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Adaptive Fragment-Based Parallel State Recovery
for Stream Processing Systems
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Abstract—Today, large-scale cloud organizations are deploying
datacenters and “edge” clusters globally to provide low-latency ac-
cess to services. Running stream applications across geo-distributed
sites are emerging as a daily requirement. However, existing ef-
forts have dominantly centered around stateless stream processing,
leaving another urgent trend-stateful stream processing-much less
explored. A driving need is to store and update states during
processing, and most importantly, successfully recover large dis-
tributed states when faults and failures happen. Existing stud-
ies exhibit major limitations including: (1) they mostly inherit
MapReduce’s “single master/many workers” architecture, where
the central master can easily become ascalability bottleneck; (2)
they offer state recovery mainly through three approaches: repli-
cation recovery, checkpointing recovery, and DStream-based lin-
eage recovery, which are either slow, resource-expensive or fail-
ing to handle multiple failures; and (3) they are not adaptive
to heterogeneous hardware settings. We present A-FP4S, a novel
adaptive fragments-based parallel state recovery mechanism for
stream processing systems. A-FP4S organizes stream operators into
a distributed hash table based peer-to-peer overlay and divides
each node’s local state into many fragments. These fragments are
periodically stored in node’s multiple neighbors, ensuring different
sets of available fragments can reconstruct failed states in parallel.
This mechanism is extremely scalable to the lost state, significantly
reduces failure recovery time, and can tolerate multiple node fail-
ures. A-FP4S is adaptive to heterogeneous hardware settings by
automatic parameter tuning over phases. Compared to Apache
Storm, A-FP4S achieves 31.8% to 50.5% reduction in recovery
latency. Large-scale experiments using real-world datasets demon-
strate A-FP4S’s attractive scalability and adaptivity properties.

Index Terms—Distributed hash tables, state recovery, stream
processing.
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I. INTRODUCTION

TODAY, many computing applications that are critical to
society are undergoing a profound transformation with the

use of large-scale, diverse, and distributed data sets that allow
for data-intensive analytics and decision-making at a level never
before imagined. Stream processing is proposed and popularized
as a “technology like Hadoop but can give you up-to-date results
faster”, which lets users query a continuous data stream and
quickly get results within very short periods from receiving the
data. For that reason, stream processing technology has become
a critical building block of many applications, such as making
business decisions from marketing streams, identifying spam
campaigns from social network streams, predicting tornados and
storms from radar streams, and analyzing genomes in different
labs and countries to track the sources of a potential epidemic.

What is stateful stream processing? Over the last decade, a
bloom of stream processing systems has been developed includ-
ing Storm [8], Trident [10], Spark Streaming [24], Borealis [29],
TimeStream [66], S4 [61], etc. Stream processing systems typ-
ically organize the distributed processing operators in the form
of a directed acyclic graph (DAG), process the tuples of data
streams instantly as they flow through the DAG, and execute the
application logic to produce results in real-time. Traditionally,
stream processing systems are stateless. An interesting trend
is that more complex streaming pipelines generally need to
keep some sort of task or operator state in order to execute the
application logic, called stateful stream processing [25].

Examples of the state include (depending on the application):
user profiles, email digests, aggregate counts, summary of the
received elements, etc. State computations include aggregations
over a window (a mini-batch), counts over a window, and joining
a stream with a database. Fig. 1 illustrates a simple example of
stateful stream processing that might be seen in the backend
of a consumer website. Suppose the application is to count
the number of page views for each user per hour. The input
stream is partitioned by some key in the data and distributed over
multiple task instances for parallel computation, each of which is
responsible for some key range. In this case, the state is the stored
key-value pairs consisting of user IDs and the corresponding
counters. The state can be kept in memory (e.g. a hashtable in the
task instances), at disk (e.g., using RocksDB [22]), or in a remote
database management system shared among applications. When
a new data event is processed, the history counter value from
the stored state is retrieved and incremented by the new value
(e.g.,〈x, 1〉+ 〈x, 10〉 → 〈x, 11〉). The aggregation is typically

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 08,2023 at 14:16:19 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6763-7098
https://orcid.org/0000-0001-7506-3506
https://orcid.org/0000-0001-6538-2888
https://orcid.org/0000-0001-8512-5176
mailto:hailu.xu@csulb.edu
mailto:pliu002@fiu.edu
mailto:tanzir@tamu.edu
mailto:dilma@cse.tamu.edu
mailto:liting@ucsc.edu


XU et al.: ADAPTIVE FRAGMENT-BASED PARALLEL STATE RECOVERY FOR STREAM PROCESSING SYSTEMS 2465

Fig. 1. Example of a stateful stream application.

limited to a time window (e.g. 1 minute, 1 h, 1 d) so that
we can observe changes of activity over time. This kind of
windowed processing is common for ranking and relevance,
detecting “trending topics”, as well as real-time reporting and
monitoring

Why does state recovery matter? Stream computations are by
nature long-running. They run in a highly dynamic distributed
environment. Many stream operators may leave or fail at the
same time, resulting in expensive time and space costs to recover
them. When stream operators are deployed on a large number
of nodes in the cloud, research shows that a non-negligible
percentage (0.5%-1%) of computation nodes cannot come back
to life after a power outage [76]. The failed operators take a
long time to recover; for example, in August 2019, a failure in
Amazon’s AWS Tokyo region impaired the operations of many
users for around 6 hours [26]. Stream operator failures can be
easily caused by node replacements, service changes, device
locations (i.e., in different geo-distributed datacenters), environ-
ment changes such as temperature, faulty interconnections, and
human mistakes [78].

What makes it particularly challenging for stateful stream pro-
cessing is that the state can grow extremely large depending on
the nature of the task, the length of the sliding window(window
means mini-batch of stream), or simply due to the input volume.
The state of many real-world stream applications can easily
expand to the order of hundreds of gigabytes [77]. For example,
LinkedIn’s stream applications create a large amount of dis-
tributed states at runtime, including user profiles, email digests,
and aggregate counts [62].

This paper focuses on scalable and adaptive state recovery
for modern stateful stream processing systems. It addresses the
significant challenges in handling many simultaneous failures
for a large number of concurrently running stream applications.

