
L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 25–36, 2008.
© Springer-Verlag Berlin Heidelberg 2008

LVD: A Lightweight Virtual Desktop Management
Architecture*

Xiaofei Liao, Xianjie Xiong, Hai Jin, and Liting Hu

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

{xfliao,hjin}@hust.edu.cn

Abstract. Rapid improvements in network bandwidth, ubiquitous security haz-
ards and high total cost of ownership of personal computers have created a
growing market for desktop virtualization. We present the LVD, a system that
combines the virtualization technology and inexpensive personal computers
(PCs) to realize a lightweight virtual desktop system. Compared with the
previous thin client systems, LVD supports the backup, mobility, suspending
and resuming of per-user’s working environment; it supports the customization
of operating system and applications for each user; it supports synchronous us-
ing of incompatible applications on different platforms; it achieves great saving
in power consumption. LVD consists of five modules--- the template-based VM
repository, the data center, the application cluster, the VM central manager, and
the client terminal, in which we have proposed wRFB protocol, magnet algo-
rithm and the like to perform the above functions. We have implemented LVD
in a cluster with VMs and compared its performance against widely used com-
mercial approaches. Experimental results demonstrate that LVD is effective in
performing the functions while imposing little overhead.

Keywords: RDP, desktop virtualization, virtual machine.

1 Introduction

Although server virtualization is now a mainstream technology for data centers and
cluster computing communities, desktop virtualization has attracted considerable atten-
tion for recent years, both academically [9] and commercially. Desktop virtualization
has the potential to offer a new, cost efficient paradigm shift to ease the demand for the
resources while maximizing return on investment. Combining the potential cost

* This work is supported in part by National Natural Science Foundation of China (NSFC)

under grants No.60703050, National 973 Basic Research Program of China under grant
No.2007CB310900, Hubei Natural Science Foundation under grant No.2007ABD009, the
Ministry of Education-Intel information technology special research fund under grant
No.MOE-INTEL-08-06 and Wuhan Chengguang Plan under grant No.200850731350.

26 X. Liao et al.

savings with other advantages such as disaster recovery, robustness, scalability, and
security make this an attractive computing model to deploy.

However, the architecture of current virtual desktop systems imposes fundamental
limitations on the customization, convenience, acceleration of pixel data transfers and
energy-savings, so the challenges remain as below.

First, most virtual desktop systems fail to support users to customize their own
environments and back up them, not to mention the function of suspend/resume. The
following scenarios happen frequently: people have different working environments at
home, at the office and during the trip. At home, one may want a PC with more enter-
tainment software, while at the office a PC with corporate applications is needed. Fur-
thermore, people should logically suspend a machine at one Internet site, then travel to
some other sites and resume on another machine. We call the hypothetical capability
suspend/resume. Nevertheless, some previous work ignores the above needs. Collec-
tive [4] deploys the system disk for each user, the contents of which at every boot are
made identical including the image’s operating system and applications.

Second, it is impossible to interact with incompatible applications of different
operating systems synchronous without switching the platforms. The reason lies in that
the server side of all virtual desktop systems uses the remote display protocol to trans-
fer full-screens to the client side. Hence the user has to face multiple screens and
switch among them.

The third shortcoming follows from the second. As a large granularity transferring
unit, full-screens increase the amount of data transmitted, resulting in more bandwidth
consumption and performance degradation. As a matter of fact, only the application
GUI that the user interacts with needs to be transmitted.

Finally, most virtual desktop systems fail to consider the reduction of power
consumption of the data center. Undoubtedly, green computing has been a hot idea in
cluster computing for recent years. Anecdotal evidence from data center operators [7]
indicates that a significant fraction of the operation cost of these centers is due to
power consumption and cooling. To lower the cost of management, we should give
prominence to the problem of power consumption.

For the first challenge, WebOS is a good option to get rid of the space limit. How-
ever, since all operations are performed by JAVASCRIPT which is less than 1/50 of
Java, 1/200 of php and 1/500 of C for speed, WebOS can only be applied to deal with
lightweight programs. Besides, high network latency will lead to slow response time.
For the second challenge, VDI [14] combines server virtualization with remote presen-
tation technology. However, the user still has to face two operating platform screens
while interacts with applications on different platforms. Little previous work concerns
the third challenge. For the fourth challenge, lots of previous works have been done to
reduce the power consumption, from the perspective of both local techniques and
cluster-wide techniques [11]. Nonetheless, previous schemes seldom take advantage of
the virtualization technology and the characteristic of particular platform to save the
energy.

