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ABSTRACT Malicious web links, social rumors, fraudulent advertisements, faked comments, and biased
propaganda are overwhelmingly influencing online social networks. Enabling information integrity is a
hot topic in both academia and industry. Traditional social spam detection techniques rely on centralized
processing, focusing only on one specific set of data sources, thereby ignoring the social spam correlations
between distributed data sources. In this paper, we propose an online and scalable misinformation detection
system, named Spiral, to uncover social spam by leveraging the correlations between different social data
sources in geo-distributed sites. The key insight in our approach is to amplify the effectiveness of state-of-
the-art techniques to detect inappropriate posts by enabling the efficient large-scale propagation of detection
information across domains. The novelty of our design lies in three key components: (1) a decentralized
distributed hash-table-based tree overlay deployment for harvesting and uncovering deceptive information
spreading in multiple online social networks communities; (2) a progressive aggregation tree for collecting
the properties of these posts and creating new classifiers to actively filter out the propagation of inappropriate
posts; and (3) a group communication structure that allows multiple groups to exchange the correlations
among distributed social data sources. We designed and implemented a prototype of the Spiral system.
Our large-scale experiments, using real-world social data, demonstrate Spiral’s scalability, effective load-
balancing, and efficiency in online spam detection for social networks.

INDEX TERMS Online social networks, information integrity, spam detection, distributed hash tables,
stream processing.

I. INTRODUCTION
Online social networks (OSNs) have become indispensable
for many people. More and more people receive the latest
news, advertisements, social interactions, and burst topics
from current popular OSNs such as Instagram, Facebook,
Twitter, andWeChat. OSNs allow users to repost or comment
on others’ contents, which results in the prosperity of the
virtual social world. Unfortunately, such openness and flexi-
bility have turned the OSNs into serious threats for spreading
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deceptive news [74], fraudulent advertising [72], disseminat-
ing malicious software, phishing attacks, etc. For example,
Twitter has found around 10 million misinformation post and
manually removed around 5,000 accounts those who spread
unreliable information about COVID-19 from Jan 2022 [27].
Until 2021, Facebook had removed 20 million posts that
break COVID-19 misinformation policies and affected more
than 2 billion users [19].

Social spam posts typically spread within a very short
period. Figure 1 shows the diffusion for 20 minutes of the
social fake news about COVID-19 vaccines [12]. Nodes with
different colors indicate different fake news topics. Within
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FIGURE 1. Spreading pattern for twenty minutes of spam related to the
COVID-19 vaccines in Aug 2021. (Data source: [33]). Each node represents
one account and two accounts are connected if one re-posts the other’s
fake news post.

20 minutes of the first fake news posting, there were charged
comments and retweets propagating the posting. The dataset
depicted in Figure 1 reveals that: (1) spam posts have explo-
sive propagation: they blast within a short time and soon
reach their peak rate of comments and retweets; (2) ‘‘drift-
ing’’ contents: the content is always ‘‘drifting’’ with different
faked details that relate to the same social event; (3) spam
correlations: the social spam data produced from different
social communities exhibits strong correlations in the con-
tents, topics, and activities within the same (or closeby) time
period, especially when a critical event or breaking news
overwhelms the online social networks.

To keep pace with all spammers’ activities, we need mech-
anisms to quickly update spam detection models in all social
media sites (which may consist of hundreds of thousands
of web servers in total). The key challenge is: how can we
uncover and defend against online spam activities, in real-
time and at scale, by leveraging spam correlations between
different social data sources in geo-distributed sites?

Existing efforts have the following three limitations. First,
they mainly follow the classic big data processing pipeline
[32], [32], [67], [85], [87]: all social media streams are first
collected by distributed log collection systems, transporting
massive quantities of users’ microblog stream data from geo-
graphically distributed web servers to a centralized storage
tier. Only after all stream data has arrived do the data pro-
cessing engines (e.g., Spark Streaming with MLlib [11]) start
processing these data. Such a long path hugely delays the
processing of users’ microblog streams: the results may be
out-of-date when they finally arrive. Also, this centralized
data processing affects the scalability of the spam detec-
tion process. Second, they mainly focus on offline historical
logs [29], [32], [45], [73], [85], which may not promptly gen-
erate updated detection models to discover the latest spam.
Third, they ignore the spam correlations among different data
sources [40], [77], [86], limiting their capability to leverage
broad trends to enhance the accuracy of spam detection.

Recently, Twitter and Facebook deployed a new feature that
can display labels for misinformation and rumors [17]. How-
ever, they still mainly rely on fact-checking from subject-
matter experts and are limited to single data sources [16].

In this paper, we propose a novel online scalable spam
detection system, namely Spiral. The key goal of Spiral
is to advance the general spam detection processing by
enhancing the online and scalability features while enabling
spam correlation among distributed sources.

This paper makes the following contributions:
• An architecture to achieve information integrity,
i.e., an online spam detection system, called Spiral,
to defend against real-time spam activities that happen
in geo-distributed sites.

• A peer group communication structure that allows mul-
tiple social network domains to exchange and utilize
spam correlations to enhance the accuracy of spam
detection.

• A comprehensive evaluation of Spiral’s performance
and functionality on a large cluster using real-world
social stream data, demonstrating the feasibility of our
approach.

Experimental results show that Spiral achieves good
performance, scalability, and online spam detection accuracy.
It achieves millisecond-scale latency in data delivery, aggre-
gation, and group communication. It exhibits low runtime
overhead. It can balance workloads and scale to hundreds of
thousands of agents that process millions of spam posts con-
currently. We compare Spiral with state-of-the-art spam
detection methods (Bi-gram&C [75] and CBFs [56]), show-
ing that Spiral achieves superior performance without
accuracy loss with F1 scores of up to 97%.

