
Integrating Concurrency Control in n-Tier
Application Scaling Management in the Cloud
Qingyang Wang ,Member, IEEE, Hui Chen,Member, IEEE, Shungeng Zhang ,Member, IEEE,

Liting Hu,Member, IEEE, and Balaji Palanisamy,Member, IEEE

Abstract—Scaling complex distributed systems such as e-commerce is an importance practice to simultaneously achieve high

performance and high resource efficiency in the cloud. Most previous research focuses on hardware resource scaling to handle

runtime workload variation. Through extensive experiments using a representative n-tier web application benchmark (RUBBoS), we

demonstrate that scaling an n-tier system by adding or removing VMs without appropriately re-allocating soft resources (e.g., server

threads and connections) may lead to significant performance degradation resulting from implicit change of request processing

concurrency in the system, causing either over- or under-utilization of the critical hardware resource in the system. We build a

concurrency-aware model that determines a near optimal soft resource allocation of each tier by combining some operational queuing

laws and the fine-grained online measurement data of the system. We then develop a dynamic concurrency management (DCM)

framework that integrates the concurrency-aware model to intelligently reallocate soft resources in the system during the system

scaling process. We compare DCM with Amazon EC2-AutoScale, the state-of-the-art hardware only scaling management solution

using six real-world bursty workload traces. The experimental results show that DCM achieves significantly shorter tail latency and

higher throughput compared to Amazon EC2-AutoScale under all the workload traces.

Index Terms—Scalability, soft resources, configuration, web application, parallel processing, cloud computing

Ç

1 INTRODUCTION

AN important feature of cloud computing platforms is
scalability, the ability to scale system resources for

both high performance and high resource efficiency. Such
ability is especially important for web applications such as
e-commerce because of two reasons. First, web applications
in general adopt the n-tier architecture (e.g., web tier, appli-
cation server tier, and the database tier; other tiers such as
load balancer and Memcached [1] are also common), the
capacity of each tier is supposed to be easily scaled by
adding or removing server VMs. Second, workload for web
applications is naturally bursty. For example, the number of
users accessing an e-commerce website (e.g., Amazon.com)
can be over 10X larger in rush hours (e.g., black Friday)
than that in normal periods. The traditional strategy of static
provisioning always for peak workload will lead to signifi-
cant waste of computing resources and power consumption.
So to achieve both high performance and high resource
efficiency, it is extremely important for web applications to

be able to scale during run time to match the workload
variations.

Scaling a web application requires careful matching of
system resources and the runtime workload. Such matching
is challenging because web applications usually have strict
Quality of Service (QoS) requirement such as bounded
response time. Since the workload for web application has
large fluctuation in both micro-level (within minutes) and
macro-level (hours to days), dynamically matching system
resources and the runtime workload in order to always
satisfy the QoS requirement is very challenging. Previous
work [2], [3], [4], [5], [6], [7] has proposed various scaling
mechanisms by adding/removing server VMs to handle
workload variations. However, these previous research
efforts mainly focus on how (e.g., virtual machine live
migration [3]) and when (e.g., pro-active and re-active scal-
ing based on workload prediction [2]) to add or remove
hardware resources such virtual machines to change the
system capacity. Little has been discussed about how to
reconfigure software components to match the hardware
resource changes in the system. On the other hand, soft
resources such as server threads and database connections
that control the concurrency of request processing in the
system have been shown to have significant impact on n-
tier web application performance [8].

In this paper we show that effective scaling of an n-tier
application needs intelligent coordination of both hardware
and soft resources scaling. Fig. 1 shows one of our experi-
mental results using a representative benchmarkweb applica-
tion (RUBBoS) to demonstrate the importance of hardware
and soft resources coordination during system scaling. After

� Q. Wang, H. Chen, and S. Zhang are with the Division of Computer Sci-
ence and Engineering, Louisiana State University, Baton Rouge, LA
70803. E-mail: {qwang26, hchen46, szhan45}@lsu.edu.

� L. Hu is with the Computing and Information Sciences, Florida Interna-
tional University, Miami, FL 33199. E-mail: lhu@cs.fiu.edu.

� B. Palanisamy is with the School of Information Sciences, University of
Pittsburgh, Pittsburgh, PA 15260. E-mail: bpalan@pitt.edu.

Manuscript received 3 Mar. 2018; revised 25 July 2018; accepted 10 Sept.
2018. Date of publication 19 Sept. 2018; date of current version 13 Mar. 2019.
(Corresponding author: Qingyang Wang.)
Recommended for acceptance by S. Chen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2871086

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019 855

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-1219-2084
https://orcid.org/0000-0002-1219-2084
https://orcid.org/0000-0002-1219-2084
https://orcid.org/0000-0002-1219-2084
https://orcid.org/0000-0002-1219-2084
mailto:
mailto:
mailto:

adding one more Tomcat application server VM to the origi-
nal 3-tier system (one Apache web server, one Tomcat appli-
cation server, and one MySQL), the maximum achievable
throughout of the system unexpectedly reduced 40 percent.
The detailed explanation of this case will be in Section 2.2.
The main reason is because of the complex dependencies
among the hardware and soft resources of component servers
in the system; adding or removing servers in any tier of the
system will change the level of the concurrent requests flow-
ing to the downstream tiers, which may either under— or
over-utilize the critical hardware resources in the downstream
tiers, causing significant systemperformance degradation.

Concretely, we build a dynamic concurrency manage-
ment (DCM) framework that takes intelligent control of soft
resource allocation into the management of system scaling.
DCM exploits a novel concurrency aware model that can
decide a near-optimal soft resource allocation of each server
in the system by combining some operational queuing laws
and fine-grained monitoring data collected from each serv-
er’s request processing log. We implement DCM as a two-
level control framework. The first level is scaling hardware
resources (e.g., VMs) of the system based on the workload
variation similar as previous hardware-only scaling mecha-
nisms. The second level is reallocating soft resources of
each related server based on the concurrency-aware model
recommendation after the scaling of hardware resources.

The first contribution of the paper is a sensitivity analysis
of the performance impact of soft resource allocation on typ-
ical servers in an n-tier application. Through extensive
benchmark experiments using realistic workload traces, we
observed that the optimal soft resource allocation for differ-
ent type of servers can be very different. For example, a
Tomcat application server achieves the best performance
when 20 threads are allocated while the optimal number is

36 for a MySQL database server in our experimental envi-
ronment. We also observed that under the same hardware
resource configuration a sub-optimal (but typical) allocation
of threads can degrade the maximum achievable through-
put of Tomcat up to 70 and 64 percent for MySQL (Fig. 3).

The second contribution is the concurrency-aware model
that determines a near-optimal soft resource allocation
of each server in an n-tier system. This model takes the
non-linear multi-threading overhead into account, thus the
performance of each component server can be correctly char-
acterized under high concurrency workload (Section 3). Our
experimental evaluation using a representative 3-tier web
application benchmark (RUBBoS) show that the optimal soft
resource allocation predicted by the model actually enable the
system to achieve the highest throughput compared to other
typical allocation cases, validating the accuracy of themodel.