The first challenge is “how to scale recovery with the state
size, the number of simultaneous failures, and the number of
concurrently running stream applications on a shared plat-
form?” Existing studies [2], [5], [6], [8], [10], [24], [32], [53],
[54], [61] mostly inherit MapReduce’s “single master/many
workers” architecture, where the central master is responsible
for all scheduling activities. As such, they are limited to a fixed
computation model, e.g., asynchronous stream processing like
Storm [8], synchronous mini-batch processing like Spark [7],

etc. Note that the recovery operation is a critical consumer of
time and space. It must quickly recover all failed operators’ lost
states on failover nodes (if any) without blocking the normal
processing of stream applications. However, example shows
that the failure recovery time takes nearly 60% of the running
time when failures happen [82]. Experimental results in Apache
Flink show that even with a very small failure rate, such as the
failure rate of 0.0022 per hour, the overhead of state recovery
dramatically increases to 68.8% for 1000 nodes and 226.83% for
2000 nodes [49]. As a result, it is difficult (or even unfeasible)
for a centralized master to manage state recovery for a large
number of concurrently running applications due to the inherent
centralization bottlenecks.

The second challenge is “how can we handle many simul-
taneous failures while achieving fast recovery with low hard-
ware cost?” State-of-the-art stream processing systems offer
failure recovery mainly through three approaches: replication
recovery [34], [71], checkpointing recovery [8], [10], [66] and
DStream-based lineage recovery [35], [72], [81]. These solu-
tions are either slow, resource-expensive or fail to handle many
simultaneous failures. Replication recovery adds significant
hardware cost because multiple copies must concurrently run
on distinct nodes for failover. Checkpointing recovery is known
to be prohibitively expensive, and users in many domains disable
it as a result [33], [46], [59], [64], [65]. DStream-based lineage
recovery is slow when the lineage graph is long and falls short
in handling multiple simultaneously failures.

The third challenge is “how to recover state adaptively based
on runtime properties, but without manual interventions?” Most
of the existing studies provide fixed recovery mechanisms [1],
[8], [10], [35], [38], [44]. Although applications have various
Quality-of-Service (QoS) requirements, they assume unchang-
ing state size and recovery paths. Existing mechanisms may
result in slow recovery when the state size becomes extremely
large, there are resource limitations, or network conditions vary
dynamically.

We present A-FP4S, a novel adaptive fragment-based parallel
state recovery mechanism to address the challenges listed above:
to efficiently handle many simultaneous failures for a large
number of concurrently running stream applications in a fast,
scalable, and adaptive manner.

A-FP4S operates as follows: (1) we first organize all the
application’s operators into a distributed hash table (DHT) based
consistent ring [69] to provide each operator with a unique set of
neighbors; (2) afterward, we divide each operator’s in-memory
state into many fragments using erasure codes [67]. Erasure
codes operate by converting a data object into a larger set
of code blocks such that any qualified available subset of the
generated code blocks can be used to reconstruct the original
data object; (3) we periodically store each node’s state in its
neighbors, ensuring that different sets of available fragments
can be used to reconstruct failed state in parallel, and (4) finally,
we provide adaptive recovery mechanism by adjusting the size
and number of fragments based on the hardware properties (e.g.,
network bandwidth, disk speed), the application characteristics
(e.g., state size, number of nodes), and the directed acyclic graph
(DAG) length characteristics. This failure recovery mechanism
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TABLE I
OVERVIEW OF STATE MANAGEMENT AND RECOVERY IN STREAM PROCESSING SYSTEMS

is extremely scalable to the size of the lost state, significantly
reduces the failure recovery time, and can tolerate many simul-
taneous operator failures.

We build A-FP4S on top of Apache Storm and evaluate it using
large-scale experiments with real-world datasets. Experimental
results demonstrate the scalability, adaptivity, and fast failure re-
covery of A-FP4S. When compared to a state-of-the-art solution
(Apache Storm [8]), A-FP4S reduces in 37.8% the state recovery
latency and reduces more than half of the hardware costs. It can
scale to many simultaneous failures and successfully recover the
states when up to 66.6% of nodes fail or get lost.

Contributions: We make the following technical contribu-
tions:
� We propose a decentralized architecture using a DHT-

based consistent ring and erasure codes to recover the dis-
tributed states for numerous concurrently running stream
applications. To the best of our knowledge, A-FP4S is the
first work to use a fully decentralized architecture for state
recovery (Section III).

� We implement the A-FP4S prototype on the state-of-the-
art stream processing system Storm and demonstrate its
portability to many other stream processing systems (Sec-
tion III).

� We provide a theoretical analysis of A-FP4S’s adaptive
recovery mechanism by adjusting the size and number of
fragments (Section IV).

� We make a comprehensive evaluation of the scalability,
recovery time, and adaptivity of A-FP4S on a large cluster
using real-world stream application’s datasets (Section V).

The remainder of this paper is organized as follows. Section II
discusses the related work. Section III describes the A-FP4S
design and implementation. Section IV presents the A-FP4S
adaptivity analysis. Sections V shows the experimental setup
and performance evaluation. We conclude with directions for
future work in Section VI.

II. RELATED WORK

Designing a state recovery mechanism for stateful stream
processing systems is non-trivial, and existing failure recovery
techniques for stream processing do not achieve the necessary

scalability and adaptivity. In this section, we summarize existing
stateful stream processing systems (see Table I) and examine
why their failure recovery techniques are either slow, resource-
expensive or fail to handle multiple failures.

A. Stateful Stream Processing Systems

Many industrial stream processing systems either do not
support state (Heron [53], S4 [61], early version of Storm [8]),
or rely on in-memory data structures such as hash tables and
hash table variants to store state. For example, Muppet [54] and
Trident [10] (an extension of Storm) store state via hash tables.
Spark Streaming [24] enables state computation via Resilient
Distributed Datasets (RDDs) [80] which are inherent hashmaps.
Some other systems such as Millwheel [31] and Dataflow [32]
choose to separate state from the application logic and have
state centralized in a remote storage [30], [33], [37] (e.g., a
database management system, HDFS [3] or GFS [43]) shared
among applications, along with periodically checkpointing state
for fault tolerance. A few other systems such as Kafka [5],
Samza [6], [62], Spark Streaming [24], and Flink [1], [35] use a
combination of “soft state” stored in in-memory data structures
along with “hard state” persisted in on-disk data store (e.g.,
RocksDB [22], LevelDB [16]).