The remainder of this paper is organized as follows.
Section II discusses the related work. Section III introduces
the background. Section IV describes the Spiral design
and implementation. Section V shows the experimental setup
and performance evaluation results. We conclude with some
directions for future work in Section VI.

II. RELATED WORK
There is a significant body of work on spam detection in
online social networks. We focus here on the most related
solutions, models, and systems. Spiral introduces a novel
decentralized system architecture that leverages stream pro-
cessing, a consistent DHT-based ring with routing, and pub-
lish/subscribe trees. As such, Spiral significantly expands
upon the state-of-the-art approaches.

A. MAINSTREAM METHODS FOR SPAM DETECTION
Existing efforts mostly focus on offline methods in analyzing
social data [29], [32], [37], [45], [52], [55], [85]. For example,
by analyzing the historical log data, some methods use crowd
signals (such as users’ flagging accuracy [52], post contents
and user comments [68], account features like followers rela-
tionship [29], and extracted text from photos [37]) as the
set of features of the spam classifier. Many recent projects
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leverage advanced natural language processing models
(e.g., deep learning models) to identify spam contents and
activities by using propagation pathways of posts [76],
users-content interaction graph [45], users’ meta-data [32],
and utilizing user attributes, content, activities and relation-
ships [85]. However, most of these features can only be
collected after spam has circulated for a while, having already
reached and been responded to by many users. Moreover,
spammers are good learners in adjusting their activities or
behavior patterns to escape being detected from former fea-
tures. Thus, studies limited to historical data sets have diffi-
culty catching up with the newly emerged spam posts in real
time. Recently, Twitter and Facebook deployed a new feature
that can display labels for misinformation and rumors [17].
For example, Twitter uses three levels of warning labels –
‘‘Get the latest’’, ‘‘Stay Informed’’, and ‘‘Misleading’’ to
offer more information [18]. However, they still mainly rely
on fact-checking by subject-matter experts and limit their
analysis to a single data source [16].

B. SPAM DATA PROCESSING PIPELINE
Existing systems for detecting spam campaigns [37],
[46], [64], [83], [87] mostly follow the classic big data
analytics pipeline: all user’s microblog streams are first col-
lected by (geographically) distributed log collection sys-
tems (e.g., Flume [2], LinkedIn’s Kafka [8], Yahoo’s
Chukwa [62]), and then transferred to data storage (e.g.,Mon-
goDB [9], HDFS [4], HBase [5]) in a central data center,
and then processed with engines such as Spark Streaming
with MLlib [11] and GraphX [48]. However, spam dissem-
ination patterns have been continuously evolving. Due to the
long delay introduced by log collection and log processing,
these systems fail to adapt to emerging spam methods. More-
over, existing stream processing systems (e.g Spark [82],
Storm [7], Kafka [8], Flink [1], Samza [6], Wukong+S [84],
Pregel [54], Giraph [3]) are designed for general-purpose
stream processing tasks such as climatemodeling, web crawl-
ing, targeting advertising, and datacenter intrusion detection,
which often do not have the strict real-time and scalabil-
ity requirements required by spam detection systems. They
employ a centralized ‘‘one master/many slaves’’ architecture.
In such an architecture, ‘‘only one’’ master is responsible
for administering many jobs (suppose the spam detection for
each social event is a job), including scheduling each job’s
tasks to different machines, monitoring each job’s progress,
tracking state snapshots, and handling failures and stragglers.
As a result, the central master easily turns into a central
bottleneck and single point of failure when it is necessary
to handle numerous spam instances on many newly emerged
posts simultaneously.

C. CORRELATIONS BETWEEN MULTIPLE DATA SOURCES
To our knowledge, there are few studies broadly relevant to
correlations between feature-similar social networks or social
activities. Existing work either points out the criticality of

spam correlations [30], [35], [50] or develops mechanisms
for detecting these correlations [40], [78], [86]. These studies
propose no effective solutions for leveraging correlations for
spam detection. Cinelli et al. [40] argue that reliable or ques-
tionable data sources have no significant differences in the
spreading patterns, according to their analysis of data from
multiple social platforms. Curtis et al. [50] point out that the
features of social bots can easily be applicable across different
social platforms and they use similar algorithms to detect
social bots.Wu and Zhou [78], [86] show that social influence
is a common phenomenon in social networks where highly
connected users or central users of one group/activity are the
core content disseminators, and retrieval of knowledge and
propagation patterns from one platform can help the analysis
in another platform. None of these investigations addressed
how to achieve correlation in real-time and at the tremendous
scale required by widely adopted social networks.

III. SPIRAL’s MOTIVATING BACKGROUND
The key insight in our approach is to re-architect spam detec-
tion systems using a decentralized system model.

A. PEER-TO-PEER MODELS
The P2P model has been widely used in BitTorrent [60],
Bitcoin [34], mobility management in 5G network [20], and
blockchain [21]. Unlike the traditional client/server model,
in which clients make service requests and servers fulfill
them, the P2P model allows each node to function as both
a client and server [25]. In the P2P model, each node is
equal to the other nodes, and they have the same rights and
duties. The primary purpose of the P2P model is to enable all
nodes to work collaboratively to accomplish a task or deliver
a specific service. For example, in BitTorrent [60], if someone
downloads a file, the file is downloaded to her computer
in bits and parts that come from many other computers in
the system that already have that file. At the same time, the
file is also sent (uploaded) from her computer to others who
ask for it. Similarly to BitTorrent, in which many machines
work collaboratively to undertake the task of downloading
and uploading files, we enable all distributed nodes to work
collaboratively to undertake the duty of scalable online spam
detection over geo-distributed data sources. Pastry [66] and
Chord [71] are widely adopted realizations of the P2P model.
Note that P2P models are used for file sharing and distributed
data storage. To the best of our knowledge, we are the first
to leverage P2P technologies to re-architect the online social
spam detection systems.