The third contribution is a dynamic concurrency manage-
ment framework that exploits the concurrency-aware model
to coordinate the hardware and soft resources provisioning
in system scaling management (Section 4). Using six realistic
bursty workload traces, our experiment results show that
DCM achieves significantly better performance and higher
resource efficiency than Amazon EC2-autoScale, the state-of-
the-art hardware-only scale solution in a commercial cloud
(Section 5).

We outline the rest of this paper as follows. Section 2
illustrates the impact of request processing concurrency on
representative server performance. Section 3 introduces our
concurrency-aware model. Section 4 introduces the design
of our DCM framework. Section 5 shows evaluation results.
Section 6 discusses related work and Section 7 concludes
the paper.

2 BACKGROUD AND MOTIVATION

2.1 Experiment Environment

In our experiments we use a standard n-tier benchmark
RUBBoS [9]. RUBBoS benchmark application is a mini-ver-
sion of the popular news website Slashdot [10]. It is typi-
cally deployed as a 3-tier (web tier, application tier, and
database tier) or 4-tier (with an additional load balancer for
databases). The benchmark application has 24 servlets pro-
viding different web interactions. Based on the characteris-
tics of each servlet, RUBBoS provides two workload modes:
browse-only CPU intensive or read/write mix workload.
We use the former mode of workload in this paper.

Fig. 2 shows the experimental setup of our private
VMware ESXi cluster. We adopt #W-#A-#D, a 3-digit nota-
tion to represent the number of Apache web servers,
Tomcat application servers, and MySQL database servers of

Fig. 1. System throughput comparison as a 3-tier system scales out from
1-1-1 to 1-2-1. Here 1-1-1 means one Apache web server, one Tomcat
server, and one MySQL server in the system. In this experiment, Tomcat
is the bottleneck server and we scale out Tomcat from 1 server to 2 as
the system workload increases. Surprisingly, the maximum achievable
throughput of the system decreased significantly after Tomcat scaling out.

Fig. 2. Detailed experimental setup.

856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

our benchmark application. For each #W-#A-#D, we use
#WT/#AT/#AC to represent three representative soft
resources in the system: Apache server thread pool, Tomcat
server thread pool, and Tomcat server database (DB) con-
nection pool. They control the maximum request processing
concurrency in Apache, Tomcat, and MySQL, respectively.
Each servlet uses one dedicated DB connection pool in the
original RUBBoS implementation. We changed the imple-
mentation to let every servlet share a global DB connection
pool. The purpose is to limit precisely the number of con-
current database queries sent to the downstream MySQL.
In addition, we developed monitoring tools to enable
runtime monitoring and scaling of the three types of soft
resources, with more details in Section 4.2.2.

We use three types of workload generators in our experi-
ments: Jmeter [11], the original RUBBoS workload genera-
tor, and the revised RUBBoS workload generator. Jmeter is
to generate workload with precisely controlled request con-
currency,1 enabling a quantitative analysis of the impact of
request processing concurrency on n-tier application perfor-
mance. The original RUBBoS workload generator creates
HTTP requests to interact with the benchmark application,
the request rate of which follows a Poisson distribution
with the mean determined by the number of concurrent
users. The revised RUBBoS workload generator generates
HTTP requests with realistic burstiness level based on
a trace file from a production environment.

2.2 Performance Degradation with Sub-Optimal
Concurrency Setting

E-commerce web applications such as Amazon.com typically
process high concurrent HTTP requests from clients ranging
fromhundreds to thousands per second. The request process-
ing concurrency inside the system is usually controlled by the
allocation of soft resources such asworker threads or database
connections of each component server. Here we use concrete
experiments to show that request processing concurrency
controlled by the allocation of soft resources has significant
impact on the performance of typical component servers
in an n-tier web application. The results help explain the

unexpected performance degradation after the system scaling
out aswe have observed in Fig. 1.

We conduct a quantitative evaluation on the performance
of MySQL and Tomcat under different concurrency settings
of request processing as shown in Fig. 3. In this set of experi-
ments, we use Jmeter to extract the HTTP requests recorded
in a standard RUBBoS workload trace and sends the requests
with precisely controlled concurrency to stress either the
Tomcat (Fig. 3a) or the MySQL (Fig. 3b) server. For each con-
trolled request concurrency level, we set the same number of
threads in the corresponding server to avoid the queue over-
flow problem. In this case, the workload concurrency equals
the request processing concurrency inside the server. Fig. 3a
shows the impact of request processing concurrency on the
Tomcat server throughput. We can see that Tomcat achieves
the highest throughput as the request processing concurrency
equals 20; either lower or higher concurrency could lead
to significant throughput degradation. We also observed
the similar phenomenon for MySQL as shown in Fig. 3b.
The only difference is that MySQL achieves high throughput
at a different request processing concurrency range (between
20 to 60). Such experimental results indicate that the perfor-
mance of both Tomcat and MySQL is very sensitive to the
request processing concurrency.

The sensitivity of request processing concurrency in com-
ponent servers also explains the unexpected performance
degradation after the system scales from 1-1-1 to 1-2-1,
shown in Fig. 1. In that case, the 3-tier system has one
Apache web server, one Tomcat server, and one MySQL
server (1-1-1) at the beginning, with the default soft resource
allocation 1,000/100/80, which means there are 1,000
Apache threads, 100 Tomcat threads, and 80 database con-
nections. With this soft resource allocation, the maximum
request processing concurrency level in MySQL is limited
to 80. Our measurements show that Tomcat is the bottleneck
server at the beginning, so we add one more Tomcat into the
system (now becomes 1-2-1) as the workload exceeds the
initial system capacity. Since we still use the default soft
resource allocation for the second Tomcat, the maximum
number of concurrent requests that can flow to the down-
streamMySQL doubles (from 80 to 160). As a result, MySQL
CPU efficiency degrades significantly due to the increased
request processing concurrency (see Fig. 3b), causing unex-
pected system throughput drop. To truly scale the original
system and fully utilize the newly added Tomcat, the

Fig. 3. Throughput of typical servers in an 3-tier system at increasing request processing concurrency. (a) and (b) show that improper concurrency
settings in Tomcat and MySQL cause poor performance, suggesting the importance of concurrency control in the system.

1. Jemeter uses threads to simulate real-world users. We set zero
think time between consecutive requests sent from the same thread,
then we can precisely control the workload concurrency for the system
as the # of Jmeter threads.

WANG ET AL.: INTEGRATING CONCURRENCY CONTROL IN N-TIER APPLICATION SCALING MANAGEMENT IN THE CLOUD 857

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

database connection pool size of each Tomcat server needs
to be adapted to 20. In this case, MySQL achieves the peak
throughput since the maximum request processing concur-
rency in MySQL is limited to 40 (see Fig. 3b).

The previous experimental results show the significant
impact of soft resource allocation on the n-tier application
scaling management; only scaling hardware resources with-
out appropriate adaption of soft resource allocation could
lead to significant performance degradation. Considering
the common practice of system scaling in the face of natu-
rally bursty workload for n-tier applications, smart runtime
adaptation of soft resource allocations should be integrated
into system scaling management.

