tall man, but I'm not sure how tall, Mary married a \(t_i\) man.

Barros et al. use data such as (56) to expand the argumentation against true island repair in sluicing, suggesting that instead some apparent ameliorations are actually caused by evasion strategies such as copula deletion.

The last group of non-isomorphic sluices are those derived by the deletion of a cleft (Erteschik-Shir 1973, Pollmann 1975, Rosen 1976, Merchant 2001, van Craenenbroeck 2010, Barros 2014). For example, the sentential subject extraction violation of (57b) is avoided in (57a) by eliding a cleft instead of an isomorphic island structure (Vicente 2014, pg. 33-34):

(57)

a. That they will hire someone is possible, but I don't know who \([it \text{ will be }]\).

b. *That they will hire someone is possible, but I don't know who, that they will hire \(t_i\) is possible.

Merchant (1998, 2001), however, observes that the clefting strategy is not available with wh-adjuncts or implicit arguments, as illustrated in (58) (Merchant 1998, 53a).

(58) He fixed the car, but I don't know why *[it was].

This section has so far enumerated three types of non-isomorphic sluicing. The following examples show that no combination of these three possibilities can extend to the full range of polarity reversal sluices. Because pseudosluicing has not been argued to exist in English, I focus on copula clauses and clefting. Let's take the polarity reversal example given below in (59). I have proposed that the elided content contains the structure as shown in (59a).

(59) **Context:** Students in a semantics class were given the option to do extra credit problems, and they were required to write down the number that they did on a spreadsheet accessible by the course's professor and TA. Both the professor and TA thought that John, a student in the class, would have done at least some extra credit problems. They look at the spreadsheet and see that nothing is marked down under John's name. The TA says to the professor:

a. John either didn't do any extra credit problems, or he didn't tell us how many (extra
credit problems) [he did].

The first non-isomorphic alternative is to use a copula in the elision site, as in (59b). However this strategy appears unavailable, as speakers judge the example to be degraded or unacceptable.

(59)

b. ??/*John either didn't do any extra credit problems, or he didn't tell us how many [the number he did was].

The second non-isomorphic alternative is to use a cleft, as in (59c). This is also unacceptable, and so clefting appears also to be unavailable as the underlying elided structure.

(59)

c. *John either didn't do any extra credit problems, or he didn't tell us how many [it was].

The data so far have shown that no non-isomorphic strategy can account for the polarity reversal in (59). However, Merchant (2001) does note that one possible way to improve clefting examples containing adjuncts is to retain the presuppositional portion of the cleft. This is shown for (59) below:

(59)

d. John either didn't do any extra credit problems, or he didn't tell us how many ??[it was that he did].

Retaining the presupposition material improves the example slightly, but it is still judged by speakers to be significantly degraded. Merchant does not propose an explanation for why retaining the presuppositional material improves some adjunct clefts; however, we should be cautious when proposing an explanation that is based on the presence of overt or non-overt material within the ellipsis site.

Even if we accept (59d), a reviewer brings up another way of probing the presence of non-isomorphic structure, which is to use contrast sluices. They note that contrast sluices with else create a semantic clash between the presuppositional properties of else and the exhaustivity requirement of a cleft construction (that is, the uniqueness requirement that clefts impose on the correlate). If we can find contrast polarity reversal sluices, then this presents strong evidence against a clefting non-isomorphic strategy. As it turns out, contrast sluices are easily constructed with the polarity reversal property, as is shown in (60) below.

(60)

Q: Do any of the candidates practice for their debates?
 A: I don't think that BERNIE practices for them, but I don't know who ELSE [he doesn't practice for them].

Note that we are not ruling these examples out based on the Well-Formedness Condition, which is concerned with pragmatic well-formedness. Non-isomorphic strategies are proposed in part to counter the claim that ellipsis ameliorates islands; therefore, non-isomorphic theories assume that an underlyingly ungrammatical structure will lead to an ungrammatical sluice. Thus the ungrammaticality of a pre-sluice is used to predict whether or not that structure is available as the structure in a sluiced clause.
As predicted, (60) is not acceptable with a clefting strategy, as shown below in (61a).

(61) a. I don't think that BERNIE practices for them, but I don't know who ELSE *[it was].

Note in (61b) that retaining the presuppositional material does not improve the example.