However, it is not easy for these systems to quickly recover
large distributed states from the many concurrent failures. This
is because when a single node fails due to power outage, system
reboot, or environment changes (e.g., temperature), the large
distributed states of all dependent nodes must be reset to the
last checkpoint, and computation must resume from that point,
costing a lot of extra time and space to accomplish recovery.
Moreover, these systems rely on a single master for handling
failures and stragglers, exhibiting significant overhead from
centralization bottlenecks.

B. Failure Recovery in Stream Processing Systems

Existing stream processing systems offer failure recovery
mainly through the use of three approaches: replication recovery,
checkpointing recovery, and DStream-based lineage recovery.

Replication Recovery: In the process of replication recovery,
as shown in Fig. 2, there is a completely separate set of hot
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Fig. 2. The replication recovery workflow.

Fig. 3. The checkpointing recovery workflow.

failover nodes that processes the same stream in parallel with the
primary set of nodes. Input records are sent to both. When there
is a failure or multiple failures in the primary nodes, the system
automatically switches over to the secondary set of nodes and the
system can continue processing with very little or no disruption.
The replication recovery has been widely used in systems such as
Flux [71] and Borealis [34]. The failover is fast, and it can handle
multiple concurrent failures. However, replication recovery has
a linear increment in hardware cost. For example, if each node
fails at most once, the hardware cost doubles.

Checkpointing Recovery: In the process of checkpointing
recovery, as shown in Fig. 3, each of the nodes in the pipeline has
a buffer in memory to retain a backup of the records that it has
forwarded to the downstream nodes since the last checkpoint.
All nodes periodically checkpoint their states to remote storage
such as HDFS or GFS. A standby set of nodes is maintained
in the system. If any of the primary nodes fails, a standby node
will retrieve the latest checkpoint from the persistent storage,
and its upstream node essentially replays the backup records
serially to this failover node to recreate the lost state. The
checkpointing recovery has been widely used in systems such
as TimeStream [66] and Trident [10], Drizzle [75]. It avoids
the replication hardware cost. However, the failover is much
slower than the replication recovery because it has to retrieve
the checkpointed state from the disk and replay the buffered
data on the last state to recompute the new state. Multi-level
Checkpointing [58] is widely used in high-performance com-
puting (HPC) systems. For example, asynchronous multi-level
checkpointing [57], [70] has been a common method for efficient
checkpointing. However, the overhead of the checkpointing,
especially for the enormous I/O traffic, can be a performance bot-
tleneck without adjusting optimal intervals of checkpointing and
checkpoint count configurations [41]. Drizzle [75] introduced
group scheduling and pre-scheduling to reduce the centralized
scheduling bottleneck. However, it uses a batch processing
model and focuses on scheduling tasks for one application, while

Fig. 4. The DStream-based lineage recovery workflow.

A-FP4S uses a record-at-a-time processing model and focuses
on many concurrently running jobs.

DStream-Based Lineage Recovery: To achieve both fast re-
covery and small hardware overhead, the DStream-based lineage
recovery was proposed, as shown in Fig. 4. It has been used in
Apache Spark-based systems [1], [35], [72], [81]. The most re-
cent state is stored in each node’s memory using a data structure
called Resilient Distributed Dataset (RDD) [80], together with
the lineage graph, that is, the graph of deterministic operators
used to build RDDs. When nodes fail in the system, instead
of preparing nodes for failover, DStream will re-run the lost
tasks in parallel on other reliable nodes in the cluster using the
lineage graph. These tasks can be parallelized to recompute the
lost states. However, the entire recovery processing is linear,
that is, the lost tasks need to be executed or computed strictly in
line with the original lineage graph on other nodes. As such, the
recovery process may be slow when the lineage graph is long
and incur multiple data uploads through the network.

To our best knowledge, the very few research projects that
are broadly relevant to state management solutions are [4],
[17], [48], [74]. These projects either point out the criticality
of making state explicit [48], [74] or develop mechanisms for
reprocessing state [4], [17], but propose no effective solutions
for fast state recovery when concurrently running stream appli-
cations.

Static State Recovery: The replication-based recovery,
checkpointing-based recovery, and DStream-based lineage re-
covery have a common characteristic: they are static at runtime.
No matter how the computing environment changes, their con-
figurations do not change while the application is running. For
example, to reduce the checkpointing resources due to extreme
large state, Flink [1], [35] provides a minimum duration be-
tween checkpoints that can determine the minimum time interval
between the end of the latest checkpoint and the beginning of
the next. But this minimum duration is a static value that does
not change to adapt to runtime conditions. Other approaches
such as Noria [44] and window-based recovery [38] either use
selective rollback by recomputing data-flow state or assemble
different window sizes in checkpointed state, but they do not
dynamically adjust the windows or size of checkpointed state.
Ozeer et al. [63] introduced a resilience fault tolerance approach
in the Fog-IoT environment, where the state recovery takes
into consideration uncoordinated checkpoints, message logs,
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Fig. 5. A-FP4S system design.

and function call records; its state recovery differs in appliance,
software element and server failures. Castro et al. [36] proposed
an integrated approach for scale-out and recovery of stateful
operators, where it periodically checkpoints the process state.
However, they do not dynamically customize the configurations
of parallel recovery for various applications. Instead, our work
provides adaptive state recovery mechanism based on the state
size and availability of computing resources.

In our previous work, we proposed SR3 [79], a customizable
state recovery framework that offers three recovery mechanisms
to cater to the needs of different stream processing computation
models, state sizes, and network settings. Compared to SR3,
A-FP4S integrates the adaptive run-time analysis of various
applications and considers to be flexible to different kinds of
stateful stream applications with run-time refinement by ad-
justing the number of fragments. SR3 can only choose one of
three mechanisms even with hundreds of different applications.
A-FP4S is more flexible and available for various kinds of
stateful stream applications.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe the basic workflow of A-FP4S,
introduce each component, show how stream applications’ dis-
tributed states are recovered by the A-FP4S-enabled stream
processing system, and explain the performance, scalability and
adaptivity benefits of using A-FP4S.

A. Overview

The A-FP4S design aims to achieve the following goals:

� Resource efficiency: Avoid the replication hardware over-
head.

� Fast recovery: Avoid the slow recovery of retrieving state
from disk and replaying the data input that hurts the service
quality of stream applications.

� Resilient to multiple failures: The mechanism needs to
handle multiple simultaneous failures due to the much
higher node dynamics in large clusters.