3 CONCURRENCY-AWARE MODEL

In this section we introduce our concurrency-aware model
that determines the optimal allocation of soft resources in
each component server of an n-tier system. The model is an
extension of the classic queuing network model, with two
additional enhancements: first, it captures the realistic
request processing flow within an n-tier system, for exam-
ple, the processing of one HTTP request for a Apache web
server may trigger multiple sub-queries to the downstream
MySQL; second, the model considers the non-trivial multi-
threading overhead of each server in the system when
facing high concurrency workload (see Section 2.2). Our
goal is to achieve the highest system throughput through
optimizing soft resource allocation in each tier of the sys-
tem, in case of potential hardware configuration changes
due to system scaling.

3.1 Concurrency-Aware Queue Model

Assume there are M tiers in an n-tier application (See
Table 1), where each tier is denoted by T1; . . . ; TM . We use
Km to represent the number of servers in tier Tm, where
1 � m � M. To simplify the analysis, we start with one
server in each tier at the beginning, so Km equals 1. Assume
Um denotes the server utilization in tier Tm, then based on
the Utilization Law and Forced Flow Law [12], for each tier
we have the following equations:

Um ¼ Xm � Sm and Xm ¼ X � Vm: (1)

In the above equations, Xm and Sm represent the
throughput and average request service time of the tier Tm,
respectively. X means the overall system throughput and
Vm means the visit ratio of Tm. The visit ratio Vm depends on
the workload characteristics. For example, Fig. 4 shows
that one sample HTTP arriving to Apache triggers one AJP
request to Tomcat, which in turn issues two database
queries to the downstream MySQL. In this case, the visit
ratio V2 ¼ 1 and V3 ¼ 2. Equation (1) can be further trans-
formed to

X ¼ Um

Vm � Sm
: (2)

Considering that Sm denotes the average request service
time of the tier Tm, then Vm � Sm means the overall service
demand of an HTTP request for the tier Tm. Since we only
have one server in each tier at the beginning, the bottleneck
tier of the system can be easily figured out: it is the tier that
has the highest service demand max1�m�MðVm � Sm). Let Tb

be the bottleneck tier, then we get the maximum system
throughput Xmax when Ub ¼ 1, indicating 100 percent utili-
zation of the bottleneck tier resource. Xmax can be expressed
in the following equation:

Xmax ¼ 1

Vb � Sb
: (3)

In reality we may have Kb servers in the bottleneck tier,
thus we transform the above equation to

Xmax ¼ g �Kb

Vb � Sb
; (4)

where g is the correction parameter when multiple servers
in the bottleneck tier is considered. This is because the
system throughput will likely not to double if we double
the number of servers in the bottleneck tier (e.g., from one
server to two) because of many practical factors, including
the load imbalance problem among servers in the bottleneck
tier or the resource sharing of the downstream tiers.

When a system with a fixed configuration has stable
workload characteristics, both Kb and Vb are determined.
So based on Equation (4), we can predict Xmax once the
bottlneck tier service time Sb is determined. However, deter-
mining the real service time of each tier is non-trivial, espe-
cially when one HTTP request triggers several interactions
between different components in the system. For example,

TABLE 1
Descriptions of Parameters in our Model

Symbol Description

M Number of application tiers
Tm Themth tier in the system (1 � m � M)
Km Number of servers in tier Tm

Um Server utilization in tier Tm

X Throughput of the whole system
Xm Throughput of themth tier
Vm Visit ratio for tier Tm

Vb Visit ratio for the bottleneck tier
Sm Service time of themth tier
Sb Service time of the bottleneck tier
S

?

b Adjusted service time of the bottleneck tier
Nm Number of threads in tier Tm

Nb Number of threads in bottleneck tier b
a;b; g Correlation coefficients

Fig. 4. Illustration of inter-tier interactions for processing one HTTP
request in a 3-tier system.

858 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 4 shows the processing of one request in Tomcat involv-
ing two waiting periods for the response from the down-
stream MySQL, which breaks the real computation time for
the request into three segments (the three blue boxes under
Tomcat). The situation becomes more complicated when
multithreading is involved. In a multi-threaded case, multi-
ple threads may contend for shared resources, in which the
original service time in a single-threaded environment may
change because of the impact of resource contention as
discussed in many previous work [13], [14], [15]. So to
estimate the average service time of each tier in a realistic
multithreading environment, we use a different method as
we will discuss in the next section.

3.2 Service Time in Multithreading Environment

Assume the bottleneck tier has a single-threaded server and
its service time is S0

b . Now we want to know the impact of
multithreading on the service time S0

b . There are two factors
that may delay the original single-threaded service time:
thread contention and crosstalk penalty. The second factor
is also known as coherence or consistency penalty.

Thread contention is caused by the sharing of limited
software (e.g., lock) or hardware resources (e.g., CPU core)
during multithreading. Thread contention may lead to the
switch between threads on fine-grained time granularity
(e.g, each clock), causing the interleaved execution of
instructions from multiple threads. The most common
switch pattern between threads is round-robin. As a result,
we can model the delay caused by thread contention as
linear growth with the number of threads.

Crosstalk penalty is because of the coherence or consis-
tency requirements in a multithreading or a multi-processor
environment. Hennessy and Patterson [16] (Chapter 5.2 in
the Fifth Edition) has a detailed discussion about the cross-
talk penalty in a centralized shared-memory architecture.
In a multi-processor environment, if each processor has a
thread operate on a shared variable, the crosstalk penalty is
related to the number of processors in the machine because
of the cache coherence requirement. Additionally, from
the soft resource perspective, if each of N threads wants to
obtain a mutex lock, the worst case involves N*(N-1) notifi-
cation messages, since each time one thread needs to notify
the other N-1 threads when it releases the mutex lock. This
means that the crosstalk penalty may grow quadratically as
the number of threads increases.

Based on the above two factors that affect S0
b under Nb

threads, we can derive the adjusted service time as follows:

S�
b ¼ S0

b þ abðNb � 1Þ þ bbNbðNb � 1Þ; (5)

where ab;bb are coefficients that depend on many factors
such as hardware specification and workload characteris-
tics. This equation also shows that when S�

b reverses back to
S0
b when Nb ¼ 1, the single-threaded case. We note that

Gunther et al. [17] have provided a formal proof of a differ-
ent form of Equation (5) when they derive their Universal
Scaling Law (USL). Interested readers can refer their paper
for more details.

