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ABSTRACT

NVIDIA’s unified memory (UM) creates a pool of managed mem-
ory on top of physically separated CPU and GPU memories. UM
automatically migrates page-level data on-demand so program-
mers can quickly write CUDA codes on heterogeneous machines
without tedious and error-prone manual memory management. To
improve performance, NVIDIA allows advanced programmers to
pass additional memory use hints to its UM driver. However, it is
extremely difficult for programmers to decide when and how to effi-
ciently use unified memory, given the complex interactions between
applications and hardware. In this paper, we present a machine
learning-based approach to choosing between discrete memory and
unified memory, with additional consideration of different memory
hints. Our approach utilizes profiler-generated metrics of CUDA
programs to train a model offline, which is later used to guide opti-
mal use of UM for multiple applications at runtime. We evaluate our
approach on NVIDIA Volta GPU with a set of benchmarks. Results
show that the proposed model achieves 96% prediction accuracy in
correctly identifying the optimal memory advice choice.

CCS CONCEPTS

« Computer systems organization — Heterogeneous (hybrid)
systems; « Computing methodologies — Machine learning.

KEYWORDS

Unified memory, GPU, Data allocation, Machine learning

978-1-7281-6007-8/19/$31.00 ©2019 IEEE
DOI 10.1109/MCHPC49590.2019.00016

Murali Emani
Argonne National Laboratory
Lemont, IL, USA
memani@anl.gov

Pei-Hung Lin
Lawrence Livermore National
Laboratory
Livermore, CA, USA
lin32@llnl.gov

Chunhua Liao
Lawrence Livermore National
Laboratory
Livermore, CA, USA
liao6@llnl.gov

1 INTRODUCTION

Graphic Processing Units (GPUs) have been the fundamental hard-
ware components for supporting high performance computing,
artificial intelligence, and data analysis in datacenters and super-
computers. As of June 2019, 133 of Top 500 supercomputers are
GPU-accelerated, and 128 systems debuting on the TOP500 are ac-
celerated with NVIDIA GPUs [16]. Efficient memory management
across CPUs and GPUs has been a challenging problem, while it
is critical to performance and energy efficiency. Before CUDA 6.0,
data shared by CPUs and GPUs is allocated in discrete memories,
which require explicit memory copy calls to transfer data between
CPUs and GPUs. Since CUDA 6.0, NVIDIA has introduced unified
Memory (UM) with a single unified programmable memory place
within a heterogeneous CPU-GPU architecture consisting of sep-
arated physical memory spaces. UM relieves programmers from
manual management of data migration between CPUs and GPUs
such as inserting memory copy calls and deep copying pointers. It
tremendously improves productivity and also enables oversubscrib-
ing GPU memory.

NVIDIA continuously improves UM throughout different gener-
ations of GPUs. The latest UM implementation has accumulated a
rich set of features including GPU page fault, on-demand migration,
over-subscription of GPU memory, concurrent access and atom-
ics, access counters, and so on. Moreover, NVIDIA provides the
cudaMemAdvice! API to advise the UM driver about the usage pat-
tern of memory objects (e.g. dynamically allocated arrays). Different
hints (such as ReadMostly, PreferredLocation, AccessedBy) can
be specified in this API by programmers to improve the performance
of UM. However, it is extremely challenging for programmers to
decide when and how to efficiently use UM for various kinds of
applications. For a given memory object, there is a wide range of
choices including managing it with the traditional discrete mem-
ory API, the unified memory API without advice, and the unified
memory API combined with various memory hints.