Figure 2 details a BitTorrent use case to illustrate how
services are distributed across nodes with a peer-to-peer
model. When user A submits the request for downloading
a specific File B, that download request is forwarded to
distributed clients in the peer-to-peer network (i.e., a net-
work where all nodes communicate with each other). A node
that has some part of the file B data will respond to the
request and send some of its B file data to user A. User A
can grab multiple parts of File B from multiple distributed
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sources and simultaneously download those different bits,
then putting the file together like a jigsaw. Meanwhile,
User A’s node can also serve other clients, providing data
to fulfill requests from other nodes. The peer-to-peer net-
work can provide quick file searches and high-speed file
downloads. P2P models eliminate the long latencies present
in centralized systems, where files are downloaded directly
from a single remote server which quickly becomes a
bottleneck.

FIGURE 2. An example of file downloading in the BitTorrent peer-to-peer
network. It illustrates that participant nodes are both clients (asking for
file data) and servers (storing and providing file data).

To realize a P2P model, we utilize distributed hash tables
(DHTs). A DHT is a distributed key-value store architec-
ture that follows the P2P paradigm. The key-value pairs are
stored in the DHT, and any participating node can efficiently
retrieve the value associated with a given key. The main
advantage of DHTs is their flexibility: keys can be redis-
tributed with minimal work to add or remove nodes to the
system, which allows a DHT to easily scale to extremely
large numbers of nodes and handle continual node arrivals,
departures, and failures [22]. The DHT-based network over-
lay is built by performing virtual tunnels between the par-
ticipating node. Typically, a tunnel of a pair or nodes will
traverse multiple tunnels in the underlying network. In such
an overlay of N nodes, the paths of the tunnel are main-
tained as O(logN ) depths by following the DHT protocol.
A DHT-based overlay can support scalability, fault toler-
ance, fast searching, correctness under concurrency, and load
balancing [49].

B. DECENTRALIZED OVERLAY AND MESSAGE ROUTING
Inspired by the success of DHT-based decentralized overlay
in peer-to-peer networks [38], [66],Spiral usesDHT-based
routing protocols to (1) create multiple DHT-based functional
trees, where each tree constitutes a Spiral group to feed
the distributed online social data sources into a decentralized
peer-to-peer overlay, (2) instantly update the detection clas-
sifiers and exchange newest spam information with all peer-
groups, and (3) disseminate the updated spam models to all
distributed agents in a timely manner.

Spiral leverages Pastry [66] to build a DHT-based over-
lay. In Pastry, each node is assigned a nodeId (128 bits)
used to identify nodes and route messages. Given a message
and a key, the message can be guaranteed to be routed to
the node with the nodeId numerically closest to that key,
within ⌈log2bN⌉ steps (default b = 4), where N is the number
of nodes). Each node maintains a routing table to support
the message routing, self-organization, and fault recovery
functionality.

At each routing step, given a key, Pastry routes messages
to the node whose nodeId is numerically closest to the key.
The node first checks if the key falls within the range of the
nodeIds’s leaf set. If so, the message is directly forwarded
to that node. If not, the message is forwarded to another node
in the routing table whose nodeId shares a common prefix
with the key by at least one more digit. In some cases, there
is no appropriate entry in the routing table, or the associated
node is not reachable. Then the message is forwarded to a
node whose prefix is the same as the local node but numeri-
cally closer [66].

C. GROUP MANAGEMENT
Spiral leverages Scribe [38] to construct the application-
level group communication system. Scribe can easily and
effectively handle a group from one to millions of group
members (nodes), and all nodes can flexibly join and leave
groups [38]. It names a group by a pseudo-random Pastry
key, which is called groupId. Typically, the groupId is
the hash of the group’s textual name concatenated with its
creator’s name. A node routes a CREATE message by using
the groupId as the key to create a new group. The node
responsible for that key becomes the manager of the group.
To join a group, a node routes a JOIN message towards the
groupId. The message will continue to be routed until it
reaches a node in that group. Scribe can efficiently support
large numbers of groups with highly dynamic memberships.
Spiral group supports two major functionalities: multi-

cast and anycast.
• Multicast is used to construct a hierarchical aggregation
tree, which is a fundamental Spiral abstraction.Mul-
ticast allows messages or instructions to be delivered to
all the members with very low latency. Any nodes in
the overlay can create a group; other nodes can join the
group and thenmulticastmessages to all members of the
group along the tree.

• Anycast is used for group communication and model
transmissions among multiple groups. It is implemented
by using a distributed depth-first search (DFS) of the
functional tree. Each node in the overlay (which may be
in or out of group k) can anycast to the group k by routing
a message towards the group k’s groupId. The local
route convergence in Pastry guarantees that this message
will reach a group member near the sender’s nodeId.
Anycast can also be used for communication between
multiple groups, such as exchanging updated data and
spam detection models.
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FIGURE 3. The Spiral workflow. First, Spiral deploys hundreds of thousands of agents and these agents collect the training data and live
stream data from geo-distributed sites. Second, it organizes the agents into a DHT-based ring overlay. Third, agents can join many
peer-to-peer functional Scribe trees; each tree is a Spiral group, which consists of a root, branches, and many leaves. Fourth, a single
group completes its local data processing and outputs the latest spam. Then outputs are aggregated into the root. Fifth, the roots of many
groups instantly update their spam detection models based on the latest social spam. Finally, roots exchange their newest models with
the other peer groups.

IV. SYSTEM DESIGN AND IMPLEMENTATION
In this section, we introduce the Spiral system, outline
workflow details, and discuss each of its components.