The above analysis shows that multithreading may cause
longer delay for individual request processing because
of thread contention and crosstalk penalty, however,

multithreading enables full utilization of CPU resource and
increases system throughput by taking advantage of the
pipeline design of modern CPU architecture. As Fig. 5 illus-
trates, the Nb threads use CPU cycles in an interleaved
manner; one thread finishing one request takes S�

b time,
which also includes the waiting time for other (Nb - 1)
threads. Assuming each ofNb threads shares the CPU fairly,
then the adjusted average service time for each thread is

Sb ¼ S�
b

Nb
¼ S0

b þ abðNb � 1Þ þ bbNbðNb � 1Þ
Nb

: (6)

By combining Equations (4) and (6), we can derive the
system’s maximum throughput as a function of the concur-
rency in the bottleneck tier as shown below:

Xmax ¼ g �Kb �Nb

S0
b þ abðNb � 1Þ þ bbNbðNb � 1Þ : (7)

3.3 System Throughput Maximization

Equation (4) shows that to get the maximum throughput of
the whole system, the bottleneck tier service time Sb needs
to be minimized. Thus we transform Equation (6) as fol-
lows:

Sb ¼ S0
b � ab

Nb
þ bbNb þ ðab � bbÞ

� 2
ffi
ðS0

b � abÞbb

q
þ ðab � bbÞ:

We get the minimum Sb when Nb ¼
ffiffiffiffiffiffiffiffiffiffi
S0
b
�ab
bb

r
. Then we

take Min(Sb) back to Equation (4), and get the maximum
system throughput as follows:

MaxðXmaxÞ ¼ g �Kb

Vbð2
ffi
ðS0

b � abÞbb

q
þ ab � bbÞ

: (8)

The above derivation process of the model shows that to
maximize the whole system throughput, we need to set
the number of threads in the bottleneck tier server to be Nb.
The value of Nb depends on the parameters S0

b , ab, and bb.
S0
b can be measured through system profiling. The other

two parameters can be determined via regression analysis
based on the online measurement of system throughput
and the allocation of threads in each server of the bottleneck
tier. Section 3.4 will show concrete parameter training and
validation for different bottleneck servers in the system.

We note that setting the optimal concurrency Nb of
the servers in the bottleneck tier does not guarantee the

Fig. 5. Pipeline processing of requests with multi-threads.

WANG ET AL.: INTEGRATING CONCURRENCY CONTROL IN N-TIER APPLICATION SCALING MANAGEMENT IN THE CLOUD 859

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

maximum system throughput; we also need to set proper
number of threads and connections in the upstream tiers in
order to allow enough concurrent requests flowing to the
bottleneck tier and fully utilize the bottleneck resource.
Interested readers can refer to our previous paper [18] that
characterizes the relationship between soft resource alloca-
tions between different tiers.

3.4 Model Training and Validation

To fast train the parameters of the model and determine the
optimal soft resource allocation for each component server,
we use Jmeter to generate workload (i.e., HTTP requests)
with different concurrency levels extracted from the real
RUBBoS workload trace. Because we set the user think time
between consecutive HTTP requests from the same user
(thread) to be zero, we can control the exact request concur-
rency to the target system by specifying the number of users
(threads) in Jmeter. Then we return back to the original
RUBBoS workload generator in the validation phase since it
simulates the realistic production workloads. Our goal is to
validate whether the model recommended optimal soft
resource allocation could achieve the maximum system
throughput under realistic workload scenarios.

Model Training for Tomcat. The concurrency-aware model
is to build the correlation between the request processing
concurrency in Tomcat and the system throughput in order
to determine the optimal concurrency setting in Tomcat.
To build such a model, we use the 1-1-1 configuration (with
the default soft resource allocation 1,000/100/80) because
Tomcat is the bottleneck tier of the system. Then we increase
the workload concurrency for the system from 1 to 100 and
record the system throughput (see Fig. 3a). We take the
< concurrency, throughput> pairs2 as the input to the model
as shown in Equation (7). By applying the Least-Square
Fitting analysis we estimate the values of the parameters of
the model and also the optimal concurrency setting (Nb ¼ 20)
in Tomcat as shown in Table 2. The statistical R-Squared value
is 0.960 according to our additional measurement data, indi-
cating high accuracy of the model in predicting system
throughput under different Tomcat concurrency.

We further ran experiments using the original RUBBoS
workload to validate the model generality. The RUBBoS
workload simulates the realistic workload scenario in which
a user within the same session sends every follow-up HTTP
request after a certain amount of “think” time. Fig. 6a shows
the experimental results for the 1-1-1 case with five

representative soft resource allocations. 1000/20/80 is rec-
ommended by the model. This figure shows that the system
with the “optimal” soft resource allocation indeed outper-
forms the other cases. For example, the “optimal” allocation
case outperforms the default configuration case (100 Tomcat
threads) 30 percent in throughput.

Model Training for MySQL. To train the model for
MySQL, we scale the system from the previous 1-1-1 config-
uration to 1-2-1 since MySQL is the bottleneck server under
the new configuration. Then we conduct the similar experi-
ments of model training for MySQL as for Tomcat previ-
ously. The estimated values of the model parameters are
shown in the third column of Table 2. After resolving
the model we conclude that the system achieves the maxi-
mum throughput when MySQL threads allocation Nm ¼ 36
(Fig. 3b shows partial < concurrency, throughput> pairs).
We note that in our experiments we use the DB connection
pool size in Tomcat to control the request processing con-
currency in MySQL and there are two Tomcat servers in the
system, thus the optimal allocation of DB connections in
each Tomcat should be 18. We further conduct experiments
using the more realistic RUBBoS workload to validate the
generality of the model. Fig. 6b shows that the model rec-
ommended allocation (1000-100-18) indeed outperforms the
other four representative cases, including the default case
with 80 DB connections. We note that 100 threads in Tomcat
is chosen because we want avoid Tomcat thread pool being
the bottleneck that limits the number of concurrent requests
flowing to the downstreamMySQL.

Model Retraining to Keep Prediction Accuracy. In the above
experiments we have validated the accuracy of our model
in realistic workload scenarios. We need to point out that
the model is based on two assumptions. First, the character-
istics of the workload (e.g., read/write ratio) in the training
phase and in the production phase (i.e., the realistic work-
load scenarios) keep the same. Second, the new servers
added into the bottleneck tier are homogeneous to the other
servers in the same tier. This is because according to Equa-
tion (8), both the maximum achievable throughput and the
optimal concurrency setting of a server Nb is related to the
basic service time S0

b , which depends on two factors: the
workload characteristics and the hardware provisioning
(e.g., # of CPU cores and frequency) of the server. S0

b will
change if any of these two factors changes, thus the optimal
concurrency setting Nb of the server predicted by the model
will change and no longer be the optimal in the production
phase. To always keep the model accuracy, we need to
retrain the model of each server based on the online moni-
toring data collected from real production environment
from time to time, assuming that the workload characteris-
tics may change over time or the system scales using hetero-
geneous hardware provisioning.

4 DYNAMIC CONCURRENCY MANAGEMENT DESIGN

AND IMPLEMENTATION

The previous section describes a concurrency-aware model
for the optimal concurrency setting of the bottleneck tier
in the system based on measurement data. Since system
scaling in/out potentially changes the request processing
concurrency in the system, to always maintain the high per-
formance of the system, we describe a dynamic concurrency

TABLE 2
Model Training and Prediction Result

Parameter Tomcat Model MySQL Model

S0
b 2.84e-02 7.19e-03

ab 9.87e-03 5.04e-03
bb 4.54e-05 1.65e-06
g 11.03 4.45
R2 0.960 0.97
Nb 20 36
Xmax 946 865

S0
b is measured through system profiling.

2. Concurrency and throughput correspond toNb andXmax.

860 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

management framework which is to dynamically adjust soft
resources allocation in related servers based on the model
prediction.

Fig. 7 shows the DCM framework. It includes three key
components: Fine-Grained Resource Monitor, Optimization
Controller, and Actuators.