In this paper, we present a novel approach to choosing between
discrete memory and unified memory on GPUs, with additional con-
sideration of different memory usage hints. Our approach consists
of two phases: an offline learning phase and an online inference
phase. 1) The offline learning phase involves building a classifier via

!Nvidia CUDA Runtime API (May 2019) https://docs.nvidia.com/cuda/cuda-runtime-
api/index.html
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supervised learning. It first collects the runtime GPU kernel features
from selected benchmarks and labels the best advice based upon
the performance caused by various GPU memory usage choices.
After that, it constructs a classifier that can predict the best advice
for new applications. 2) The online inference relates to determin-
ing the proper advice at runtime for a running CUDA program.
By combining offline learning and online inference, our method
can effectively and accurately obtain optimal use of GPU memory
for different kinds of CUDA applications and presents fine-grain
control over managed memory allocations.
This paper makes the following contributions:

o We study the hybrid use of both discrete and unified memory
APIs on GPUs, with additional consideration for selecting
different memory advice choices.

e A machine learning-based approach is proposed to guide
optimal use of GPU unified memory.

e We design code transformation to enable runtime adaptation
of CUDA programs leveraging online inference decisions.

e We incorporate kernel features at runtime to provide fine-
grain control over GPU memory.

o Our experiments show that our approach is effective to pre-
dict the optimal memory advice choices for the selected
benchmarks.

The remainder of this paper is organized as follows: Section 2
presents the background of GPU memory and our motivation. Sec-
tion 3 describes the details of our design and methodology. Section 4
presents the experimental results of evaluation in GPU. We discuss
the related works in Section 5 and conclude this work in Section 6.

2 BACKGROUND AND MOTIVATION
2.1 Choices for Using GPU Memory

Programmers often encounter multiple choices to manage their
data on GPU memory. NVIDIA’s CUDA traditionally exposes GPU
device memory as a discrete memory space from CPU memory
space. Programmers are responsible for using a set of memory API
functions to explicitly manage the entire life cycle of data objects
stored in GPU memory, including allocation, de-allocation, data
copying, etc. Since CUDA 6.0, NVIDIA has introduced unified Mem-
ory (UM) with a new set of API functions. The idea of UM is to
present developers a single memory space unifying both CPU and
GPU memories. CUDA uses a unified memory driver to automat-
ically migrate data between CPU and GPU memories at runtime.
As a result, UM significantly improves the productivity of GPU
programming. Both traditional memory APIs and unified memory
APIs can be used together within a single CUDA program.

To enable better performance of UM, CUDA allows developers
to give the UM driver additional advice on managing a given GPU
memory range via an API function named cudaMemAdvise(const
void *, size_t, enum cudaMemoryAdvise, int). The first two
parameters of this function accept a pointer to a memory range
with a specified size. The memory range should be allocated via
cudaMallocManaged or declared via __managed__variables. The
third parameter sets the advice for the memory range. The last
parameter indicates the associated device’s id, which can indicate
either a CPU or GPU device. The details and differences of these
four kinds of advice are presented as follows:

e Default: This represents the default on-demand page mi-
gration to accessing processor, using the first-touch policy.
e cudaMemAdviseSetReadMostly: This advice is used for the
data which is mostly going to be read from and only oc-
casionally written to. The UM driver may create read-only
copies of the data in a processor’s memory when that proces-
sor accesses it. If this region encounters any write requests,
then only the write occurred page will be valid and other
copies will be invalid.
e cudaMemAdviseSetPreferredLocation: Once a target de-
vice is specified, this device memory can be set as the pre-
ferred location for the allocated data. The host memory can
also be specified as the preferred location. Setting the pre-
ferred location does not cause data to migrate to that location
immediately. The policy only guides what will happen when
a fault occurs on the specified memory region: if data is al-
ready in the preferred location, the faulting processor will try
to directly establish a mapping to the region without caus-
ing page migration. Otherwise, the data will be migrated to
the processor accessing it if the data is not in the preferred
location or if a direct mapping cannot be established.
cudaMemAdviseSetAccessedBy: This advice implies that the
data will be accessed by a specified CPU or GPU device. It
has no impact on the data location and will not cause data
migration. It only causes the data to be always mapped in
the specified processor’s page tables, when applicable. The
mapping will be accordingly updated if the data is migrated
somehow. This advice is useful to indicate that avoiding
faults is important for some data, especially when the data
is accessed by a GPU within a system containing multiple
GPUs with peer-to-peer access enabled.