A. OVERVIEW
Spiral operates in four phases. The first phase is real-time
social stream data collection. Spiral consists of a large
number of distributed agents that reside in geo-distributed
sites, which gather the real-time social data streams through
the social networks’ public APIs (e.g., Twitter streaming
API [14], Facebook Graph API [13]) in a scalable way. The
second phase optimizes data dissemination by leveraging the
efficiency and scalability of distributed hash tables (DHTs)
through a DHT-based overlay deployment. By using the
Spiral system, decentralized communication of spam trends
occurs without developers having to worry about distributed
computing. The third phase is local data processing via
publish/subscribe trees. All leaf agents of the Spiral
group in a local social media site take the new incoming data
streams (Twitter logs, Facebook logs, and the like), analyze
them using the spam detection model trained from the first
phase, and output labels. The posts labeled as spam are then
aggregated to the root and reported to the end users. The
fourth phase is global data processing via spam correla-
tions. After many Spiral groups complete their local data
processing, the roots instantly update their spam detection
models based on the latest data traffic, then disseminate to
other peer groups so that each group can have a global view of
the correlated social spam from geo-distributed data sources.
Each group keeps the latest models so that it can utilize the
spam correlations and process the new incoming online social
data streams from a global perspective.

B. WORKFLOW DETAILS
Figure 3 shows the Spiral workflow.

Next, we discuss the details of each phase.
• Phase 1: real-time stream data collection. Spiral
collects two types of data: (1) training data for creating

the spam detection model and (2) live social stream
data. To collect the training data, we manually extract
the dataset and label them. This training dataset is used
to create a spam detection model. To collect the live
social stream data, as shown in the first step of Figure 3,
Spiral deploys hundreds of thousands of agents in
geo-distributed sites, each of which is associated with
a web server that collects real-time social stream data
via social networks’ open APIs (e.g., Twitter streaming
API [14], Facebook Graph API [13], etc.) More details
can be found in subsection IV-C.

• Phase 2: DHT-based overlay deployment. The agents
in Phase 1 are organized into a DHT-based ring over-
lay [66]. Agents can join many peer-to-peer functional
Scribe trees [38] and each tree is a Spiral group. Each
Spiral group consists of a root, branches, and many
leaf agents. The root deploys the spam detection model
(for example, using Random Forest [39], [41] or Naive
Bayes [39], [69]) based on the training dataset from
Phase 1. This model is used in the local data processing
in a single group (details in subsection IV-E) and global
data processing in many groups (more details can be
found in subsection IV-F).

• Phase 3: local data processing via publish/subscribe
trees. The local data processing refers to the spam detec-
tion in a single Spiral publish/subscribe tree. The
input of this processing is the spam detection model
from Phase 2 and the live stream data from Phase 1.
As shown in the third and fourth steps of Figure 3, first,
the group’s root disseminates the spam detection model
to its following agents via the functional tree. Then the
leaf agents in each group apply the spam detectionmodel
to process the live stream data and output the spam with
labels. The output of the local spam detection is the pairs
of posts with labels. The result pairs are aggregated into
the root agent, which filters out the latest spam and uses
them in the global data processing (more details can be
found in subsection IV-E).
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• Phase 4: global data processing via spam correla-
tions. As illustrated in the fifth step of Figure 3, after
Spiral groups complete their local data processing,
the roots instantly update their spam detection models
based on the latest social spam, and then exchange their
newest models with the other peer groups. As shown in
the final step of Figure 3, all groups now have a global
view of the correlated social spam from geo-distributed
data sources. Each group uses the latest model to start a
new round of local data processing. By leveraging spam
correlations, they can keep pace with the latest spam
information from a global perspective (more details can
be found in subsection IV-F).

C. REAL-TIME STREAM DATA COLLECTION
The data collection in Spiral consists of two parts:
(1) training data collection and (2) real-time stream data
collection from geo-distributed sites. Next, we present details
of these two kinds of collections.

Training data collection refers to the creation of training
datasets. A critical challenge is how to create an appropriate
initial dataset that has confirmed social spam. The amount of
real-time social media content is huge, e.g., around 350,000
tweets are sent per minute on Twitter [15]. Spam posts are
only a tiny portion of the total social media content. In order
to avoid collecting malicious posts by looking for a ‘‘needle
in a haystack,’’ we narrow down the scope of the collec-
tion by leveraging real spam posts and focusing on captur-
ing how they spread. Fortunately, there exist several online
debunking websites (such as Snopes.com, PolitiFact.org, and
FactCheck.org) that allow us to check the credibility of a
specific post. After collecting posts from social media, we can
use the information from debunking websites to label our
dataset and classify which posts are spam, and format the
information as the original training dataset. Wemark a post as
spam if there is strong or straightforward evidence in URLs
or contents, e.g., malicious information, fake advertisements,
and URL links to non-credible websites [57]. The training
dataset can be divided into two sets for training and testing
the spam detection model.

Real-time social stream data collection refers to the online
data collection from geo-distributed sites. All leaf agents
carry out this collection. Each leaf agent is associated with
a web server that continuously produces online social stream
data (e.g., tweets, posts, hashtags, and news). The leaf agent
uses social media open APIs to collect the online/real-time
streaming social logs. For example, Twitter posts can be col-
lected from the tweet streams that cover worldwide posts, and
Facebook posts are collected from open accounts and public
pages. Further, the leaf agent normalizes the raw social stream
data into the same formatted stream datasets, for example,
keeping the contents under the same maximum length and
maintaining the top three hashtags. Note that leaf agents can
set different time windows for log collection or search for
different types of logs by keywords or timelines [13], [14].

D. DHT-BASED OVERLAY DEPLOYMENT
In this subsection, we detail the process of building a
DHT-based functional tree and introduce its roles.