(61) b. I don't think that BERNIE practices for them, but I don't know who ELSE *[it was that doesn't practice for them].

We might wonder whether this particular example can be attributed to a copular non-isomorphic strategy instead, since a clefting strategy is unavailable. However, a copula strategy is also unsuccessful, as shown in (61c).

(61) c. I don't think that BERNIE practices for them, but I don't know who ELSE *[is someone that doesn't practice for them].

Not only is such an example unacceptable, it is also not a copula construction that has been proposed or shown to be available for non-isomorphic sluicing.

I have shown in this section two different polarity reversal examples that cannot be explained by a non-isomorphic sluicing strategy. While this demonstrates that the polarity reversal data as a whole cannot be subsumed under a non-isomorphic sluicing analysis, I do not want to make the strong claim that no polarity reversal sluices can be non-isomorphic. There are very strong arguments for the existence of non-isomorphic sluices in the literature, and I have no basis from which to argue that polarity reversal sluices somehow form an exception to these arguments. The landscape may very well be as proposed by van Craenenbroeck (2010), in which cleft/copula sluices can be used as last resort strategies to avoid ungrammatical structures, but are not universal. Contrary to being problematic, this picture dovetails well with the theory presented here. Barros et al. (2013) point out that their observations challenge accounts of sluicing that require isomorphy or strict syntactic and/or semantic equivalence between an antecedent and a sluicing structure. Far from being a challenge to the current theory, the non-isomorphic sluicing data provide further support for the argument presented in the current work, which is that a complete theory of sluicing must be more permissive than current theories allow.

7. Conclusion

This paper has presented and discussed polarity reversal sluicing data that present a new challenge to the enterprise of determining the conditions under which linguistic content can be felicitously elided. This paper argues that, counter to its dominant treatment in the syntactic literature, sluicing is a pragmatics-sensitive phenomenon subject to contextual licensing. I show that the ability to elide linguistic content fits naturally into general theories of constraints regulating coherent discourses, and have detailed one way to account for the pragmatic sensitivity of data that present serious challenges for non-pragmatic theories.
A natural topic of exploration is whether and to what extent a pragmatic account can be extended to different forms of ellipsis. For example, there is some evidence that the polarity reversal phenomenon can also be found in VPE (example from Jim McCloskey, p.c.):

(62) **Context:** In an internet discussion of the controversial political book *Fire and Fury*, which some discussants argue did not properly document all its claims:

Commenter: “Much of the book is unsourced, but some is [sourced].”

The full scope of ellipsis possibilities is still being determined; for example Merchant (2013b) observed that VPE allows voice mismatches, a mismatch that had previously been thought impossible. It remains to be explored whether or not current analyses can account for cases of polarity reversals under VPE, if such examples are indeed robust. I leave this interesting question for future research and close by noting that, while the current project seeks both to challenge current assumptions on sluicing and to provide an answer to this challenge, much additional work on the road to developing a complete theory of sluicing and ellipsis, of course, remains.

References

Publishers, Dordrecht.

44

Harris, Jesse. 2019. Alternatives on demand and locality: Resolving discourse-linked wh-phrases in sluiced structures. In Carlson, Katy, Clifton, Jr., Charles, Fodor, Janet Dean (eds.) *Grammatical Approaches to Language Processing*.

Prince, Ellen. 1971. Futurate being, or Why Yesterday morning, I was leaving tomorrow on the Midnight Special is OK. Unpublished ms. read at the 1973 Summer Meeting of the Linguistic Society of America.
Sonderforschungsbereichs 340, No. 29.
vан Craenenbroeck, Jeroen. 2010. Invisible Last Resort: A Note on Clefts as the Underlying
Formal Appendix A

Another class of polarity reversal sluices contains non-factive negative attitude verbs. These verbs form a natural class grouped by Asher (1987) as Negative (Indefinite and Definite) Non-factives (NIDN). I assume here a standard definition of negative verbs as generally those that admit downward entailing inferences, in the sense of Ladusaw (1979). Example (i) illustrates a naturally occurring example.

(i) [modified corpus example 99105, Santa Cruz Ellipsis Project]
[We doubt that [Iraq will comply with the mandate]_{A}, but we don't know why [Iraq won't comply with the mandate]_{\neg p}.