The effect of cudaMemAdvise can be reverted with the follow-
ing options: UnsetReadMostly, UnsetPreferredLocation, and
UnsetAccessedBy.

2.2 Impact of Different Usage of GPU Memory

Various applications have diverse data access patterns through-
out their executions. Different choices of memory APIs and their
parameter values often result in a wide variation in performance.
To explore the impact of various memory usage choices, we mod-
ify several benchmarks from Rodinia [3] to use different memory
allocations and advice choices and subsequently examine their exe-
cution times. We focus on large dynamically allocated data objects
since they usually have major impact on execution time.

Table 1 lists a subset of various code variants for the gaussian
benchmark in Rodinia. There are two matrices a, m and one array b
which are the major data objects in gaussian. We apply different
memory usage choices to these objects and get multiple combi-
nations. Code variant 1 is the baseline version using the default
discrete memory for the three data objects. Variant 2 to 7 use unified
memory for matrix a and different memory advise of AccessedBy,
ReadMostly, and PreferredLocation. We can further specify CPU
or GPU as the device for AccessedBy and PreferredLocation.

We evaluate the performance of all the code variants and present
results in Figure 2. The input data is a 1024 X 1024 matrix and
the measurement includes all the memory transferring between
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Figure 1: The workflow of the proposed approach in guiding the GPU unified memory advice.

Variants Description

1 baseline using discrete memory for all objects

modified to use unified memory for all

set array a with the ReadMostly advice

set array a with the PreferredLocation on GPU
set array a with the AccessedBy for GPU

set array a with the PreferredLocation on CPU
set array a with the AccessedBy for CPU

Table 1: Code variants in the gaussian benchmark
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Figure 2: Speedup of different code variants in gaussian

the CPU memory and the GPU device memory. It is shown that
the code achieves a speedup of 3.5X when matrix a is given the
PreferredLocation to GPU (variant 4). A 200X performance degra-
dation is observed when the ReadMost1y (variant 3) advice is wrong-
fully given to matrix a. This experiment demonstrates the signifi-
cant performance impact of choosing the right memory usage of
GPU memory.

3 DESIGN

CUDA allows programmers to use either discrete memory or uni-
fied memory APIs, potentially combined with different kinds of
advice, to manage memory objects in one application or benchmark.

66

Applications and benchmarks can be deployed with various combi-
nations of these choices at different granularity, such as program-
level, kernel-level, or object-level. The coarse-grain memory usage
optimization is easy to implement but may not deliver the best
performance gain. On the other hand, fine-grain memory usage
optimization involves carefully deciding a choice for each object
of each kernel, even with the consideration of the kernel’s calling
context. This is challenging to implement but may result the best
performance improvements.

We limit the scope of this work to be finding optimal memory us-
age choices at the object level, i.e., different memory usage choices
are used for different data objects for a given kernel function un-
der all calling context. For example, if a program has two kernel
functions and both refer to two data objects during the execution,
we can assign the default unified memory choice for the first data
object for the first kernel function, we then assign the UM com-
bined with the ReadMostly advice for the other data object. We can
re-assign different choices for the data objects for the next kernel.

3.1 Approach

We are developing a machine learning framework to automati-
cally decide the optimal choice of GPU memory usage for CUDA
applications. The framework has a two-phase workflow: offline
learning and online inference. As shown in Figure 1, the offline
learning phase uses code variants using different GPU memory us-
age choices, to collect a set of runtime profiling metrics via Nsight
CUDA Profiler?. The best performing versions are identified and
labeled. We then use the collected data as a training data set to
construct a classifier model via supervised learning. We explore
different kinds of machine learning classifiers such as Random For-
est, Random Tree, LogitBoost and select the one that yields highest
accuracy and F1 measures. The online inference phase uses Nsight
to collect runtime metrics of running applications and passes the
input feature vector to the learned model to guide the runtime GPU

’Nvidia Compute Command Line Interface https://docs.nvidia.com/nsight-
compute/NsightComputeCli/index.html
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memory usage choices for various applications. We elaborate the
two phases in the following subsections.