1) DHT-BASED TREE CONSTRUCTION
For the Spiral’s tree construction, the first step is to
construct a peer-to-peer overlay by leveraging Pastry [66].
Each Spiral agent has a unique, 128-bit nodeId in a
circular nodeId space ranging from 0 to 2128 − 1. Note
that the nodes’ nodeIds are uniformly distributed. Given
a message and a key, the message can be guaranteed to be
routed to the node with the nodeId numerically closest to
that key, within O(logN ) steps. The second step is to build a
hierarchical tree by leveraging Scribe [38]. Any node in the
overlay can create a group with a groupId that is the hash
(SHA-1 [10]) of the group’s name concatenated with its
creator’s name. Other nodes can join the group by routing
a JOIN message towards the groupId. The node whose
nodeId is numerically closest the groupId will serve as
the root.

2) FUNCTIONAL TREE
The Spiral functional tree is responsible for creating effi-
cient paths for the root agent to disseminate models to the leaf
agents. The key idea is the use of a DHT-based application-
level multicast [38], similar to the IP multicast [44], to propa-
gate models following the tree path without maintaining N
point-to-point connections for N leaf agents. As illustrated
in Figure 4, assuming there are seven distributed agents
jointly working in group ‘‘video’’, the agent with nodeId
numerically closest to the groupId (hash(video + creator
name)) acts as the rendezvous point for the functional tree.
For example, if hash(video + creator name) equals to EA34,
the agent with the closest nodeId like EA34 or EA35 will
serve as the root. The tree is rooted at the rendezvous point
and the other agents can subscribe to this tree. The root can
multicast messages, instructions, or models to all leaf agents
in O(logN ) hops.

Note that Spiral’s tree structure can be self-tuned to satisfy
different latency requirements. For example, if the primary
goal of a user-defined application is low latency, Spiral
can customize the depth of the functional tree by adjusting
the value of the fan-out parameter n. Assuming there are 10b

agents in the system, the default depth of the tree is log2nN ,
where N is the number of agents. The average depth of the
functional tree can be pruned from 5 to 4 by altering the
default fan-out parameter from 4 to 5 (changing the loga-
rithmic base from 24 to 25). Therefore, the average delivery
latency from root to leaf can be reduced by 20%.

3) DATA COLLECTION VIA FUNCTIONAL TREES
The collection of relevant social data is fulfilled by the leaf
nodes in the functional trees. We adopt two policies for the
leaf nodes’ data collection. First, with the high flexibility and
easiness of social platforms’ APIs (Application Programming
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FIGURE 4. Spiral group management and functional tree. The functional
tree is responsible for creating paths and orchestrating distributed
agents, e.g., paths for root multicasting models and aggregating results.
The multicast processing can be finished within O(logN) hops.

Interfaces), each leaf node can maintain the connection of the
API to collect the real-time streaming social data. For exam-
ple, Twitter APIs [26], YouTube APIs [28], and LinkedIn
APIs [24] provide plenty of functionalities that allow to easily
collect the relevant social content via the timeline, keywords,
or specific hashtag. In this case, each leaf node can maintain
access to APIs and instantly collect the targeted data by
following the user requirements such as defined keywords
or specific time periods. Second, several social platforms’
APIs are not as open as previous platforms, such as Facebook
Graph APIs [13] and Instagram APIs [23], which have some
limits due to their privacy policies and scope permissions.
Under this circumstance, leaf nodes can first seek to get a
permanent access token, called long-lived tokens. This allows
the collection of long-running jobs could be more flexible in
future processing. Besides, leaf nodes can work in a group to
collect the relevant social data if some APIs have data volume
limits per minute or hour.

The raw social data collected is first normalized to a
JSON file, as data from the social platform API is in JSON
format by default. We set a default threshold for raw file
sharding (this threshold can be refined based on application
characteristics or user requirements). When the threshold is
reached, the raw data file will be pre-processed by the root
node in the functional tree and the data analysis work will
begin. The root node supports functions such as data cleaning,
including removing duplicate or irrelevant data, debunking
URLs, fixing syntax errors, etc.When the pre-processing data
set is ready, the functional tree will work according to the
local and global data processing pipeline.

E. LOCAL DATA PROCESSING VIA PUBLISH/SUBSCRIBE
TREES
Local data processing refers to the spam detection within a
single group that makes decisions on each incoming social
post by marking it as either spam or legitimate. Figure 5
presents an example of spam detection in a leaf agent. After
the spam detection model categorizes the log, an identified
label (here 1 represents spam and 0 represents non-spam)
is created for each post in the original social logs. This
spam detection decision is made by a trained classifier from

FIGURE 5. Example of local data processing in a leaf agent. The original
data has no labels. After classification, the predicted labels are generated.
Label 1 represents Spam and 0 represents Ham (non-spam).

the supervised machine learning module. The pairs of posts
and associated labels are aggregated by the root agent. The
Spiral tree progressively rolls up the intermediate results
(i.e., post-label pairs) and reduces them from the distributed
leaf agents to the root. For example, as shown in Figure 6,
⟨(788A, 1), (2D17, 0). . . ⟩, ⟨(0DA4, 0), (788A, 1)⟩, are reduced
to ⟨(788A, 2), (2D17, 0), (0DA4, 0). . . ⟩ in the branches of
tree. These pairs are then reduced to ⟨(788A, 3), (D1C6, 1),
(2D17, 0), (0DA4, 0). . . ⟩ when they arrive at the root. The
label values indicate the number of leaf agents that identified
the post as spam. For example, (788A, 3) represents that 3 leaf
agents have classified the data ‘‘mnk’’ as a spam post. Larger
values indicate a higher probability of a post being spam.