We propose lightweight virtual desktop management architecture (LVD) to address
the challenges. Our model consists of five modules: the template-based VM repository
(TVR), the data center (DC), the application cluster (APPC), the VM central manager
(VCM), and the client terminal. The key technologies behind these modules include
wRFB protocol, Magnet algorithm and the like. LVD provides a comprehensive suite
of important functions:

 LVD: A Lightweight Virtual Desktop Management Architecture 27

 Backs up, suspends, resumes per-user working environment (see TVR).
 Supports rolling back to different working environment by continuous backup

at different working locations (see DC).
 Supports using incompatible application of heterogeneous platforms in a sin-

gle platform (see APPC).
 Saves energy in a dynamical and global way (see VCM).

We have implemented LVD in the cluster with VMs and measured its performance
on real applications. We also have compared our LVD prototype system against the
most current and widely-used virtual desktop systems, including Microsoft Remote
Desktop, Citrix MetaFrameXP and Sun Ray. Experimental results demonstrate that
LVD is effective in performing the functions while imposing little overhead.

The rest of this paper is organized as follows. Section 2 discusses the related work.
The LVD architecture is described in Section 3. Section 4 evaluates the performance.
We conclude our work in Section 5.

2 Related Works

Virtual machine can simulate all the hardware components, like memory, disk, CPU
and so on. A computer with virtual machine monitor installed can simulate several
virtual machines at the same time. Each of these simulated virtual machines can
independently install operating system, run applications simultaneously. The virtual
machine monitor could suspend the virtual machine managed by the VMM, and re-
sume one virtual machine which has been suspended before. The VMM could take a
snapshot of a virtual machine’s memory state, and restore the machine state to the state
when the snapshot is created.

We divide the previous virtual desktop techniques into two groups: the physical
machine based (PM-based) techniques and virtual machine based (VM-based) tech-
niques. The PM-based techniques use the remote display protocol or WebOS
approach to realize the desktop virtualization, whereas VM-based techniques improve
the traditional work by deploying the virtual machines in the server side or client side
and thus benefits from better fault isolation and higher resource utilization.

Remote display protocol based technique. As the earliest desktop virtualization tech-
nique, the thin client computing model uses a remote display protocol to communicate
between a server and a client over the network. The protocol allows graphical dis-
plays to be virtualized and served across a network to a client device, while the appli-
cation logic is executed on the server. Typical thin client protocols include VNC [12],
RDP, THINC [1], pTHINC [8] and the like. Since the technique mainly depends on
continuous display synchronization between user interface on the client and
application logic on the server, how to increase the display efficiency is the main
challenge. Being the first thin client capable of transparently playing full screen video
and audio at full frame rate in both LAN and WAN environments, THINC is the
groundwork of other solutions.

WebOS based technique. WebOS is another fashion that can quickly build on-demand
virtual desktop environments using web technology. A WebOS is also known as a
webtop, and Ebrahim Ezzy‘s definition probably explains it best: “A webtop (derived

28 X. Liao et al.

from “desktop”) pushes that replication to its limit. Also known as a WebOS, it is
basically a virtual desktop on the web. It is a simple, less bloated, less featured and
remotely accessible operating environment that runs in a browser. It delivers a rich
desktop-like experience, coupled with various built-in applications.” Typical WebOS
systems include YouOS [5], EyeOS, Glide [6] and Orca desktop [10]. The advantage
lies in that less bandwidth consumption and better cost-performance. However, the
drawback is obvious: since a web application executes the front end on the client, and
the back end on the server, it fails to be compatible with the original applications and
thus requires the reprogramming of them.

In sum, PM-based technique has drawbacks including that (1) the user’s working
environment can not be suspended and resumed; (2) the full screen image is transmit-
ted from the server side to the client side resulting in a great amount of transferring
data and degradation of the system performance.

Server virtualization based technique. To simplify administration and to reduce man-
agement and operating costs while maintaining reliability and safeguarding against
disasters, the significant benefits of server virtualization technology is now being
applied for companies’ desktop users. Virtual Desktop Infrastructure (VDI) is such an
integrated desktop virtualization solution combining server virtualization with remote
presentation technology. The desktop operating systems and applications run inside
the virtual machines and the server side distributes such VMs to each user on the
client side. Users use a remote display protocol to access the VM on the server and
the server returns the full features of the VMs.