3.2 Offline Learning

In this offline learning phase, we design training configurations
that help to capture diverse memory usage variants. Running these
experiments will yield the raw training data to train the classifiers.

Training Benchmarks. We manually prepare several variants
of selected benchmarks and execute them to find the best per-
forming variant, which is then labelled for supporting training
later. Rodinia benchmark [3] is selected to implement different
memory usage choices for selected arrays or data structures. Fig-
ure 3 presents an example using unified memory and different
cudaMemAdvise() settings for two arrays (a and b) in gaussian
benchmark. xplacer_malloc() is a wrapper function we introduce
to switch between discrete or unified memory version of CUDA
memory allocation.

//Modified to utilize unified memory in xplacer_malloc()
a = (float «) xplacer_malloc (Size « Size  sizeof ( float ), Managed);
= (float «) xplacer_malloc (Size« sizeof ( float ), Managed);

// Assign unified memory advice for specific data object

#if advOptionA == 1

cudaMemAdvise(a, Size«Size« sizeof ( float ), cudaMemAdviseSetReadMostly, 0);

#elif advOptionA ==

cudaMemAdvise(a, SizexSize+ sizeof ( float ),
cudaMemAdviseSetPreferredLocation, 0);

#endif

#if advOptionB == 1

cudaMemAdvise(b, Sizexsizeof ( float ), cudaMemAdviseSetAccessedBy, 0);

# elif advOptionB ==

cudaMemAdvise(b, Sizexsizeof ( float ), cudaMemAdviseSetPreferredLocation, 0);
#endif

ForwardSub(); //Run the kernel function

Figure 3: Code showing gaussian benchmark using unified mem-
ory with memory advice.

Feature Engineering. We utilize the Nsight Compute command
line profiler to fetch detailed runtime performance metrics of the
benchmarks. We implement the data collection on machines us-
ing Tesla V100 GPUs. Nsight Compute provides metrics organized
within different sections. Each section focuses on a specific part
of the kernel analysis. The default profiling phase contains 8 sec-
tions, including GPU Speed Of Light, Compute Workload Analysis,
Memory Workload Analysis, Scheduler Statistics, Warp State Sta-
tistics, Instruction Statistics, Launch Statistics and Occupancy. We
collect a total of 49 non-zero-valued metrics that correspond to
these sections. We then utilize feature correlation and information
gain techniques to remove the redundant features. The remaining
9 useful features are listed in Table 2.

Model Training. We evaluate multiple classical machine learning
classification algorithms with the collected data. These models in-
clude classifiers such as Random Forest, Random Tree and Decision
Tree. To guarantee the robustness of our model, we use 10-fold
cross validation to verify the model’s performance and also ensure

modify benchmark
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Figure 4: Workflow of the online inference.
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Feature Name

Elapsed Cycles

Duration

SM Active Cycles

Memory Throughput

Max Bandwidth

Avg. Execute Instructions Per Scheduler
Grid Size

Number of Threads

Achieved Active Warps Per SM

Table 2: List of selected features in the model.
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the model performs evaluation on unseen data. We rely on model’s
prediction accuracy as the metric of evaluation since the GPU mem-
ory choice determined by this model has direct correlation to the
program execution time.

3.3 Online Inference

The online inference consists of five major steps, as shown in Fig-
ure 4. First, we fetch the runtime metrics from the running applica-
tions with the Nsight profiler. Next, a feature vector is composed
after normalizing these metrics, which is then passed as input to
the offline trained model. The model will then output its predicted
memory advice for each of the kernel instance. Once the new pre-
dicted choice is given, as shown in the fourth step, we then modify
the original application code to implement the optimal choice of
memory usage. Modifications to the source code can be automated
in the future by a source-to-source tool if available or by a library
support to switch among the memory advises. Finally, the optimized
code is run with the corresponding memory advice.