As show in Fig. 5, the A-FP4S system consists of four layers:
The DHT-based consistent ring overlay, the fragmented parallel
state recovery mechanism, the adaptive run-time analysis, and
the high-level A-FP4S interfaces that are exposed to the stream
processing systems (e.g., Storm [8], Spark Streaming [24],
Heron [53]) for implementing the state recovery for stream
applications.
� Layer 1: DHT-based ring overlay: Each data center server

is installed with one or many in-situ stream operators, also
called “nodes” in this study. We organize these potentially
hundreds of thousands of nodes into a distributed hash table
(DHT) based ring overlay (e.g., Pastry [69], Chord [73])
which is commonly used in Bitcoin [60], BitTorrent [40],
and FAROO [14]. This overlay is self-organizing and self-
repairing. To do that, each node needs to maintain two
data structures: a routing table and a leaf set, in which
the routing table is used for looking for the state (within
log(N) hops) and the leaf set nodes are used for recovering
the application state if one or more nodes fail.

� Layer 2: fragmented parallel state recovery: Periodi-
cally, the state in each node’s memory is divided into m
identically-sized blocks, which are encoded into n blocks,
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TABLE II
A-FP4S API

where n > m. The n blocks of the state are replicated to
n nodes from the original node’s leaf set nodes in parallel,
guaranteeing that the original state can be reconstructed
from any m blocks.

� Layer 3: adaptive run-time: For a variety of applications
that have different resource and QoS requirements, the
A-FP4S runtime uses a module to automatically adjust
system parameters to meet their needs. For example, some
applications may prefer faster recovery time while some
other applications may prefer less storage overhead. The
A-FP4S system automatically adapts to these user prefer-
ences without manual interventions.

� Layer 4: high-level interfaces to stream processing sys-
tems: The high-level A-FP4S programming API (Table II)
is exposed to the stream processing systems and program-
mers for implementing the parallel state recovery policies
for concurrently running stream applications based on
frameworks such as Storm [8], Spark [24], and Flink [1].

B. DHT-Based Ring Overlay

A-FP4S leverages a DHT-based consistent overlay [69], [73]
to support parallel recovery of distributed states for a large num-
ber of concurrently running stream applications. In this DHT-
based consistent ring overlay (e.g., Pastry [69], Chord [73]),
each node is equal to the other nodes, having the same rights
and duties. The primary purpose of this model is to enable all
nodes to work collaboratively to deliver a specific service. For
example, in BitTorrent [40], if someone downloads some file, the
file is downloaded to her computer in parts that come from many
other computers in the system that already have that file. At the

same time, the file is also sent (uploaded) from her computer to
others that ask for it.

Similar to BitTorrent, where many machines work collab-
oratively to undertake the task of downloading files and up-
loading files, we enable distributed stream operators to work
collaboratively to undertake the original centralized master’s
failure recovery task. First, each stream operator maintains an
in-memory buffer to store the application state. Instead of storing
states at a remote storage, these distributed stream operators
store the states for each other. Second, these distributed stream
operators (nodes) are self-organized into a DHT-based overlay.
Each node is randomly assigned a unique NodeId (128 bits in
length) in a large circular NodeId space. NodeIds are used
to identify the nodes and route stream data. It is guaranteed that
any data can be routed to a node whose NodeId is numerically
closest to the destination node withinO(logN) hops. To do that,
each node maintains two data structures: a routing table and a
leaf set.

1) Routing table: The routing table consists of physical node
characteristics (NodeId, IP) organized in rows by the length
of common prefixes of NodeId. When routing a message, each
node forwards it to the node in the routing table with the longest
prefix in common with the destination NodeId. At each routing
step, given a key, Pastry [69] routes messages to the node whose
NodeId is numerically closest to the key. The node first checks
if the key falls in the range of the NodeIds’ leaf set. If so, the
message is directly forwarded to that node. If not, the message is
forwarded to another node in the routing table whose NodeId
shares a common prefix with the key by at least one more digit.
In some cases, there is no appropriate entry in the routing table
or the associated node is not reachable. Then the message is
forwarded to a node whose prefix is the same as the local node,
but numerically closer.

2) Leaf set: The leaf set contains a fixed number of nodes
whose NodeIds are numerically closest to each node. The
NodeIds in the leaf set are half larger and half smaller than
the current node’s NodeIds. Leaf set nodes are maintained
by piggybacking information about the leaf set membership in
keep-alive messages within a configurable time period T (the
defaultT is 30 seconds) [47]. Nodes in the leaf set are symmetric,
so that each node can receive a keep-alive message from its leaf
set. We use the keep-alive message to detect node failures. If
a keep-alive message cannot be received within a specific time
window, it can be assumed that the node has failed [56]. When
one node fails, its neighbor node contacts the live node with
the largest index of the failed NodeId in the current node’s
leaf set and this live node will replace the failed node. Nodes
are highly unlikely to suffer correlated failure once the current
node fails, so that they can assist in rebuilding routing tables and
reconstructing application’s state when any operator fails (see
Section III-C, next, for more details).

C. Fragmented Parallel State Recovery

The parallel recovery mechanism of A-FP4S leverages a
key idea from erasure code. Erasure code is a forward error
correction code [13] by utilizing polynomial interpolation [20].
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Fig. 6. The fragment-based parallel state recovery process.

It transforms a data object of k symbols into a longer data object
with n (n > k) symbols such that the original data object can be
recovered from any k of the n symbols [12]. It chooses a finite
field F with the default order of 2. It first splits the data symbols
from 0 to k − 1, then constructs a (Lagrange) polynomial p(x)
of order k such that p(i) is equal to data symbol i. It then sends
p(k), . . ., p(n− 1) to others. Others can use polynomial interpo-
lation to recover the lost packets by using anyk symbols [12]. For
example, (32, 16)-Reed-Solomon (RS) code [67] divides a data
object into 16 blocks and transforms these blocks into 32 coded
blocks, guaranteeing that any 16 out of the 32 coded blocks
are sufficient to reconstruct the original data object. So that it
can tolerate up to 16 errors. Erasure codes have been widely
used in massive storage systems (e.g., OceanStore [52]), Bar
codes (e.g., QR Code [51]), data transmission technologies (e.g.,
DSL [45]) and space transmission technologies (e.g., Galileo
Probe). Fig. 6 shows the steps of the erasure-code-based parallel
recovery algorithm.