Fine-Grained Resource Monitor. Each VM installs a moni-
toring agent to collect both the application-level metrics
(e.g., # of active threads, average server response time and
throughput) and system-level metrics (e.g., CPU, Memory,
network I/O). Then monitoring agents send the measured
data at every second back to a storage server (Kafka [19]).
The controller will consume these data for runtime per-
formance analysis. The purpose of Kafka is to serve as an
intermediate storage server to coordinate the distributed
monitoring agents that produce data and the controller that
consume data since the controller may need to operate on
collective data over a period of time (e.g., 1 minute).

Optimization Controller. The controller makes adaptation
decisions based on the analysis of the data from Kafka and
the concurrency-aware model as we present in Section 3.
Two decisions need to be made at the moment of burst
workload: VM-level scaling and soft resources re-allocation.
VM-level scaling is to decide when to launch new VMs to
improve the bottleneck tier performance or turn off idle
ones to avoid wasting computing resources. Soft resources
re-allocation is to make them best suit the concurrency
requirement of servers in the system after the VM-level
scaling finishes. In our current implementation, the con-
troller adopts the resource-usage driven approach in the
VM-level scaling, meaning that the controller will trigger
the execution of Actuators once the resource usage of any
tier exceeds a predefined threshold (e.g., 80 percent).

Actuators. The DCM has two actuators. the VM-agent
actuator is to start or turn off VMs in a specific tier.
The APP-agent actuator is to re-allocate soft resources in the
system based on the concurrency-aware model recommen-
dation. Usually the APP-agent actuator follows right after
the VM-agent actuator.

In the following section we outline the control algorithm
of how the above three components interact with each other
for intelligent system scaling management.

4.1 Dynamic Concurrency Management Algorithm

Our algorithm makes the following three assumptions:

(1) There is only one bottleneck tier at a time in the
system.

(2) Our monitoring tools are able to identify the bottle-
neck hardware resource as system performance
deteriorates.

(3) We are able to dynamically adjust the soft resource
allocation in each server during run time.

The first assumption is to make sure that the system does
not encounter the complex multi-bottleneck scenario [20],
[21]. A multi-bottleneck scenario refers to the case where the
bottleneck shifts rapidly among different system compo-
nents because of complex resource dependencies in the sys-
tem. In such a case, the system performance may deteriorate
while the average utilization of each component is far from
saturation, which disables the triggering conditions (e.g.,
CPU utilization higher than 80 percent) of the control frame-
work. Handling complexmulti-bottleneck cases still remains
a significant challenge and needs our further research. The
second assumption assumes that we have propermonitoring
tools such as collectl and sysstat to enable bottleneck detec-
tion. The third assumption assumes that we have manage-
ment tools which are able to scale soft resources of each
component server on the fly. While there are many existing
monitoring tools to satisfy the second assumption, we imple-
ment our own management tools for soft resource scaling,
withmore details in Section 4.2.2.

Algorithm 1 shows the pseudo-code for the interaction of
the three components in our control framework. We explain
the key procedures in more detail in the following:

DCM Scaling Control. This procedure details the control
logic of the Optimization Controller. The controller exploits
resource monitors to measure the runtime system status

Fig. 6. Model validation for Tomcat and MySQL using realistic system configuration. (a) and (b) show that the model recommended optimal concur-
rency setting (20 for Tomcat while 36 for MySQL according to Table 2) indeed outperforms other four representative allocations. We note that the 1-
2-1 case has two Tomcat servers, thus 1,000/100/18 can make sure the optimal concurrency (36) in MySQL.

Fig. 7. The DCM framework.

WANG ET AL.: INTEGRATING CONCURRENCY CONTROL IN N-TIER APPLICATION SCALING MANAGEMENT IN THE CLOUD 861

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

such as CPU utilization and application performance met-
rics and make scaling decisions. We define two resource uti-
lization thresholds: upper bound for scaling-out and lower
bound for scaling-in. For each control period, the resource
with average utilization higher than the upper bound (e.g.,
80 percent) is recorded in Rh while the one lower than the
lower bound (e.g., 40 percent) is recorded in Rl (line 6).

Algorithm 1. Pseudo-Code for DCM Scaling Control

1: procedure DCMScalingControl
2: scaleOutStep = 1, scaleInStep = �1;
3: slowTurnOffFactor = 3, SystemRunning = true;
4: while (SystemRunning) do
5: = �Record hardware resources beyond util: threshold � =
6: (Rh;Rl) = ResourceMonitor();
7: if ðRh 6¼ fÞ then
8: = � hardware resource util: exceeds upperbound � =
9: bottleneckTier = Rh ! k;
10: VMScale(bottleneckTier, scaleOutStep);
11: SoftResourceScale(bottleneckTier, scaleOutStep);
12: else if ðRl 6¼ f && counter > slowTurnOffFactor) then
13: = � hardware resource util: cont: below lowerbound � =
14: counter = 0;
15: scaleInTier = Rl ! k;
16: if (nTier½scaleInTier� > abs(scaleInStep)) then
17: VMScale(scaleInTier, scaleInStep);
18: SoftResourceScale(scaleInTier, scaleInStep);
19: else if ðRl 6¼ f && counter < slowTurnOffFactor) then
20: counter++;
21: else
22: counter = 0;
23: end
24: end
25: procedure VMScale (scaleTier, scaleStep)
26: if (scaleStep > 0) then
27: TurnOnVMs(scaleTier, scaleStep);
28: nTier½scaleTier� = nTier½scaleTier� + scaleStep;
29: else if (scaleStep < 0 && (nTier½scaleTier� + scaleStep) >

0) then
30: TurnOffVMs(scaleTier, abs(scaleStep));
31: nTier½scaleTier� = nTier½scaleTier� - abs(scaleStep);
32: procedure SoftResourceScale (scaleTier, scaleStep)
33: if (scaleStep > 0) then
34: = � get optimal concurrency of each downstream server � =
35: optAlloc = ModelPredict(scaleTier + 1);
36: soft[scaleTier] = (optAlloc * nTier½scaleTierþ 1�)
37: /(nTier½scaleTier� + scaleStep);
38: AppActuator(scaleTier, soft[scaleTier]);
39: else if (scaleStep < 0) then
40: = � get optimal concurrency of scaleTier server � =
41: optAlloc = ModelPredict(scaleTier);
42: soft[scaleTier] = optAlloc;
43: AppActuator(scaleTier, soft[scaleTier]);

To make the system performance stable under bursty
workload, the controller adopts the “quick start but slow
turn off” scaling policy learned from the AutoScale work of
Gandhi et al. [2]. Concretely, if the utilization of any con-
cerned resource during one control period exceeds the pre-
defined upper bound, the controller will ask the VM-agent
actuator to launch new VM(s), which will spend certain
amount of preparation time (e.g., 15 seconds) before joining

the system and ready to serve requests. On the other hand,
the controller will turn off VMs where the utilization of all
the concerned resources is below the lower bound continu-
ously for three control periods (line 12).