4 EVALUATION
4.1 Experiment Settings

We evaluate our approach with multiple benchmarks running on the
Lassen supercomputer at Livermore Computing [8]. Each compute
node of Lassen has two IBM Power9 CPUs and four Tesla V100
GPUs.
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We selected four benchmarks from Rodinia [3] for our evaluation.
They are Computational Fluid Dynamics Simulation (CFD), Breadth-
first Search (BES), Gaussian Elimination (Gaussian), and HotSpot as
shown in Table 3. All the variants are generated by two options
of flags (cudaMemAttachGlobal or cudaMemAttachHost) given to
data allocation by cudaMallocManaged API, and six memory ad-
vise options (no advise, ReadMostly, PreferredLocation for GPU,
PreferredLocation for CPU, AccessedBy GPU, and AccessedBy
CPU) for each kernel in the benchmark. For example, we specify
memory advises to three arrays in CFD benchmark. The overall
number of variants become 432 (2x6x6%6). There are six arrays
used in one GPU kernel for the BFS benchmark with a total of
93312 (2 x 6°) variants. We reduce the variant number down to
only 84 (2x6X6) by only specifying advise to one array in a variant.
Note that we use large number of variants to extract the different
runtime metrics. When using in the training and prediction, we
category these variants by program-level advice based on the most
common advice among them with minimal execution time. We use
the default input data provided by the Rodinia benchmark suite
and generate additional input data sets for HotSpot and Gaussian
following the instructions given by the Rodinia suite.

Kernels | Arrays | Variants Input data set
CFD 4 3 (2x6x6%6) | 3
BFS 2 6 (2x6%6) 3
Gaussian | 2 3 (2x6%6%6) | 67
HotSpot | 1 2 (2%x6x%6) 8

Table 3: Benchmarks for experiments

4.2 Preliminary Results

We collect total 2,753 instances for training data. After normaliza-
tion and reformatting, the data is made into one single dataset. We
split them into ten subsets, train the evaluated models with many
algorithms based on nine of ten, and the final subset is used for
examining the predictions of advice from the trained models.

We evaluate the collected data with various classifiers and display
the F-measure scores in Figure 5 compared against ground truth
which are the memory advice that yield best performance. Note
that F-measure score illustrates the harmonic mean of the fraction
of correctly predicted advice in all predicted results and the fraction
of correctly identified advice in the original results.

The measured values are across all the evaluated benchmarks
with various input data set sizes. It can be observed that when im-
plementing the model with a Random Forest classifier, it achieves
the best performance with F-measure up to 96.3%. These results
establish that our approach can effectively predict optimal choices
for the benchmarks. The model is generic and portable across dif-
ferent applications and input data set sizes and thus demonstrates
the potential use in guiding the optimal memory choices.

Fig. 6 shows performance comparisons between the execution
time from the original benchmarks which is the baseline for this
evaluation and from the codes with the predicted memory advice.
All the selected benchmarks with the predicted memory advice
achieve equivalent or better performance compared to the original
benchmarks. The model can thus effectively assist to achieve better
performance for the selected benchmarks.

F-Measure (%)

REPTree

Bagging |

J48
Random Tree

Random Forest |

920 92 94 96 98

Figure 5: Evaluation of the model prediction accuracies of different
classifiers.

5 RELATED WORK

Numerous studies have explored optimization strategies to place
data within the various types of memories and caches of GPUs,
without considering unified memory. For example, PORPLE [4, 5]
is a portable approach using a lightweight performance model to
guide run-time selection of optimal data placement policies. Huang
and Li [6] have analyzed correlations among different data place-
ments and used a sample data placement to predict performance
for other data placements. Jang et al. [7] have presented several
rules based on data access patterns to guide the memory selection
for a Tesla GPU. Yang et al. [18] proposed compiler-based approach
to generate kernel variants for exploiting memory characteristics.
More recently, Stoltzfus et al. [15] designed a machine learning
approach for guiding data placement using offline profiling and
online inference on Volta GPUs. Bari et al. [2] studied the impact
of data placement on newer generations of GPUs such as Volta.