Following Anand & Hacquard (2013), we can think of an assertion of doubt that p as having three meaning components. The first is a felicity condition that s is uncertain about the truth of p. The second is that doubt semantically encodes a weak possibility assertion about p; that is, s doubts that p commits s to entertaining the doxastic possibility of p. Last, doubt expresses a preference assertion that \neg p is more likely to the speaker than p. Formally, this is expressed as a probability ordering on propositions via direct comparison of the worlds contained within those propositions (cf. Kratzer's (1991) better possibility ordering). The preference assertion that \neg p is more likely to the speaker than p is what does the work for our purpose here.

Application of Local Givenness to (i):

i. Starting Context:
 \(c = W \)
ii. In order to felicitously assert (i), the speaker must be uncertain about whether p or $\neg p$.

Felicity Condition on Assertion of A:

\[\llbracket A \rrbracket = [\text{doubt}(p)(s)(w)]^{w.S.s} \text{ is defined iff} \]
\[\exists w'[w' \in S' \land w' \in p] \land \exists w''[w'' \in S' \land w'' \notin p], \text{such that } S' = \text{DOX}(s)(w) \]

If felicitous, the utterance of A semantically asserts that the speaker believes that p is possibly true.

Doxastic Requirement on A:

\[\exists w'[w' \in S' \land w' \in p] \]

iii. A also asserts a preference for $\neg p$ over p. In context, the assertion of this preference licenses the strengthened inference that the speaker believes that $\neg p$.

Assume a QUD: Will Iraq comply with the mandate? This QUD splits the future of the discourse into two spaces:

I. \{ w: comply(mandate)(iraq)(w) \} or,
II. \{ w: \negcomply(mandate)(iraq)(w) \}

The assertion of A expresses a preference of the speaker toward future discourse space (II), licensing the strengthened inference of belief that
\[\forall w'[w' \in S' \rightarrow \neg\text{comply}(\text{mandate})(\text{iraq})(w')]. \]

iv. The assertion of A pragmatically asserts that Iraq will not comply with the mandate.

Local Context Updated with Assertion of A:

\[W \cap \{ w': w' \in S' \} = \{ w': \neg\text{comply}(\text{mandate})(\text{iraq})(w') \} = c_{LE} \]

v. **Semantic Denotation of E:**

\[\text{ExClo}(\llbracket E \rrbracket) = \{ w': \neg\text{comply}(\text{mandate})(\text{iraq})(w') \} \]

vi. **Local Givenness:**

\[c_L \subseteq q = \{ w': \neg\text{comply}(\text{mandate})(\text{iraq})(w') \} \subseteq \{ w': \neg\text{comply}(\text{mandate})(\text{iraq})(w') \} \]

Step (vi) shows that Local Givenness is satisfied and we correctly predict felicitous elision of E in (i).

As a last note, a reviewer points out that the examples in the paper contain a consistent attitude holder through the context and the embedding clause of the elided phrase. This,
however, does not necessarily need to be the case, though context is generally needed to get the desired reading:

Context: Mary and John have been discussing the administration's position on immigration reform. Mary believes that the administration officials regret having their current hardline position, and may enact different policies. John has been trying to convince her that they will maintain their current position, though he admits that he doesn't understand why the officials won't change their minds given the politically unpopularity of the current policy. After debating both issues for some time, John thinks he has convinced Mary to see his side, though he still hasn't come up with an explanation for why officials are being so inflexible. So at the end of the argument we could say:

Sluice: Even though Mary finally doubts that the administration will change its position on immigration reform, John still can't tell her why [the administration won't change its position on immigration reform].

Formal Appendix B

Another class of examples in which polarity reversal sluices have been found is that containing NPI punctual *until.* Example (ii) illustrates a naturally occurring example.

(ii) [corpus example 94827, Santa Cruz Ellipsis Project]

Context: Some directors said they viewed Clinton's proposals [to regulate teenagers' access to tobacco] as part of a larger campaign to increase government restrictions on the tobacco industry, and several criticized the administration for emphasizing to teenagers the adverse effects of smoking rather than of alcohol and drugs. "Tobacco has been in this country 200 years, but [the administration] has never talked about it, until now," said B. Frank Strickland of Lakeland, Ga.

Sluice: "I don't know why [they are talking about it, now]. But I do know tobacco does not do what alcohol and dope do to people. Yet they jump on tobacco. Why don't they jump on the dope crowd?"