Built upon Section III-B’s DHT-based ring overlay, each node
maintains a routing table and a leaf set. Each node periodically
sends heartbeat messages to its neighboring nodes for main-
tenance. The state store frequency is determined by systems
and applications. By default, we set it to be 30 seconds. When
needed to save the state at each cycle of streaming processing, the
state in each node’s memory is encoded into n identically-sized
fragments, which include m raw data fragments and k parity
fragments, where k >= 1, n = m+ k. Then these n fragments
of the state are replicated to n nodes in the original node’s leaf
set in parallel. The error correction mechanism of erasure codes
guarantees that any m out of the n fragments are sufficient
to correctly recompute, even when some fragments are not
available in the leaf set (denoted as e), to reconstruct the original
state. Thus, as long as n−−e >= m, the original state is safe
to be accurately recomputed from the node’s leaf set nodes.
� Step 1. Adaptive configuration: A-FP4S selects the number

of raw blocks m and the number of parity blocks k in
an adaptive manner based on the resource availability,
application’s QoS requirements, and user’s preferences.
By providing the option to adjust m and k, A-FP4S allows

users to weigh recovery reliability, speed/efficiency, and
storage overhead during the failure recovery process. For
example, in A-FP4S, choosing a larger k will produce
higher reliability, but will result in higher storage overhead
and slightly longer running time.

� Step 2. Encoding state: For each node, A-FP4S converts its
current version of state in a sliding window into n fragments
(configurable parameter) according to the RS-code algo-
rithm [67]. These n fragments include m raw data fragments
and k parity fragments.

� Step 3. Saving state: Each node sends these n fragments
to any n of its leaf set nodes. We ensure that the size of
the leaf set is larger than n. We assign the NodeIds to
reflect the physical proximity in order to ensure that the
leaf set nodes are also geographically close nodes that have
abundant bandwidth.

� Step 4. Retrieve state: Once a failure happens, the retrieve
routine is triggered. A request to obtain the lost state’s
fragments will be sent out. To recompute the lost state,
A-FP4S only requires m out of n total fragments. These
fragments are stored at the leaf set nodes that are quite
easy to access.

� Step 5: Recompute state: Finally, the state recomputation
routine is triggered, which reconstructs the lost state using
erasure codes. After that, the recovered state will be used
as input for the downstream operators and the system can
resume the normal stream processing.

The benefits are the following: (1) it allows for tolerating a
maximum of (n−m) simultaneous failures; (2) the recovery
process is fast. For multiple failures, different nodes from non-
overlapping leaf set nodes can work in parallel to recompute
the lost state, which is faster than DStream’s line-structured
recovery that executes strictly in line with the original lineage
graph; and (3) we achieve data locality because the leaf set
contains nodes that are geographically close to the original nodes
(e.g., in the same rack or in the same site) that have abundant
upload bandwidth.

D. A-FP4S API

A-FP4S is platform-agnostic and can be easily integrated
with stream processing platforms such as Storm [8], Spark
Streaming [24], Flink [1], Timely Dataflow [66], Heron [53], etc.
In our design, using A-FP4S is essentially a configuration option.
Depending on the usage scenario (e.g., stateful or stateless,
latency requirement, reliability requirement), users can choose
to configure whether and when they want A-FP4S support.
Table II shows the A-FP4S API.

E. Instrumentation Requirements

Here we describe the instrumentation requirements A-FP4S
imposes and discuss the issues we encountered when integrating
it with the Apache Storm processing engine.

In Apache Storm [8], stream processing applications are
deployed and executed as topologies. The topologies contain the
business logic that is then transformed into a Directed Acyclic
Graph (DAG) implemented using spouts and bolts. Spouts are

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 08,2023 at 14:16:19 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: ADAPTIVE FRAGMENT-BASED PARALLEL STATE RECOVERY FOR STREAM PROCESSING SYSTEMS 2471

the data sources of the stream, which accept input data from raw
data sources like the Twitter Streaming API [27] or the Apache
Kafka queue [5]. Bolts are the logical processing units. Spouts
pass data to bolts and bolts process and produce a new output
stream. IRichBolt is the common interface for implementing
bolts.

A-FP4S interacts with the IRichBolt interface in
Storm [8]. If A-FP4S is enabled, A-FP4S periodically saves the
states into the DHT-based ring overlay for all stateful operators
(bolts). For record-at-a-time systems like Storm, saving every
operator’s state may incur a lot of overhead. Instead, we aggre-
gate the states for all the operators except for sources (spouts)
and sinks. The aggregated state size is configurable in order to
satisfy different real-world stream applications’ requirements.
After the size reaches a certain threshold, the Encode function
encodes the states into fragments and the Save function puts
these fragments into the DHT-based overlay. If any node fails, the
leaf set nodes call the routines to Retrieve and Recompute
states on fail over nodes. Any qualified available subset of
fragments will be sufficient to recover the lost states through
the Recompute function.

F. Discussion

Why DHT? A-FP4S leverages a DHT-based ring overlay, and
the main benefit of choosing a DHT-based ring overlay is that
it can flexibly handle the nodes that suffer from high churn for
stream applications in distributed systems. Stream processing, as
a technique to implement real-time processing, has been widely
used in many Big Data applications. Many of them need to be
deployed in heterogeneous environments, such as edge devices
or IoT systems. These environments naturally lead to high churn,
in which workloads change unexpectedly, wide-area network
bandwidth changes unexpectedly and Edge nodes leave or fail
unexpectedly (e.g., due to signal attenuation, interference, and
wireless channel contention). The flexibility and scalability of
DHT can be a good solution for these environments.

Scalability and Robustness. A-FP4S is built upon the DHT-
based ring overlay, which is self-organizing and self-repairing.
Distributed nodes can easily join and leave the overlay, en-
abling flexible management for large-scale state recovery for
stream applications. Besides, all nodes are equal. They have the
same duties and responsibilities. The system can easily avoid
the central bottleneck caused by the client/server architecture.
Further, when one node fails, it’s neighbor nodes in its leaf set
can quickly detect the failure by using keep-alive messages.
Neighboring nodes will immediately contact another active node
to resume progress, which can support robust performance for
a large number of concurrently running applications.

Intervals Refer to State. How to find an optimal interval
strategy for state saving is a key issue in the stream processing
systems. Without an optimal state saving interval, the perfor-
mance of the application may degrade badly. Besides, due to the
dynamic performance of various kinds of stream applications,
the strategy of state relevant intervals should be more flexible.
For example, different intervals should be applied when handling
different stream applications with various workloads [50].