Client virtualization based technique. The typical systems are Internet Sus-
pend/Resume (ISR) [13] designed by CMU and Collective designed by Stanford. ISR
is a mobile computing technology which can preserve one’s uniquely customized
computing environment as one package and then moves it to different locations. ISR
is implemented by layering virtual machine technology on distributed file system
technology. It enables a hands-free approach to mobile computing in which commod-
ity hardware may be widely deployed for transient use. Through rapid and easy per-
sonalization and depersonalization of anonymous hardware, a user is able to suspend
work at one machine and to resume it at another.

Generally, server virtualization based technique (1) trades off the user’s ability to
customize their own environment; (2) forces the user to switch among multiple plat-
forms while the user wants to run incompatible applications of different operating
systems. Client virtualization based technique requires a powerful client side running
the VM.

3 LVD Design

The motivation of designing LVD is to solve the challenges discussed above: (1) how
the applications be customized and configurable freely by the end user; (2) how
per-user states be backed up in a storage-saving way and an optional data-sharing
way; (3) how the incompatible applications running on different operating systems be
used by the end user at the same time without switching the platforms; (4) how the
great savings be achieved in power consumption by our scheduling policy; (5) how
the application display commands be transmitted effectively.

 LVD: A Lightweight Virtual Desktop Management Architecture 29

3.1 Overview

As illustrated in Fig.1, LVD system consists of template-based VM repository (TVR),
data center, application cluster (APPC), VM central manager (VCM), and client
terminal. We start by showing how LVD works from a user’s perspective.

Fig. 1. Architecture of LVD system

When a user logs in at the first time, firstly, he is presented with a list of appliances
by the VCM on which he can click to begin constructing his personal working envi-
ronment. Second, the VCM informs the template-based VM repository to create the
customized VM image including the operating system and applications. Meanwhile,
the VCM chooses an appropriate physical machine to boot the image among all the
application servers in the cluster on the basis of load balancing and energy saving.
Third, the user accesses the running VM using our remote display protocol (wRFB).
The user transmits the commands to the VM and the VM returns the application
window updates to the user interface. Finally, when the end user exits, his working
environment consisting of the user image and user data is backed up in the data center.

If the user has already logged in previously, he fetches and runs the latest copies of
VM image from the data center over the Internet, or resumes the suspended VM
image locally when the network is unavailable.

3.2 Template-Based VM Repository (TVR)

The template-based VM repository is responsible for customized VM image provision
and updating. TVR contains all versions of various operating systems and software.
Once a user’s request arrives, the ordered operating platform and applications (or
components) will be encapsulated and thus a unique VM image is created.

Moreover, TVR need to be updated constantly. All software upgrades, be they
small or big, is accomplished in our system with the same mechanism. The system

30 X. Liao et al.

administrator prepares a new version of the appliance and deposits it in the repository.
TVR can inform the user that a new version of the appliance is available, encouraging
the user to reconstruct the working environment, or the TVR can even force a recon-
struction to disallow use of the older version.

This update approach has some advantages over package and patch systems like
yum [15], RPM [2], Windows Installer, and Windows Update. Patches may fail on
some users’ computers because of interactions with user-installed software. Our
updates are guaranteed to move the appliance to a new consistent state. Users running
older versions are unaffected until they perform a reconstruction.

3.3 Data Center (DC)

The data center performs the following functions:

 Backs up per-user state in terms of copies of VM images.
 Separates per-user VM image into system data and user data.

From the view of the data organization, we use the NFS protocol to store the data,
which is fast, reliable and simple to support demand paging of large objects, like the
images. For our prototype, NFS has the following advantage: in a typical computing
session, a user may not access most of the virtual disk image. We arrange the disk data
in a tree of small files, only a small number of these files will need to be transmitted to
the booted VM in the application cluster. The on-demand transmission mode helps a
lot when the bandwidth is limited.

From the view of the data type, the data in DC is divided into two parts: system data
and user data. The system data consists of an operating system and all installed appli-
cations. User data consists of a user’s profile, preferences, and private files. The sepa-
ration has the following advantages: (1) the files in the user data repository could be
classified and protected according to their security sensibility; (2) if a user wants to
share his data, e.g. movies and files, others can get access to them through NFS
conveniently.

3.4 Application Cluster (APPC)

After the customized VM image is created by TVR, or fetched from DC, APPC will
boot a customized VM on one of its physical machine to provide service to the remote
end user. The highlights of APPC module is an advanced remote display protocol
wRFB (window-based remote frame buffer).