Virtual Machine Scaling. This procedure is to turn on/off
virtual machines similar as all the other scaling frameworks
in the cloud (e.g., Amazon EC2 AutoScale). While turning
on VMs is relatively easy, turning off VMs needs to check
whether the number of VMs to turn off (requested by con-
troller) is less than the number of running servers (line 30).

Soft Resource Scaling. This procedure is to scale the soft
resource allocation of the system based on the concurrency-
aware model after the VM level scaling. Theoretically, the
optimal concurrency setting in each VM does not change
with the number of VMs, however, the actual request proc-
essing concurrency in a server is also affected by the size of
connection pools of the servers upstream tier, which may
change when the server’s upstream tier scales out or in. In
this procedure, we simply make the size of connection pools
in one tier the same as that of the thread pools in its succes-
sive downstream tier after the VM-level scaling. Neverthe-
less, this procedure shows that the soft resource scaling is
different between VM scaling out and in. For VM scaling
out, we need to consider the impact of the increased request
concurrency (due to newly added VMs) on the performance
of the downstream tier servers. Assuming that the optimal
concurrency (based on our concurrency-aware model) for
each downstream server is optAlloc and the number of
downstream servers is nTier½scaleTierþ 1�, so the optimal
total concurrency of the downstream tier is optAlloc *
nTier½scaleTierþ 1�. Thus the new allocation of soft resour-
ces (connection pool size) of each server in the scaleTier tier
is shown in line 38. On the other hand, in a VM scaling-in
case, the number of VMs in the scaleTier tier is reduced
while the maximum concurrent requests from its upstream
tier keep the same. To avoid high overhead caused by high
concurrent requests from its upstream tier, the soft resource
allocation (thread pool size) of the scaleTier tier needs to be
re-adjusted based on the concurrency-aware model recom-
mendation (line 44).

4.2 Implementation Details

4.2.1 VM-Agent for VM-Level Scaling

Launching or turning off VMs is easy in the cloud because the
underlying hypervisor provides corresponding APIs that can
be called remotely. The complexity of VM level scaling comes
from the servers that run inside VMs. For example, it is rela-
tively easy to add VMs that run stateless servers (e.g., Apache
web servers) because they can serve new requests seamlessly
right after they join the system. However, adding VMs that
run stateful servers (e.g., database servers) is non-trivial
because they need to resolve data or state consistency prob-
lem, for example, a newly added database server may need to
synchronize with other running databases in the system, thus
may require more preparation time to be ready to serve new
requests. We set the preparation period of each VM to be 15
seconds after VM-agent actuator launches the VM, which is
enough for the VM to be ready in our benchmark experi-
ments. More preparation time may be needed in real produc-
tion environment. We also use HAproxy [22] as a load
balancer to dynamically balance workload among servers

862 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

after the system scaling, where we adopt the least pending
request (LPR) scheduling policy to dispatch requests to down-
stream servers.

4.2.2 APP-Agent for Soft Resource Re-Allocation

Once the VM-level scaling is done, we use APP-agent to
control the request processing concurrency in each compo-
nent server through re-allocating soft resources in the sys-
tem. Two approaches exist to limit the request processing
concurrency level of a server: adjusting the servers thread
pool (STP) size or controlling the upstream tier’s connection
pool size. The second one is possible because the connection
pool size in the upstream tier can limit the maximum num-
ber of concurrent requests flowing to the server. We use the
first approach (i.e., adjusting the STP size) to control the
request processing concurrency in Tomcat because Tomcat
may directly serve HTTP requests from clients, thus
no connection pool from upstream tiers to control with.
On the other hand, we use the second approach to control
the request processing concurrency in MySQL. This is
because we are able to control the DB connection pool size
of Tomcat, which is the direct upstream tier of MySQL.

The runtime adjustment of the STP size of Tomcat is sup-
ported by the latest Tomcat implementation. Tomcat regis-
ters STP as an MBean in the hosting Java Virtual Machine
(JVM), which allows a remote Java program (e.g., our APP-
agent) to fetch or change the STP size through remote
method invocation (RMI). However, the DBConnP parame-
ter is not included in Tomcat server MBeans. We need to
find a way to expose the capabilities of managing this
parameter dynamically.

There are two methods to manage the DBConnP size in
Tomcat. The first method is to dynamically change and load
the Tomcat JDBC connection pool configuration file, how-
ever, this method requires change of the DB connection
pool implementation of the original application. The second
method is to implement our own MBean exposing the
management interface of the DBConnP parameter, which
is similar to the management of STP in Tomcat. Since the
second method is less intrusive and can be easily applied
to other Java-based servers, we choose the second method
to implement the management module of DBConnP in
Tomcat as part of our APP-agent component.

5 EXPERIMENTAL EVALUATION

Here we evaluate how effectively does DCM perform when
comparing to other state-of-the-art system scaling solutions

under six realistic bursty workload scenarios. Concretely,
we compare the performance of a 3-tier application
equipped with two system scaling management frame-
works: DCM and the hardware-only scaling framework
“EC2-AutoScale” [23] provided by Amazon AWS. The latter
one has been widely used in academic research [24], [25],
[26] and industry practices. We will show that DCM outper-
forms “EC2-AutoScale” in both the system tail latency and
throughput because of intelligent control of request process-
ing concurrency during the system scaling process.

5.1 DCM Evaluation with Concurrency-
Aware Models

We have implemented both DCM and EC2-AutoScale in
our VMware ESXi 6.0 cluster environment. With EC2-
AutoScale, customers can set threshold values (usually the
CPU utilization) to dynamically add or remove VMs from
an Auto Scaling group, which specifies the type and the
upper bound of VMs to scale [27]. Amazon CloudWatch is
used to monitor resource utilization. Concretely, EC2-Auto-
Scale uses Amazon CloudWatch to monitor resource utiliza-
tion and trigger the scaling activities once the monitored
resources exceeds the predefined threshold. We set the con-
trol period for both controllers to be 15-second, which has
been used in other state-of-the-art control policies [14], [28].
To avoid performance instability caused by bursty work-
load, we also adopt the “quick start but slow turn off” VM
scaling policy learned from Gandhi’s et al. AutoScale
work [2], as described in more detail in Section 4.1.

We evaluate the effectiveness of the two controllers
using six realistic workload traces (Fig. 8) collected from
the real-world production systems [29], [30]. These traces
are categorized by Gandhi et al. in their AutoScale paper [2].
To fit the capacity of our experiment environment, we scale
these workload traces such that the maximum number of
concurrent users is 7,500, and the duration of each trace is
12 minutes.

Fig. 9 shows the timeline comparison between the DCM
and the EC2-AutoScale cases under the same “Large var-
iations” workload (see Fig. 8a). The four subfigures in the
left column show the DCM case and those in the right col-
umn show the EC2-AutoScale case. In both cases the system
has the same initial hardware configuration 1-1-1, with the
default soft resource allocations 1,000/100/80. Comparing
Figs. 9a and 9b, the DCM case shows relatively stable per-
formance all the time while the EC2-AutoScale case has
three obvious performance deterioration periods (50s�90s,
227s�259s, and 530s�560s). The interesting observation is
that all the three periods of performance degradation are
the periods when the bottleneck tier of the system is about
to scale (see Figs. 9d and 9f).