The criteria for spam classification are based on URL
and content features. For the URL features, spammers
typically obfuscate malicious URLs by adding spaces
and Unicode characters into them [47]. This technique
is a simple but effective way to bypass the filters
that block URLs. Inspired by [47], we clean URLs
by inverting the obfuscation process, including removing
white space padding and normalizing URL encoded char-
acters (e.g., ‘‘subsexvideo%26ip%3Dauto%26click%3D1’’
becomes ‘‘subsexvideo&ip=auto&click=1’’). For the content
features, we remove punctuation, convert all letters to lower-
case, tokenize each word, remove stop words (i.e., articles,
prepositions, pronouns, conjunctions, etc.), and do stemming
(i.e., reduce inflected and derived words to a root form) using
the Porter stemmer [59]. We extract the term frequency and
inverse document frequency (tf-idf) values of the terms in
each document. The tf-idf yields a weight that measures the
importance of a term in the corpus for its post [61].

F. GLOBAL DATA PROCESSING VIA SPAM CORRELATIONS
The global data processing is completed through peer group
coordination, which shares the latest spam detection models
among groups. Once a group finishes its local data pro-
cessing, the root agent aggregates the results containing the
newest spam information and then updates its local train-
ing dataset and spam detection model. Next, the root agent
exchanges the latest model with other peer groups so that
all groups can have the latest models to enhance the spam
detection accuracy rate.
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FIGURE 6. Aggregation in the Spiral functional tree. Each leaf agent
produces the classified results from collected social streaming data via
web servers. Then it sends the results via the aggregation path to the
upper layer until they reach the group root’s result pool.

We design a diffusion group in Spiral to minimize
the latency of group coordination. Each root agent holds a
model table that contains the model version and the original
groupId, denoted as a <groupId, versionNum>. The
root within the updatedmodel in one group randomly chooses
two other groups to disseminate the model with the same
version number. For example, when group ‘‘video’’ builds
its latest model, it selects two groups ‘‘picture’’ and ‘‘link’’
as targets and delivers its model with the instance <video,
08> to these groups. Here 08 is the current versionNum of the
latest model. The roots in group ‘‘picture’’ and group ‘‘link’’
then check their model tables to see if the received model is
the latest. If not, they update the model to the latest version
and act as new communicators to disseminate the latest model
to other groups. Eventually, all groups have the latest model.
The number of rounds to propagate a single latest model to
all groups is O(log(m)), where m is the number of diffusion
groups.

G. ANALYSIS
In this subsection, we leverage existing peer-to-peer ana-
lytical work [58], [63] to design a performance model for
Spiral: How long does it take to deliver a spam detection
model from root agent to its leaf agents and aggregate back
classification results from leaf agents to root?

In general, a peer forwards its data to any other peers
and repeats this process until the number of hops reaches a
specified threshold θ . The value of θ is the average depth
(log(N )) of the functional tree that consists of N agents.
Therefore, the model delivery time and the result aggrega-
tion time mainly depend on the number of routers in the
path that social stream data has been delivered. The peer-
to-peer overlay network consists of various links and rel-
evant routers, so that the overall number of routers shall

not be the same as the calculated hops. Therefore, in this
overlay network, to define the average number of routers
between two agents, we use the expected shortest path
between two random agents. By using the random graph in
the overlay network [58], the distance can be approximately
expressed as:

d =
ln[(Nr − 1)(z2 − z1)] − ln(z21)

ln(z2/z1)
(1)

where Nr is the number of agents in the router graph and zi is
the average number of ith hop’s neighbors in the graph. z2 and
z1 can be expressed by using the router adjacency matrix.
We next define the network latency in the router. The

expected waiting time of the ith router can be expressed as:

E(wi) = τiρigi(c2ai + c2sj)/2(1 − ρi) (2)

where τi is the mean time for the router to process a packet,
ρi is the traffic intensity in the router i, and c2ai and c

2
si are the

squared coefficient of variation (SCV) of the arrival process
and service time at router i. Then gi ≡ gi(ρi, c2ai, c

2
sj) can be

defined as:

gi(ρi, c2ai, c
2
sj) =

 1 c2ai ⩾ 1

exp[− 2(1−ρi)
3ρi

(1−c2ai)
2

c2ai+c
2
sj
] c2ai < 1 (3)

The delivery of models is completed within θ hops with an
average of d routers, and as the return path, the aggregation of
results has an equal number of routers. They are determined
by the slowest agent in the functional tree who finalizes the
delivery and aggregation. Therefore, the total expected time
cost can be expressed as:

E(T ) = max
N

(
2θd

Nr∑
i=1

E(wi)
)
/Nr (4)

The above analysis provides us a way to analyze the
expected performance of Spiral in terms of the physical
network environment, which can be used to optimize the
utilization of hardware resources and the system deployment
in real-world scenarios.

V. EVALUATION
We evaluate the Spiral system by using real-world online
social network streaming data. We have collected 3,000,000
tweets from Twitter streaming APIs from January 2017 to
April 2017 and nearly 1,000,000 posts from Facebook APIs
fromMarch 2017 to June 2017.Wemanually labeled and cre-
ated the training and test datasets. These datasets were labeled
based on the posts’ URL, content, and official social media
identifications. Experiments were conducted on a testbed of
10,000 agents hosted by 20 Linux 3.10.0 servers. Each server
has a Intel four-cores CPU with a 3.4 GHz processor, 4 GB of
memory, and 30 GB hard drives. The system is implemented
using Java version 1.7.

The experimental evaluation consists of three parts. First,
we evaluate the spam detection accuracy rate of Spiral
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TABLE 1. Local data processing results.

TABLE 2. Global data processing results.

and compare it with the state-of-the-art work (details in sub-
section V-A). Second, we evaluate the performance of the
Spiral functional tree in terms of scalability, latency, load-
balance, and system reliability (details in subsection V-B).
Third, we evaluate the runtime overhead of the system (details
in subsection V-C).