In the previous virtual desktop systems, such as VDI, Sun Desktop Virtualization
Solution and Windows Vista Enterprise Centralized Desktop (VECD) [4], each user is
assigned to a virtual desktop. If the customer wants to use applications of other plat-
forms, he faces multiple desktops from different VMs and has to switch among them.
Unlike the previous work, wRFB grabs and transfers the application GUI images from
multiple VMs to the client side. Then all these window images will be merged and
displayed on a single virtual desktop, as illustrated in Fig.2(a).

 LVD: A Lightweight Virtual Desktop Management Architecture 31

(a) (b)

Fig. 2. (a) wRFB protocol; (b) The logic diagram of VCM

3.5 VM Central Manager (VCM)

VCM provides the follows interfaces, as illustrated in Fig.2(b): 1) client-side interface:
authenticating the user and keeping the working records of each user. For example, a
user may login to the client in Hong Kong, work for a while, log out, travel a great
distance to Seattle, login, work, log out, and come back to Hong Kong. It is highly
possible that he wants to resume the working environment in Hong Kong a few days
ago rather than Seattle. Therefore, it is necessary to trace each user’s records at differ-
ent locations; 2) server-side interface: locating and scheduling the VMs in APPC dy-
namically in a load balancing and energy saving way.

Undoubtedly, the concept of green computing has attracted much attention recently
in cluster computing. The migration of the VM inspires us with a novel method called
Magnet to reduce the power consumption, which has been introduced in detail in our
previous work [16]. The key technique is to consolidate the load among the nodes on a
multilayer ring-based overlay and then keep the redundant nodes in low power state
like deep sleep or shut down.

3.6 Client Terminal

The client terminal can be any form of computing hardware, from desktops to hand-
held or wearable computers. The highlights of the client terminal module lie in as
follows. On high bandwidth (e.g., 100Mbps) networks, the system performs well, the
challenge here is that a terminal may be disconnected from the network or the band-
width is highly occupied. We provide the following solutions: (1) if the terminal is
mobile computers like laptop, store the latest VM image locally; (2) if the terminal is
a thin-client, compare to the standard operating system and application software (e.g.,
Windows 2000 and the Microsoft Office suite), the user specific files are a very small
fraction of the image size. Therefore, we distribute the large standard disk image-
based blocks widely over the network which can be accessed at high bandwidth from

32 X. Liao et al.

a nearby site. Only the much smaller user specific state needs to be transmitted at low
bandwidth from the data center.

4 Performance Evaluation

We provide some quantitative measurement of the system to give a sense of how the
system behaves and study the system performance in a various network environment.

As shown in Fig.3, our testbed consists of six computers connected on a switched
Fast Ethernet network: two thin clients, a data center, a virtual central manager, a
packet monitor, a template-based VM repository, a network emulator for emulating
various network environments, an application server, and a web server used for testing
web applications. All computers have an AMD Athlon 3500+ processor and 1GB DDR
RAM. Storage is accessed via iSCSI protocol from a NetApp F840 network attached
storage server (NAS). The guest kernel is Linux 2.4.18 ported to UM-Linux, and the
host kernel for UM-Linux is a modified version of Linux 2.4.18. The virtual machine is
configured to use 512MB of RAM, the memory page size is 4KB, page fault service
time is 10ms, and the context switch time is 0.1ms.

Fig. 3. Tested configuration

We have assessed the LVD display performance in a various network environment.
We run each of the three application benchmarks on the baseline PC platform and the
five thin client platforms on different operating systems. The five specific platform
configurations considered are PC running LVD on Linux (LVD), Microsoft Terminal

Table 1. Characteristics of the application benchmarks

Benchmark Type Application Benchmark Operation
Latency benchmark Java applet Typing a character, scrolling text, filling a

screen region. Downloading an image
Web-based
benchmark

Web text page load Downloading a sequence of 54 web pages.
Scrolling down 200 pixels

Multimedia-oriented
benchmark

Flash benchmark Streaming a 98 KB Macromedia Flash
animation chip from the server side (uses
vector graphics and contains 315 550*400
frames)

 LVD: A Lightweight Virtual Desktop Management Architecture 33

Services RDP 5.0 on Windows 2000 (RDP Win2K), Citrix Metaframe 1.8 running on
Windows 2000 (Citrix Win2K), LapLink 2000 on Windows NT 4.0 Terminal Server
Edition (LapLink WinNT), and Sun Ray.