Taking the first period 50s�90s in Fig. 9b for example,
EC2-AutoScale presents a large response time spike and sig-
nificant throughput drop. During this period, we observe
that the original one Tomcat server scales to two at 67s
because the Tomcat CPU utilization exceeds the scaling
threshold (see Fig. 9d). We note that the system per-
formance already starts to deteriorate before the second
Tomcat adding in. This is because the scale-out activity is
triggered only after the 15-second control period. Interest-
ingly, the system performance degrades even further when

Fig. 8. Workload traces we use for experiments.

WANG ET AL.: INTEGRATING CONCURRENCY CONTROL IN N-TIER APPLICATION SCALING MANAGEMENT IN THE CLOUD 863

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

the second Tomcat adds into the system. This is because of
the increased request processing concurrency in MySQL
after the Tomcat scaling out. Once the second Tomcat adds
in, MySQL becomes the new bottleneck tier. Due to the
newly added Tomcat, the Tomcat tier now is able to send
doubled concurrent requests to the downstream MySQL
(from the default 80 DB connection pool size to 160) (see
Fig. 9h). High concurrent requests in MySQL cause low

efficiency of MySQL CPU (see Fig. 3b) and thus low
Queries-Per-Second (QPS, throughput of MySQL) as shown
in Fig. 9h. The system performance eventually returns to
normal after the second MySQL instance added to the sys-
tem at time mark 90s as shown in Fig. 9f. The second perfor-
mance deterioration during the period 227s�259s is similar
as the first one when the third Tomcat and MySQL are
added to the system due to the continual increase of

Fig. 9. Performance degradation of EC2-AutoScale compared to DCM under the same “Large Variation” workload. The left side figures are for DCM
while the right side are for EC2-AutoScale. The system in both cases starts with the 1-1-1 configuration and the default 1,000/100/80 soft resource
allocation, however, DCM outperforms the EC2-AutoScale case once system scaling actions occur.

864 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

workload. The third performance deterioration period
530s�560s is more interesting. The MySQL tier scales in
from two instances to one at 528s due to the decreased
workload. Then in the next control period high workload
suddenly floods to the MySQL tier, and the only left-over
MySQL instance encounters high request processing con-
currency (160), causing low QPS (see Fig. 9h).

On the other hand, there is only moderate performance
degradation in the DCM case during the three periods men-
tioned above under the same workload (see Fig. 9a). This is
because DCM dynamically reallocates soft resources in both
Tomcat andMySQL to the “optimal” level based on themodel
prediction, thus both of them perform efficiently during the
temporarily overloaded periods, thus achieves much more
stable performance compared to the EC2-AutoScale case.

Readers may find out that the fundamental problem of
the performance deterioration in the EC2-AutoScaling case is
because of the scaling-out activities lagging of the workload
increase, which leads to temporary high concurrency of the
servers with degraded efficiency in the bottleneck tier. A sim-
ple solution is to reduce the control period to let the system
respond fast, however, too small a control period will make
the system unstable under bursty workload [31]. Even if we
reduce the control period, the preparation period for a newly
added VM taking effect still takes time. For example, Gandhi
et al. report 30s�1 min for launching a KVM-based VM [32].
In our experimental environment, a ESXi host needs 15s to
launch a VM. Some more advanced approach may scale out
the system proactively based on the prediction of work-
load [3], [28], however, predicting n-tier applicationworkload
such as e-commerce is a well-known research challenge
because of the bursty nature of the workload (e.g., Slashdot
effect [10]). So temporary overloading of the system is
unavoidable in practice and DCM can help stabilizing system
performance during the temporary overloading periods.

Fig. 9 also shows that DCM achieves higher resource effi-
ciency than EC2-AutoScale because DCM achieves better
performance while using the same (if no less) amount of
hardware resources. For example, both the Tomcat and
MySQL tier in DCM and EC2-AutoScale scales up to 3
server instances during the 700 seconds experimental
period. The fundamental reason is because DCM is able to
dynamically adjust the software resource allocations of the
servers in the system to more efficiently utilize the underly-
ing hardware resources (e.g., CPU).

5.2 Performance Comparison Under Other Traces

The experiments in Fig. 9 are conducted when the target sys-
tem starts with the default configuration 1,000/100/80, show-
ing that DCM outperforms EC2-AutoScale significantly.
What if the system starts with initially optimal concurrency
setting? Here we show that, static concurrency setting, even
optimal at the beginning, may cause significant performance
degradation when the target system scales to a different size.
We show this case by conducting the experiments using the
“Steep tri phase” workload trace, where the system starts
with initially optimal allocation of software resources in both
DCM and EC2-AutoScale. We changed the initial system
hardware configuration from 1-1-1 to 1-4-1, meaning that the
system initially consists of one Apache web server, four Tom-
cat servers, and one MySQL database server. Such initial

configuration makes sense because the number of application
servers (Tomcat here) is usually larger than that of the data-
base servers in a typical n-tier system since database is more
likely to be the system bottleneck. Based on our concurrency-
aware model, the optimal software resource allocation for the
system should be 1,000/20/9 (1,000 threads in the Apache
web server, 20 threads and 9 database connections in a Tom-
cat server). Such a setting is optimal because: (1)MySQL is the
bottleneck server at the beginning, thus we should optimize
the request processing concurrency in MySQL, which is 36
based on ourmodel (2) there are four Tomcat servers, thus the
optimal database connection pool size of each Tomcat should
be 9, so the maximum number to concurrent requests that are
allowed to flow to the downstreamMySQL is 9*4¼ 36. Fig. 10
shows that DCM performs much better than EC2-AutoScale
under the workload trace Steep tri phase. This is because the
system scales-in to 1-1-1 due to the lowworkload at the begin-
ning. As the workload starts to increase at the period around
300s, EC2-AutoScale can not scale-out either Tomcat or
MySQL because the static small database connection pool size
(9) becomes the new system bottleneck, causing low utiliza-
tion of Tomcat andMySQLCPU, thus can not trigger any scal-
ing-out activities to handle the increasedworkload.

Fig. 11 shows the throughput comparison results bet-
ween DCM and EC2-AutoScale under the other four repre-
sentative workload traces (see Fig. 8). In most cases DCM
has more stable throughput performance than EC2-Auto-
Scale, the root cause has been explained before and we do
not repeat here. The only exception is the “slowly varying”
workload trace case. Although DCM does not have long
sharp throughput drop as EC2-AutoScale during the system
scaling out phase (between 380 to 420 s), its throughput has
large variation between 420 to 510 s. This is because the sys-
tem under control reaches the scaling out limit here. The
EC2-AutoScale framework has a scaling policy in which a
user has to set a scaling out limit of VMs in the Auto Scaling
group [27]. To compare DCM and EC2-AutoScale in realistic
scenarios, we set the scaling out limit of both the Tomcat tier
and the MySQL tier to be 3 VMs each. Under the “slowly
varying” workload trace case, the system already reaches
the scaling out limit between 420 to 510 s because of the
steady high workload period (see Fig. 8c), and the system
performance starts to become unstable during this period as
shown in Fig. 11b.