The division of pragmatic and semantic labor with *until* is debated in the literature (Karttunen 1974a, de Swart 1996, Giannakidou 2002, and Condoravdi 2008). I adopt a version of de Swart's (1996) truth conditions containing the actualization of the event, though nothing crucial in the account here hinges on this choice. The truth conditions for an utterance with punctual *until* can therefore be expressed as follows:

\[
[\text{until}]^e = \lambda Q. \lambda P. \lambda e. \exists t \exists t'. \exists t''. [Q(t') \land P(e) \land AT(e, t'') \land \neg \exists e' \exists t''' [P(e') \land AT(e, t''') \land t \leq t'' < t']]
\]

Where Q expresses the clock expression in the until phrase, P is a property expressing some eventuality e, the variables t are times with the domain T of times (points or intervals on the time

51 See Karttunen (1974a) and de Swart (1996) a.o. for a discussion of punctual vs. durative *until.

52 All cited theories motivate a lexical distinction between punctual *until* and durative *until.* See Smith (1974), Mittwoch (1977), and Declerck (1995) for alternative accounts.
axis and a precedence relation providing a total order on \(T \) and \(AT \) maps eventualities to their location on the time axis. \(AT(e,t) \) represents that eventuality \(e \) holds at \(t \).

Application of Local Givenness to (ii):

i. **Denotation for (ii):**
 \[
 \exists e \exists t \exists t' \exists t''[n(t') \land \text{administration talking about tobacco}(e) \land AT(e, t') \land \\
 \neg \exists e' \exists t''[\text{administration talking about tobacco}(e') \land AT(e, t'') \land t \leq t'' < t']]
 \]

 (ii) asserts the following:
 a) that there exists an event \(e \) of the administration talking about tobacco and \(e \) occurs at time \(t'' \);
 b) there is a time \(t' \) which is the lower bound of time at which \(e \) can occur;
 c) there is no event of the administration talking about tobacco that occurs before \(t' \);
 d) there is a contextually determined time interval \(t < t' \) within which \(e \) is expected to occur (accounting for the feeling of 'lateness' of \(e \) (Karttunen 1974a)).

ii. The context of (ii) implicates that the event did not occur later than the time denoted by \(Q \), or the utterance time; therefore \(t''' = t' \).

 Temporally Enriched Denotation of (ii):
 \[
 [\exists e \exists t'[n(t') \land \text{administration talking about tobacco}(e) \land AT(e, t') \land \\
 \neg \exists e' \exists t''[\text{administration talking about tobacco}(e') \land AT(e, t'') \land t \leq t'' < t']]\]

iii. **Context Update with (ii):**
 \[
 c_{LE} = W \cap \{w: [\exists e \exists t'[n(t') \land \text{administration talking about tobacco}(e)(w) \land AT(e, t')(w) \land \\
 \neg \exists e' \exists t''[\text{administration talking about tobacco}(e')(w) \land AT(e, t'')(w) \land t \leq t'' < t']]\}
 \]

iv. **Denotation of (ii):**
 \[
 \{w: [\exists e \exists t'[\text{administration talking about tobacco}(e)(w) \land n(t')(w) \land AT(e, t')(w)]\}
 \]

v. **Local Givenness:**
 \[
 c_{LE} \subseteq ii_E = \{w: [\exists e \exists t'[n(t') \land \text{administration talking about tobacco}(e)(w) \land AT(e, t')(w) \land \\
 \neg \exists e' \exists t''[\text{administration talking about tobacco}(e')(w) \land AT(e, t'')(w) \land t \leq t'' < t']]\} \subseteq \{w: [\exists e \exists t'[\text{administration talking about tobacco}(e)(w) \land n(t')(w) \land AT(e, t')(w)]\}
 \]

Step (v) shows that the local context of \(E \) entails the proposition expressed by \(E \) and Local Givenness is satisfied.\(^{53}\)

\(^{53}\) Karttunen (1974a) observes that punctual *until* focuses on the onset of the event denoted by the main clause as opposed to the absence of that event in the time period leading up to \(Q \). A proposition expressing the realization of the event will therefore also be more salient in the context than the proposition expressing the negation of that event. I believe that speaker variation on this example is due to individual variation on the relevant level of saliency needed for elision. See §5 for a discussion of the saliency requirement.