As illustrated in Table 1, we use a simple Java latency benchmark to measure the
latency of basic operations on a thin client platform and a selection of benchmarks
from the Ziff-Davis i-Bench benchmark suite to provide a measure of web-based and
multimedia-oriented application performance.

4.1 Latency Benchmark Results

We measure both the latency and the data transferred for each of the four operations:
draw letter, fill red box, scroll text, and load bitmap. These results are shown in
Fig.4(a) and Fig.4(b), respectively.

Advantage. Compared with other platforms, LVD is able to complete any operations
within 100ms, including the basic draw letter, fill box, and scroll text operations.
Comparing Fig.4(a) with Fig.4(b), we can see that the latency and the data transferred
are not at all correlated in many cases. While LVD had less latency for most of the
tests, it also requires more data transfer.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 RDP Win2K
 Citrix Win 2K
 LapLink WinNT
 LVD
 Sun Ray

La
te

nc
y

(s
)

Letter A Red Box Fill Text Scroll Bitmap Load

2.5

0.1

1

10

100

1000

84
.3

3.
2

1.
2

0.
4

 RDP Win2K
 Citrix Win 2K
 LapLink WinNT
 LVD
 Sun Ray

D
at

a
tr

an
sf

er
re

d
(K

B
)

Letter A Red Box Fill Text Scroll Bitmap Load

(a) (b)

Fig. 4. (a) Latency test time to completion; b) Latency test data transferred

4.2 Web Page Load Benchmark Results

We measure the total time required to display all 109 web pages of the web bench-
mark and logs complete packet traces using the packet monitor. Fig.5(a) and Fig.5(b)
illustrate the total normalized web page download times and total data transferred for
each run, respectively.

As shown in Fig.5(a), almost all of the platforms complete the web benchmark in
less than 50 seconds at network bandwidths of 4 Mbps or greater, corresponding to an
average of less than half a second per page.

Limits. At network bandwidths below 4 Mbps, the performance of the thin client
platforms begins to degrade. As shown in Fig.5(a) and Fig.5(b), LVD does not take

34 X. Liao et al.

longer to complete the web benchmark at lower bandwidth, but instead lose data
resulting in missed or incomplete screen updates. On the other hand, RDP and Citrix
behave in a similar manner by taking longer to complete the web benchmark as the
network bandwidth decreases, but continuing to send the same amount of data even at
lower bandwidths.

50

100

150

200

250

300

350

400

34
1

20
3

29
7

74
3

 128 kbps
 256 kbps
 512 kbps
 1.5 mbps
 10 mbps
 100 mbps

Lo
ad

 ti
m

e
(s

)

LVD RDP
Win2K

Citrix
Win2K

LapLink
WinNT

Sun Ray

41

2
5

55

364
5

2
4 37

39
7

51
2

 0

5

10

15

20

25

30

35

50
.3

50
.2

 128 kbps
 256 kbps
 512 kbps
 1.5 mbps
 10 mbps
 100 mbps

D
at

a
tr

an
sf

er
re

d
(M

B
)

LVD RDP
Win2K

Citrix
Win2K

LapLink
WinNT

Sun Ray

(a) (b)

Fig. 5. (a) Web page load time; (b) web page data transferred

In general, the LVD results indicate that for web-based applications, a pixel-based
encoding approach could encode screen updates with comparable efficiency as
graphics-based encoding approaches.

4.3 Flash Benchmark Results

We run the flash animation test on each of the thin client platforms via network, and
also run the benchmark on the baseline platforms for comparison. The results are
illustrated in Fig.6(a) and Fig.6(b).

0

2

4

6

8

10

12

14

16

18

20
 128 kbps
 256 kbps
 512 kbps
 1.5 mbps
 10 mbps
 100 mbps

F
ra

m
e

ra
te

 (
fp

s)

LVD RDP
Win2K

Citrix
Win2K

LapLink
WinNT

Sun Ray

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28
.6

28
.9

 128 kbps
 256 kbps
 512 kbps
 1.5 mbps
 10 mbps
 100 mbps

D
at

a
tr

an
sf

er
re

d
(M

B
)

LVD RDP
Win2K

Citrix
Win2K

LapLink
WinNT

Sun Ray

29
.4

29
.0

(a) (b)

Fig. 6. (a) Flash test frame rate; (b) Flash test data transferred

 LVD: A Lightweight Virtual Desktop Management Architecture 35

We find that a frame rate close to 16fps produced good subjective results, with
smooth display, no skipped screens, and no tearing or jerky movement. The 100KB
animation is downloaded completely to the server prior to playback, so the bandwidth
does not affect the frame rate on the baseline.