Dynamic Streams. The data streams in modern stream pro-
cessing applications dynamically change with respect to volume,
velocity, and variety [42]. Workloads are in general variant in
the long-term and short-term. Long-term workload fluctuations
have received considerable research efforts. However, workload
fluctuations are mostly short-term and random in nature [42].
Therefore, the runtime overhead of failure recovery for short-
term workloads is time-varying and non-trivial. In A-FP4S, the
runtime adaptive analysis supports to a variety of short-term
stream applications and can dynamically tune the parameter
when dealing with different applications. A-FP4S provides flex-
ibility for both long-term and short-term stream applications.

IV. ADAPTIVITY ANALYSIS

A. Adaptive Parameter Tuning

We provide a theoretical analysis of the A-FP4S model that
dynamically determines the size and number of fragments,
achieving system adaptability. A-FP4S collects the instrumen-
tation data during each round of application, uses this data to
train the model that will be exported next, and then configures
system parameters for the next processing cycle. The input to
the model includes hardware properties (e.g., network and CPU
speed), application characteristics and also user preferences.
Using this information, our models can accurately moderate the
number of data fragments m and parity fragments k to match
the requirements for the subsequent episodes.

A-FP4S can adjust the value of k so that it can accom-
modate multi-fragments failures during the recovery process.
Such extra cushion of reliability is particularly desirable when
the application nodes are known to be more failure-prone and
unreliable. On the other hand, some applications (e.g., real-time
network monitoring) may opt for faster recovery time over 100%
reliability. A-FP4S can adjust m and thereby the default size of
each fragment to reduce the recovery latency.

B. Analysis

In this subsection, we analyze the performance of A-FP4S
with adaptive number of fragments and compare it with the
checkpoint-based recovery (e.g., Apache Storm) in the clus-
ter. We compare the different methods of failure recovery
based on three aspects: (1) the hardware properties (e.g., net-
work bandwidth, disk speed), (2) the application characteris-
tics (e.g., state size, fragment size), and (3) the DAG length
characteristics. Besides, evaluation results show that the model
analysis performance is consistent with the experimental results.

Assume the volume of state saved by each operator is s bytes.
In a DAG where the operator A sends its output to the operator
B, A retains the s bytes of records that it has passed down to B
since the last checkpoint. For simplicity, we only consider buffer
state, ignoring processing state for the time being. When (and if)
operatorB fails, operatorC takes over and receives s bytes from
A. In a checkpoint-based recovery method, these s bytes must
come from reading HDFS or some sort of network file system.
Assuming HDFS bandwidth to be h-bytes/sec, a checkpoint-
based recovery scheme such as used in Apache Storm will take:
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Fig. 7. Probability of successful recovery with varying m, n and p.

Rc =
s

h
. (1)

When implementing A-FP4S recovery instead of checkpoint-
ing in the DAG, the buffer state of node A is periodically backed
up in its leafset nodes. Note that the s bytes of buffer state is
first split into m blocks (each with s/m bytes) that are then
erasure-coded into n blocks stored in n leaf-set nodes, where
n > m. Therefore, s bytes of buffer state requires sn/m bytes of
storage in A-FP4S, leading to an overhead factor of (n −m)/m.

Note that although only s bytes of state are needed, C still
issues requests for all n coded blocks in anticipation of any
potential failures among the sending nodes. However, after
m blocks are received correctly, C can ignore the remaining
amount. Assuming a network bandwidth of η-bytes/sec, this
retrieval takes s/η seconds. After that, C can recompute s bytes
of state from these coded blocks, say, at a rate c-bytes/second,
which takes s/c seconds. Therefore, the recovery time of A-
FP4S, denoted by Rf , is:

Rf =
s

η
+

s

c
. (2)

We next consider the reliability aspect of the derived models,
which is an important metric to consider because of the random
node failures that can lead to some non-determinism. Assume
that p is the probability for a node failure at any time. We also
assume that node failure is a Poisson process, which means that
previous failures do not affect the current failure.

When B fails in the DAG, another operator C needs at least
m out of n leafset nodes of A to recover fully. That means
C will recover in a single hop of data transfer if n−m or
less nodes from A’s leafset fail. Let the random variable X
denote the event when this happens, i.e.,C can recover usingA’s
leafset nodes in a single hop, which requires at least m leafset
nodes of A to be alive at that moment. Note that if fewer leafset
nodes are available, the DHT overlay will reorganize itself and
provide functioning leafset nodes for A’s leafset. However, that
would take more time and our model in (2) does not cover that.
Therefore, our model reliability is given by:

P (X = 1) =

n−m∑
i=0

(
n

i

)
pi(1− p)n−i. (3)

While there is no close-form solution to the above
expression, we perform numerical evaluations with

Fig. 8. Maximum limit for HDFS rate versus Recompute rate c in A-FP4S.

varying m, then varying n in range [m, 2m], and also varying
the the node failure probability p. Results are shown in Fig. 7.

Note that another way to interpret our model reliability equa-
tion in (3) is that it also works as a measure of A-FP4S’s
efficiency: the failure recovery takes the minimum time when the
right parameters m and k are chosen. Of course, A-FP4S will
continue to provide reliability without such parameter tuning,
although potentially sub-optimal in its use of resources.

Combining (1) and (2), we get:

Rc > Rf ⇒ s

h
>

s

η
+

s

c
⇒ h <

cη

c+ η
. (4)

We show the effect of (4) in Fig. 8, where we compare
the maximum allowed HDFS bandwidth h against A-FP4S’s
recompute rate c. The goal is to see up to what HDFS speed it
is still viable to use A-FP4S for a given network bandwidth η. It
is clear that for the most realistic values of c, η and h, A-FP4S
is the preferred choice in terms of performance.

V. EVALUATION

We evaluate A-FP4S by using large scale real-world experi-
ments, demonstrating its scalability, adaptivity, and fast failure
recovery. Experimental evaluations answer the following ques-
tions:
� How does A-FP4S scale with the state size, the number

of concurrently running applications and the number of
simultaneously failed operators?
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TABLE III
REAL-WORLD APPLICATION’S DATASET

� How does the efficiency of the fragment-based parallel
state recovery algorithm change with different parameters
such as the number of the raw fragments (m), the number
of the coded fragments (n)? How does A-FP4S balance the
workload?

� What are the performance and functionality benefits of A-
FP4S compared to state-of-the-art solutions?