A. SPAM CLASSIFICATION RESULTS
1) LOCAL SPAM DETECTION
We first evaluate the performance of local spam detec-
tion. Here local spam detection refers to local processing
in a single group without coordinating with other groups
(i.e., updated models are not exchanged with other groups).
We implement several algorithms (Random Forest (RF) [36],
KNN [53], Logistic [51], Naive Bayes (NB) [65], and Ran-
dom Tree (TR) [31]) on Spiral and evaluate them on a
dataset that consists of 50,000 posts (half posts are spam).
We use the performance metrics of F1 score, precision, and
recall, where F1 score is the harmonic mean of the precision
and recall, precision is the fraction of correctly identified
posts in the predicted labels, and recall is the fraction of
correctly identified posts in the original labels. As illustrated
in Table 1, the Random Forest (RF) algorithm achieves F1
scores of up to 96%, demonstrating Spiral’s ability to
detect spam posts with a high accuracy rate while achieving
scalability.

TABLE 3. The comparison of Spiral and the state-of-the-art models.

2) GLOBAL SPAM DETECTION
Spiral seeks to enhance the spam detection accuracy rate
by leveraging the correlations between different data sources.

Spiral groups exchange the newest models with each other
to ensure that every group catches up with the newest spam
information. As illustrated in Table 2, we can observe that by
using the spam correlations, the final detection rate (F1 score)
achieves increases of 1% to 7%. This data illustrates that spam
correlations can improve spam detection performance.

We compare Spiral’s spam classification results with
other popular spam detection models (Bi-gram&C [75] and
CBFs [56]). We reformat the data by extracting the content
features according to the models in [56] and [75]. As shown
in Table 3, Spiral’s F1 score goes as high as 97%. This
demonstrates Spiral’s ability to detect spam posts with
high accuracy rate.

B. SPIRAL FUNCTIONAL TREE PERFORMANCE
In this subsection, we evaluate the performance of the
Spiral functional trees in terms of delivery latency, system
reliability, and scalability. Specifically, we focus on themodel
delivery latency, result aggregation latency, tree construction
latency, failure recovery latency, and load balance.

We evaluate Spiral using 1,000 to 10,000 agents and
create 10 functional trees. To show the effect of the tree
structure on the latency, we set up trees with different tree
bits (i.e., tree fan-out) in the system, where the larger tree bit
indicates that the tree has a larger fan-out and fewer layers.

1) TREE CONSTRUCTION TIME
We evaluate the tree construction time by varying the number
of agents and tree structures. As shown in Figure 7a, the
tree construction time linearly increases with the number
of agents. When using different tree structures (different
tree bits), the latency of tree construction is quite consis-
tent, showing that Spiral has relatively stable performance
under different tree structures.

2) MODEL DELIVERY LATENCY
Figure 7b shows the model delivery latency when using a
Random Tree model with 5k data blocks (a training dataset
has 5,000 instances). Results show that even if the number of
agents is multiplied, the model delivery latency (root-to-leaf)
increases linearly. This scalability is achieved because the
increment of the model delivery latency is strictly determined
by the tree depth O(logN ).

3) RESULT AGGREGATION LATENCY
Figure 7c shows the average latency for aggregating results
from a leaf agent to the root. The path of result aggregation
is following the tree so that the tree’s structure directly influ-
ences this latency. Results show that the aggregation latency
from leaf to the root increases linearly when doubling the
agents. It demonstrates the efficiency of the functional tree
in completing the result aggregation from leaf agents to root.

4) FAILURE RECOVERY LATENCY
The recovery process is as follows: when an agent fails,
it notifies all members of its leaf set. After a new agent is
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FIGURE 7. Performance evaluation of Spiral in terms of tree construction time, model delivery time, and spam classification results delivery
time. (a) The tree construction time for different numbers of agents. (b) Time for leaf agents to receive models from the root agent. (c) Time of
shuffling data from leaf agents to the root agent in the tree.

FIGURE 8. Performance evaluation of Spiral in terms of the failure recovery latency, percentiles of average agents involved in result
aggregation, and agent churn. (a) The average failure recovery latency of different tree structures. (b) The distribution of participating agents in
the result aggregation. (c) The performance of agent churn in the system.

restored, it contacts the agents in its last known leaf set,
gets its current leaf set, updates its own leaf set, and then
notifies the members in its new leaf set of its existence.
Therefore, the fan-out has a significant impact on the failure
recovery time. Figure 8a shows the relationship between the
failure recovery time and the tree structure. Results show that
the failure recovery time increases as the tree bit increases
because when a tree has a larger fan-out, it has more children
agents. Once an agent fails, all sub-agents need to restore
their functions and find new parents, costing more time for
failure recovery. Besides, as the number of agents increases,
the tree becomes larger and the recovery latency decreases.
This decrease happens because as the tree gets deeper, the
impact of an agent’s failure is reduced and other agents can
quickly route to new parents.

5) SCALABILITY
To assess Spiral’s scalability, we follow a result aggrega-
tion scenario with 2,000 pairs (spam and its label) and track
the intermediate agents involved in forwarding and deliver-
ing. Figure 8b shows the percentiles of average participating
agents for one result pair’s aggregation. We can observe
that 95% of aggregations have no more than four processing

agents when the tree bit is 2, and 99% of aggregations have no
more than five working agents when the tree bit is 4. These
results demonstrate Spiral’s load balance capabilities when
deploying a large number of aggregated processes.