Limits. With the web test results, LVD is slightly less efficient than the platforms
with graphics based encodings. LVD maintains an almost constant rate for the
benchmark at all bandwidths, but drops many screens on the client’s display at
the low end of the range. Its performance is only comparable in smoothness to the
baseline when the data transferred reaches a plateau. In general, LVD system experi-
ences a similar fall-off in performance at bandwidth 128kbps or below, indicating that
LAN bandwidths are required to support multimedia applications.

4.4 Power Reduction Results

After analyzing the characteristics of workflow of LVD, we have proposed a new
schedule policy called Magnet for cluster with VMs to achieve the energy savings
[16]. We apply the policy to the application cluster. The experimental measurements
show that the new method can reduce the power consumption by 74.8% over base at
most with certain adjustably acceptable overhead.

5 Conclusions

This paper presents LVD, a prototype of system management architecture for manag-
ing desktop computers. This paper concentrates on the design issues of a complete
system. By combing wRFB protocol and Magnet algorithm and other techniques of
virtualization, LVD provides several novel functions including backup, mobility,
suspending and resuming of per-user’s working environment, the customization of
working environment and the synchronous using of incompatible applications on
different platforms. Besides, it achieves great saving in power consumption. In the
future, we will try to optimize the display performance by exploring more intelligent
schemes. Also, we will analyze the strategies of the migration of multiple VMs to
achieve more energy savings and better load balancing.

References

1. Baratto, R., Kim, L., Nieh, J.: THINC: A Virtual Display Architecture for Thin-Client
Computing. In: Proceedings of 20th ACM Symposium on Operating Systems Principles,
pp. 277–290. ACM Press, United Kingdom (2005)

2. Bailey, E.: Maximum RPM. SAMS, Indianapolis (1997)
3. Ponder, W.: Sun Desktop Virtualization Solution: Desktop Virtualization Blueprint. Sun

Microsystems (2006)
4. Chandra, R., Zeldovich, N., Sapuntzakis, C., Lam, M.S.: The Collective: A Cache-Based

System Management Architecture. In: Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation, pp. 259–272. ACM Press, Boston (2005)

5. eyeOS project, http://www.eyeOS.org/

36 X. Liao et al.

6. Glide project, http://www.glidedigital.com/
7. Hopkins, M.: The On Site Energy Generation Option. The Data Center Journal, http://

datacenterjournal.com/NewsArticle.asp?article_id=66 (2004)
8. Kim, J., Baratto, R.A., Nieh, J.: pTHINC: a thin-client architecture for mobile wireless

web. In: Proceedings of the 15th International World Wide Web Conference, pp. 143–152.
ACM Press, Edinburgh (2006)

9. Nieh, J., Yang, S.J., Novik, N.: Measuring thin-client performance using slow-motion
benchmarking. ACM Transactions on Computer Systems 21(1), 87–115 (2003)

10. Orca desktop, http://www.orcaa.com/
11. Pinheiro, E., Bianchini, R., Carrera, E., Heath, T.: Dynamic Cluster Reconfiguration for

Power and Performance. In: Benini, L., Kandemir, M., Ramanujam, J. (eds.) Compilers
and Operating Systems for Low Power. Kluwer Academic Publishers, Norwell (2003)

12. Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A.: Virtual network computing.
IEEE Internet Computing 2(1), 33–38 (1998)

13. Satyanaranyanan, M.: Pervasive Personal Computing in an Internet Suspend/Resume Sys-
tem. IEEE Internet Computing 11(2), 16–25 (2007)

14. VMware Virtual Desktop Infrastructure Partners,
 http://www.vmware.com/partners/alliances/solutions/

15. Yellowdog, http://linux.duke.edu/projects/yum/
16. Hu, L., Jin, H., Liao, X.: Magnet: A Novel Scheduling Policy for Power Reduction in

Cluster with Virtual Machines. In: Proceedings of the 9th IEEE/ACM Conference on Clus-
ter 2008. IEEE Press, Tokyo (2008)

	LVD: A Lightweight Virtual Desktop Management Architecture
	Introduction
	Related Works
	LVD Design
	Overview
	Template-Based VM Repository (TVR)
	Data Center (DC)
	Application Cluster (APPC)
	VM Central Manager (VCM)
	Client Terminal

	Performance Evaluation
	Latency Benchmark Results
	Web Page Load Benchmark Results
	Flash Benchmark Results
	Power Reduction Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