� What is the runtime overhead of A-FP4S?
We organize our evaluation with the following key results.
� A-FP4S achieves 31.8% to 50.5% improvement in the total

time (i.e., summation of state saving time and recovery
time) compared to the checkpointing recovery approach in
Apache Storm (Section V-B).

� A-FP4S achieves runtime efficiency by adaptively tuning
the parameters with various conditions (Sections V-C and
V-D).

� A-FP4S evenly distributes the huge volume of states across
all nodes in the overlay, demonstrating A-FP4’s attractive
load balancing and scalability features (Section V-E).

� The CPU overhead of state recovery and saving in A-FP4S
are on average 17.4% and 16.5% less than checkpointing
recovery in Storm, and for memory overhead, it achieves
25.3% and 28.1% reduction, respectively (Section V-F).

A. Setup

Experiments are conducted on up to 4 machines, each with
16 Intel Xeon Gold 6130@2.10 GHz cores and 256 GB of
RAM, running GNU/Linux 3.10.0. On top of these machines,
we boot 50 virtual machines to host 650 stream operators in
total, each with 4 cores and 8 GB of memory, running Linux
Ubuntu 4.4.0. We use Apache Storm 2.0.0 [9] configured with
10 TaskManagers, each with 4 slots (maximum parallelism per
operator = 36). We use Pastry 2.1 [19] configured with leafset
size of 24, max open sockets of 5000 and transport buffer size
of 6 MB.

We deploy Yahoo streaming benchmarks [39] and real-world
stream applications using A-FP4S (see Table III) to demonstrate
its generality. These include various representative streaming
operators such as stateless streaming transformations (e.g.,map,
filter), stateful operators (e.g., incremental join),
and various window operators (e.g., sliding window, tumbling
window and session window). We compare A-FP4S with a
state-of-the-art check pointing recovery approach commonly
used in TimeStream [66], Storm [8], and Trident [10]. We
are not able to compare with Drizzle [75] because its source

code is not publicly available. We choose the checkpointing
recovery approach as the baseline because the alternatives
either incur significant hardware cost (e.g., replication recovery
requires twice the hardware) or are not generally applicable (e.g.,
DStream-based lineage recovery approach lacks programming
transparency and must be used with Spark’s RDDs [80]).

For our experiments, the base value of raw fragments m and
the total coded fragmentsn are derived from production systems
such as Pond [68] and Sia [23], which set m = 16, n = 16
and m = 10, n = 20 respectively. To fully evaluate the A-FP4S
performance, we vary the values of m, n and the input state size.

B. A-FP4S versus Storm

We evaluate the failure recovery time of A-FP4S by varying
the state size and the number of concurrently running stream
applications.

The fragment-based parallel recovery process in A-FP4S
consists of two steps: (1) saving the state to leafset nodes in
the DHT-based overlay, and (2) recomputing the state after any
failure happens. Similarly, the checkpointing recovery process
in Storm [8] also consists of two steps: (1) checkpointing the
state to the HBase [4] or HDFS [3], and (2) retrieving the state
from HBase or HDFS if failure happens. Note that, for both
approaches, the first step can run asynchronously with the second
step, so the first step may not impact the failure recovery time if
executed in a pipeline.

Fig. 9(a) shows the comparison of the state recovery time
of A-FP4S and Storm by varying the input state sizes. In gen-
eral, Fig. 9(a) shows that A-FP4S achieves 31.8% to 50.5%
improvement in the total time (i.e., summation of state saving
time and recovery time) compared to Storm’s checkpointing
recovery. Specifically, we see that A-FP4S achieves 36.2% to
50.8% less state saving time compared to Storm. A-FP4S’s state
saving time includes the time of fragmenting state into blocks,
encoding them, and then uploading them into the leafset nodes.
In order to have a fair comparison with Storm, we assume that the
upload operation happens sequentially (i.e., one leafset node at a
time). However, in a realistic scenario where the uploading node
has higher network bandwidth compared to the leafset nodes,
A-FP4S will deliver even faster state saving time by uploading
the data asynchronously and in parallel. We also see that A-FP4S
achieves 40.3% to 87.1% less recovery time compared to Storm.
This is because A-FP4S’s multiple leafset nodes can contribute
by recalculating the state in parallel. In contrast, Storm relies on
a single node to retrieve the state from HBase or NFS [18] whose
speed is largely determined by network bandwidth, network
interference, node placement and many other factors.

We next evaluate A-FP4S’s total failure recovery time by
varying the number of concurrently applications and compare it
with Storm. The failure rate of stream operators is set to 1%
for these experiments according to Zorro [65]. As shown in
Fig. 9(b), A-FP4S achieves 43.8% to 54.4% less total recovery
time compared to Storm. The reason behind this is that A-FP4S’s
recovery workload can be distributed evenly across all participat-
ing nodes in the DHT-based overlay. As a result, many operators
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Fig. 9. Performance comparison A-FP4S performance versus checkpointing strategy for different input state size and applications number.

Fig. 10. The retrieve (a) and recovery (b) time compared against the corresponding models. The total recovery time is also given in part (c).

can run the recovery process simultaneously, leading to much
better and resilient performance under many failures.

Finally, we evaluate the average per-fragment retrieval time
of A-FP4S by varying the number of nodes, raw fragments m
and parity fragments k. As shown in Fig. 9(c), the average time
does not vary much with the number of nodes. As the number
of nodes increases from 500 to 5,000, the retrieval time only
increases slightly.

C. A-FP4S versus Theoretical Model

We compare our model derived in (2) against observed re-
covery times in Fig. 10. Note that (2) has two parts: retrieval
of the fragments over the network and recomputing state from
them. We verify the accuracy of the model on these two parts
separately in parts (a) and (b), respectively. In Fig. 10(a), we see
that our model, after assuming network bandwidth of around
72− 75 Mbps, matches with retrieval time. Such variance from
the true bandwidth of 100 Mbps is possible because of multiple
operators being placed in the same physical machine and thus
interfering with each other. However, this effective network
bandwidth can be derived easily from observation even with
very little instrumentation cost.

Then, in Fig. 10(b), we hypothesize that recomputing the state
is linear on state size for a give computation rate c. Under this

assumption, we derive the empirical or observed recomputation
rate to be roughly 65 MBps. This leads us to fairly accurate
recomputation time as a function of state size, as demonstrated
in Fig. 10(b). Finally, we combine these two and present the final
model of recovery time (i.e., retrieve time plus recomputation
time) against the observed time for the same in Fig. 10(c), which
again shows a good match, deeming our overall model accurate.