Many applications had been implemented with the unified mem-
ory in the high performance computing areas to reduce the com-
plexities of memory management [12]. An investigation of early
implementation of unified memory [9] showed that applications
did not perform well in most cases due to high overhead caused
by CUDA 6. Sakharnykh [14] presented a comprehensive overview
of unified memory on three generations of GPUs (Kepler, Pascal
and Volta), with a few application studies using advanced UM fea-
tures. Awan et al. [1] exploited advanced unified memory features
in CUDA 9 and Volta GPUs for out-of-core DNN training. They
observed minor performance degradation in OC-Caffe with the
help of memory prefetching and advise operations.

Unified memory is also studied under the context of OpenACC
and OpenMP. OpenARC [10] is an OpeACC compiler with exten-
sions to support unified memory. They found that unified memory
is beneficial if only a small random portion of data is accessed.
Wolfe et al. [17] studied how the data model is supported in several
OpenACC implementations. They mentioned some implementa-
tions were able to use unified memory. Mishra et al [13] evaluated
unified memory for OpenMP GPU offloading. They reported that
the UM performance was competitive for benchmarks with little
data reuse while it incurred significant overhead for large amount
data reuse with memory over-subscription. Li et al. [11] proposed
a compiler-runtime collaborative approach to optimize GPU data
under unified memory within an OpenMP implementation. Static
and runtime analysis are used to collect data access properties to
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Figure 6: The comparison of execution times between baseline benchmarks and model predicted performances.

guide if data should be placed on CPU or GPU memory, and how
to transfer the data (explicitly through traditional memory copy
operations vs. implicitly through UM) if mapped to GPU.

6 CONCLUSION & FUTURE WORK

In this paper, we present a novel machine learning-based approach
which can guide the optimal use of unified memory of GPUs for var-
ious applications at runtime. It consists of two phases: offline learn-
ing and online inference. After collecting and filtering the offline
metrics from multiple benchmarks, we train a machine learning
model based on remaining useful metrics. We then use the trained
model to guide the online execution of applications, by predicting
the optimal memory choices for each kernel based on its runtime
metrics. The experimental results show that given a set of CUDA
benchmarks, the proposed approach is able to accurately determine
what kind of memory choices are optimal: either in discrete mem-
ory or unified memory space (and combined with various memory
advice hints). It alleviates the burden on application developers by
automating the complex decision making process which otherwise
would require extensive, time-consuming experiments.

In the future, we will extend this work to evaluate the advice
choices at a finer granularity considering calling context. Second,
using collaborative compiler and runtime support, we will employ
runtime code generation and/or adaptation techniques to automat-
ically generate codes using suggested optimal memory choices.
Third, we will evaluate the overhead for collecting training data
and investigate how to reduce the overhead. Last but not least, the
model will be applied to more hardware platforms.
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SUMMARY OF THE EXPERIMENTS REPORTED

ARTIFACT AVAILABILITY
Software Artifact Availability:

List of URLs and/or DOIs where artifacts are available:
e Evaluation artifact: https://gitlab.com/AndrewXu22/optimal_unified_memory.git
o Original Rodinia Benchmark: http://lava.cs.virginia.edu/Rodinia/download.htm

BASELINE EXPERIMENTAL SETUP, AND MODIFICATIONS MADE FOR THE PAPER
Relevant hardware details: Nvidia GPU Tesla V-100

Operating systems and versions: Debian GNU/Linux 16.04
Compilers and versions: NVCC
Applications and versions: Rodinia Benchmark 3.1
Libraries and versions: CUDA 10.1 with Nsight command line tool
Key algorithms: Random Forest, J48
Input datasets and versions: provided in evaluation artifact
Paper Modifications:
ARTIFACT EVALUATION

The workflow can be performed with the following commands:
git clone https://gitlab.com/AndrewXu22/optimal_unified_memory.git
cd optimal_unified_memory
J/script/driver.sh
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