6) CHURN OF AGENTS
We evaluate the performance of the churn of the node.
Agents (nodes) in the network can dynamically join and leave
a group, which may cause node churn. Figure 8c shows the
performance of agent churn in the system, where we simulate
the group session time for one agent from 1 minute (high
churn) to 20 minutes (low churn). We can observe that when
nodes are highly fluctuating (high churn), the performance of
the system is faster exacerbated. Generally, agents in a group
are not required to frequently leave or join the group, the
session time can be determined by the features of specific data
applications. Therefore, the DHT-based overlay in Spiral
is churn-resilience due to the low churn. Besides, the results
of recovering churn nodes show that with different sizes of
functional trees, churn nodes can be quickly recovered in the
overlay, ensuring sufficient availability for various social data
applications.
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FIGURE 9. Performance evaluation of Spiral in terms of the average latency of result aggregates in one group, group communication time,
and time of various processing parts. (a) The average latency of root agent aggregates intermediate results from Twitter and Facebook data
streams in one processing cycle. (b) The group coordination time of sharing models with diffusion group and star group in Spiral. (c) The
processing time of various processing parts with two cycles of processing in one group.

FIGURE 10. Runtime overhead.

7) GROUP AGGREGATION LATENCY
Figure 9a shows the latency of result aggregation in one
group by varying the number of agents (from 100 to 500).
Differently from Figure 7c, which displays the latency of
aggregating results from only one leaf agent, Figure 9a shows
the entire aggregation latency from all leaf agents. It shows
that the aggregation latency increases linearly as the number
of agents in a group doubly increases. This data indicates
that the Spiral group can quickly aggregate all the results
in a very large group. Furthermore, we evaluate it using
real-world Twitter and Facebook data. The data aggregation
latencies for the two social networks show similar results,
illustrating that Spiral can effectively process data from
different social networks or platforms.

8) GROUP COORDINATION LATENCY
Group coordination latency refers to the latency of shar-
ing a model among all groups. We use different models to
evaluate the coordination latency by varying the number of
groups (2, 4, 8, 16, 32, respectively). Note that the total
number of agents in the system does not change, resulting in
a relatively static communication hop between two groups’
roots. We compare the coordination latency of the diffusion
group and the star group. The star group refers to the peer-
to-peer group that a root needs to communicate with, sending
n − 1 messages during one round time; in total, they have
to send out 1/2 × n × (n − 1) messages, therefore, taking
O(n2) time. For the star group, as illustrated in Figure 9b,

the group coordination latency increases rapidly as the
number of groups and the model sizes increase. With the
Random Forest (RF) models [36], the group coordination
latency of 32 groups increases by about 700ms (3x) com-
pared to the group coordination latency of 2 groups. When
using Random Forest (RF) models (the size of RF model
is near 10 Mb), the group coordination latency increases
10x than using small models (i.e. RT (Random Tree) [31],
NB (Naive Bayes) [65], and Reg (Regression) [51]models are
near 600 Kb). In comparison with the star group, the group
coordination latency of the diffusion group is almost static
(with a slight increase). This demonstrates that the diffusion
group achieves low latency in the group coordination with
O(log(n)) time complexity.

9) LATENCY OF PROCESSING CYCLES
Figure 9c shows the latency of different functions with two
cycles of data processing in one group. It contains both local
and global data processing with the model delivery time,
data shuffling time, group communication time, and model
delivery latency. Results show that the time of one processing
cycle linearly increases as the number of agents increases.
Differently from Figure 9b, where fixed-size groups achieve
relatively static model delivery time, the increasing agents in
trees result in a larger ring overlay in Figure 9c, and the aver-
age communication hops for the group roots increase. As a
result, the model delivery time increases linearly, as illus-
trated in Figure 9c.
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C. RUNTIME OVERHEAD
Spiral relies on a decentralized architecture (namely, the
DHT overlay and hierarchical functional tree structure) that
is able to distribute processing and overheads evenly over the
agents. We evaluate the runtime resource consumption of a
leaf agent in two processing cycles. As shown in Figure 10,
CPU and memory utilization reach a relatively higher level
from 5s to 30s and 35s to 55s, when the leaf agent is dealing
with local data processing, which consumes more resources.

VI. CONCLUSION
In this paper, we presentSpiral, a distributed system able to
uncover social spam by leveraging the correlations between
different social data sources in geo-distributed sites. Differ-
ently from prior work, which mostly focuses on offline spam
detection, Spiral effectively handles the large-scale social
data from geo-distributed sites in an online fashion. Through
a novel approach that leverages DHT’s consistent rings and
publish/subscribe mechanisms, Spiral supports multiple
groups to manage social data from various topics, areas, and
geo-locations. Each group forms a functional tree that aggre-
gates the properties of spam posts and creates updated spam
classifiers to actively filter out the newest spam. Moreover,
Spiral allows multiple groups to exchange and share spam
correlations from distributed data sources, greatly enhancing
the accuracy of spam detection results. Our real-work exper-
iments demonstrate Spiral’s scalability, effective load-
balancing, and high-efficiency features for online and scal-
able spam detection.

An interesting question for future work is assessing the
impact of inconsistencies inherent to distributed process-
ing. Detecting spammers via the relational structure such as
social connections and relationship graphs is a quite pop-
ular topic, so how to integrate the relational structure into
Spiral? Existing work [42], [43], [70] discusses various
approaches to use social graphs in spam detection, how can
we scale the relational structures into a large-scale distributed
environment? Furthermore, Spiral agents run in a highly
dynamic environment with many unpredictable events such
as network traffic interferences, workload interferences, soft-
ware/hardware failures. As a result, some agents may run
fast, while others may run relatively slowly. Some of the
interesting problems worthy of further are: How to ensure the
model consistency among distributed agents? How to scale
the number of agents (e.g., scaling in/scaling out) and the size
of Spiral groups based on the estimated peak rates of users’
stream data and events? How can we protect the security and
privacy concernswhen processing data streams from different
social media sites?

We will release Spiral as open-source, with all code and
data used to produce the results in this paper.
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