D. A-FP4S Parameters

We next evaluate the state recovery as a function of several
factors: the number of raw fragmentsm, the number of the parity
fragments k of a state, the number of unavailable or failed blocks
e of a state, and the routing performance in the overlay.

In Fig. 11(a), the up-side sub-figure shows the performance of
state recomputing time when recovering from single failure by
varying m. The number of the raw fragments m in a state on the
recovery performance varies from 11 to 20, where k is set to be
10. We can observe that the state recomputing time increases as
the number of raw fragments m increases. The reason lies in that
the recovery time of A-FP4S is mainly determined bymB/(m+
k − 1), where B is the amount of data that any providing peer
uploads. mB/(m+ k − 1) increases with the increases of m
when the values of k and B are given. Thus, the performance of
A-FP4S is more sensitive tomwhen k is smaller. The down-side
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Fig. 11. The recovery performance evaluation by adjusting number of raw fragments, number of parity fragments, and number of unavailable blocks.

Fig. 12. The load balance evaluation of A-FP4S for a collection of concurrently running stream applications.

sub-figure of Fig. 11(a) shows that it achieves better recovery
performance when k is increasing from 11 to 20. The reason
is that the recovery time of A-FP4S is mainly determined by
by mB/(m+ k − 1), where B is the amount of data that any
providing peer uploads. mB/(m+ k − 1) decreases with the
increases of k when the values of m and B are given.

Next, we evaluate the encoding overhead in the RS-code under
varying parity fragments of k. Fig. 11(b) shows the average
encoding time for a state size of 128 MB. We see that the
encoding time increases slightly with the increase of k. Still,
the encoding operation completes within 1.5 to 2 seconds.

Fig. 11(c) shows how the number of unavailable blocks e
impacts the recovery performance as we vary e in the range of
[1, 16]. A-FP4S’s recovery time increases slowly but linearly
with e in this range. A stand-by node, together with the failed
node’s leafset nodes form a star structure for receiving the
backup state, causing the stand-by node to be the main I/O
bottleneck. Therefore, the recovery performance of A-FP4S is
inversely proportional to the amount of data uploaded by the
peers.

Fig. 12(a) shows the average routing time in the A-FP4S
overlay with the number of nodes in the range of [500, 5000]. We
see a slight increase in routing time with the increasing number

of nodes. This is because each routing decision requires only
O(logN) steps, where N is the number of nodes in the overlay.

This evaluation confirms that we can improve the efficiency of
failure recovery by tuning the A-FP4S parameters dynamically
to adapt to runtime conditions.

E. Load Balancing

Since A-FP4S distributes the tasks of state saving and recov-
ery across the whole overlay, it has load balancing as one of its
differentiating features. As a demonstration, we deploy 5,000
nodes on a platform of 50 virtual servers running 1,000 stream
applications. Each application is configured with m = 10 and
n = 30. Therefore, there are 30,000 fragments in total that need
to be saved in the 5,000 nodes.

Fig. 12(b) shows the distribution of the state fragments on
all nodes. We can observe that the fragments are almost evenly
distributed across all nodes in the overlay. This is because the
DHT overlay can distribute all applications evenly in the whole
ID space. In addition, only a few nodes contain more than 30
state fragments. These nodes are usually the root nodes or nodes
that are close to the root nodes. Fig. 12(c) shows the cumulative
distribution function of the number of fragments saved per node.
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Fig. 13. The overhead analysis of the A-FP4S-enabled Storm at runtime.

We see that 95% of nodes store less than 25 fragments, demon-
strating A-FP4S’s advantageous load balancing and scalability
features.

F. Overhead Analysis

Finally, we evaluate A-FP4S’s runtime overhead in terms of
CPU, main memory, disk and network.

CPU Overhead. Fig. 13(a) shows the per-node CPU runtime
overhead comparison of A-FP4S versus checkpointing recovery.
The CPU overhead of state recovery and saving in A-FP4S are
on average 17.4% and 16.5% less than those in checkpointing
recovery, respectively. While A-FP4S requires additional CPU
bandwidth to compute the fragments, this cost accounts for only
a small fraction (<10%) of the total recovery time.

Memory Overhead. Fig. 13(b) shows the per-node memory
run-time overhead comparison of A-FP4S versus checkpointing
recovery. We see that A-FP4S takes on average 25.2% and 28.1%
less than the checkpointing recovery, respectively. The large
memory overhead of checkpointing recovery is mainly due to
the adoption of a centralized daemon process such as Zookeeper
for coordinating the operators. In contrast, nodes in A-FP4S
work in a peer-to-peer (P2P) fashion that avoids any centralized
daemons.

Network Overhead. Fig. 13(c) shows the per-node network
run-time overhead comparison of A-FP4S versus checkpointing
recovery. Checkpointing recovery incurs lower network usage,
but results in longer latencies. In contrast, A-FP4S failure recov-
ery can be completed in a fast fashion by utilizing the distributed
nodes among the overlay.

VI. CONCLUSION

In this paper, we present A-FP4S, an adaptive fragment-based
parallel state recovery mechanism that can handle many si-
multaneous failures for stateful stream applications. A-FP4S
leverages DHTs and erasure codes to divide each operator’s
in-memory state into fragments that are periodically saved in the
corresponding leaf set nodes. Since the recovery operation stays
local within a small cluster of nodes, it can proceed in parallel for
simultaneously failed nodes over different parts of the network.

Besides, based on its performance models, A-FP4S’s adaptive
component can dynamically adjust several system parameters
(e.g., fragment numbers m, parity blocks k, state size) at run-
time with minimal instrumentation cost. Therefore, unlike the
replication, checkpointing or DStream-based methods, A-FP4S
is resilient against simultaneous failures, achieves low-latency
and is less resource (CPU, memory, disk space, network traffic)
intensive.

A-FP4S is framework-agnostic and thus broadly applica-
ble to a large collection of streaming systems. We have im-
plemented A-FP4S atop the state-of-the-art stream processing
engine Apache Storm, and demonstrated its scalability, effi-
ciency, and fast failure recovery features that incur negligible
instrumentation overheads. In the future, we envision exploring
A-FP4S’s performance on heterogeneous compute clusters (e.g.,
nodes with varying network bandwidth, CPU speed, and storage
capacity) that have the potential to take further advantage of
A-FP4S’s decentralized architecture, resilience, reliability and
efficiency.
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