We further summarize the the system response time
comparison results under all the workload traces in Table 3.
We choose the RT95 and RT99 as the comparison metrics,
which represent 95th and 99th percentile response time,
respectively. The DCM case outperforms the EC2-AutoScale
case uniformly under different workload traces. Even for
RT99, we can see that the DCM case still keeps the response
time below 500 ms, which (or even lower) is a common
Service Level agreement (SLA) requirement for most mod-
ern e-commerce websites [28], [32], [33].

Discussion. Although DCM has been demonstrated to
work effectively when scaling a small-scale 3-tier applica-
tion, DCM also applies to large scale web applications
where each tier has tens to hundreds of VMs. As long as the
concurrency of components/tiers changes resulting from
the system scaling, we need to re-adjust the concurrency
setting after the system scaling in order to efficiently utilize

WANG ET AL.: INTEGRATING CONCURRENCY CONTROL IN N-TIER APPLICATION SCALING MANAGEMENT IN THE CLOUD 865

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

the underlying hardware resources. For large systems, the
effectiveness of DCM highly depends on the workload vari-
ation pattern; for example, if the ratio of the turned-on/off
VMs over the total number of VMs in one tier is large after
the system scaling, then DCM should work more effectively
since the concurrency change to downstream tiers is also
large. On the other hand, if the ratio of the turned-on/off
VMs is small, then our DCM should be less effect since the

change of request processing concurrency in the system is
also small.

6 RELATED WORK

Feedback Control Based Resource Adaption. Most previous
research in this category [2], [4], [6], [28], [32], [34], [35]
shares the similar goal: meet the QoS requirements such as

Fig. 10. Performance degradation of EC2-AutoScale compared to DCM under the same “Steep tri phase” workload. The 1-4-1 system initially starts
with the optimal allocation of software resources in both cases, however, the DCM case shows much more stable performance than the EC2-
AutoScale case by comparing (a) and (b).

866 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

bounded response time while minimize the cost (either
operation or infrastructure). These research efforts can be
further classified into two groups: reactive approaches and
predictive approaches.

Reactive approaches [2], [5], [28] use either system-level
(e.g., CPU utilization) or application level (e.g., system
response time, queue length) feedback signals to determine
when to scale the system. Due to the reactive nature, the sys-
tem usually already suffered the performance damage
before the newly added VMs starting to share load due to
the unavoidable and sometimes very long setup time (e.g.,
up to minutes [32]).

Predictive approaches [3], [4], [26], [36] works well for
workloads with periodic patterns. The long setup time could
be avoided once the controller accurately predicts the work-
load and takes scaling actions upfront. However, n-tier web
applications naturally have bursty workload in both macro
level (see Fig. 8) and micro level [31]; it is non-trivial to make
accurate prediction and add new VMs into the system ahead
of the long setup time. In fact our work complements both
the reactive and predictive approaches. No matter which
approach is chosen, when a controller decides to scale out/
in, reallocating soft resources is necessary to maximize the
efficiency of underlying hardware resources.

QueuingModel for Performance Prediction.Modeling of n-tier
applications has been studied for performance prediction and
systemmanagement. Urganonkar et al. [37] propose a queue-
based model to capture the performance characteristics of
each tier and application idiosyncrasies. This model focuses

on the relationship between number of sessions and average
response time, while our work focuses on the concurrency
management in each tier. Newell et al. [38] present a latency
oriented model, which is applied in the SEDA-based single
server environment. Their main focus is to optimize the
threads allocation among different stages in one server while
our problem domain is in n-tier application scaling manage-
ment in cloud. Franks et al. [39], [40] propose a layered queu-
ing network model which characterizes the dependencies of
software and hardware resources across nodes in different
tiers of a distributed system. However, their model does not
take the impact of workload concurrency on the sensitivity
of server performance into account. Our research focus is to
ensure the optimal request processing concurrency in the
system to efficiently utilize the critical hardware resource
even after system scaling.

Software Performance Engineering. Software Engineering
approaches has been explored for system performance
optimization. For example, Zheng et al. [41] proposed an
auto-generation technique of configuration files for Internet
services such as n-tier applications. Their focus is to remove
various mis-configuration caused by manual operations. On
the other hand, our objective is to optimize performance
through soft resources on-line adaptation in the system scal-
ing management. Gunther et al.[17] proposed a methodology
to characterize the relationship between server performance
and threads concurrency in a single server environment.
Maji et al. [42] investigated some important parameters
(e.g., MaxClients and KeepaliveTimeout) of an Apache web

Fig. 11. Throughput comparison between DCM and EC2-AutoScale under the other four realistic bursty workload traces.

TABLE 3
Response Time Performance Comparison Between Autoscale and DCM Under Different Traces

Percentile Response
Time (ms)

Large Variation Quick varying Slowly varying Big Spike Dual Phase Steep Tri Phase

RT95
EC2-AutoScale 1,027 904 1,087 525 622 485

DCM 125 28 206 111 57 56

RT99
EC2-AutoScale 3,566 2,229.99 3,228 1,777 1,378 1,710

DCM 226 105 352 198 223 136

WANG ET AL.: INTEGRATING CONCURRENCY CONTROL IN N-TIER APPLICATION SCALING MANAGEMENT IN THE CLOUD 867

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

server and see how they affect the server’s performance
in a shared cloud environment. Their focus is to reduce the
interference from the co-hosted VMs by reconfiguring those
parameters.

7 CONCLUSION

In this paper we show the importance of soft resource allo-
cations in scaling n-tier applications in the cloud. Through
extensive experiments using a representative n-tier web
application benchmark (RUBBoS), we demonstrate that
scaling an n-tier system by adding or removing VMs with-
out appropriately re-allocating soft resources (e.g., server
threads and connections) may lead to significant perfor-
mance degradation of the system (Section 2.2). We build a
concurrency-aware model that combines some operational
queuing laws and the fine-grained measurement data of the
system to determine a near optimal concurrency setting of
each tier in the system (Section 3). We integrate the model
into our dynamic concurrency management framework to
intelligently reallocate soft resources of each tier during
the system scaling process (Section 4). Our experiments
using six real-world bursty workload traces demonstrate
that DCM can achieve significantly shorter tail latency while
higher resource efficiency compared to hardware-only scal-
ing solutions (Section 5).

ACKNOWLEDGMENTS

This research has been funded by US National Science
Foundation by CISE’s CNS (1566443), Louisiana Board of
Regents under grant LEQSF(2015-18)-RD-A-11, and grants
from Fujitsu. Q. Wang and H. Chen contributed equally to
this work.

REFERENCES

[1] Memcached - a distributed memory object caching system. Web-
site, Aug. 2018. [Online]. Available: https://memcached.org//

[2] A. Gandhi, M. Harchol-Balter, R. Raghunathan, andM. A. Kozuch,
“AutoScale: Dynamic, robust capacity management for multi-tier
data centers,” ACM Trans. Comput. Syst., vol. 30, no. 4, 2012,
Art. no. 14.

[3] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “AGILE:
Elastic distributed resource scaling for infrastructure-as-a-serv-
ice,” in Proc. 10th Int. Conf. Autonomic Comput., 2013, pp. 69–82.

[4] C. Z. Xu, J. Rao, and X. Bu, “URL: A unified reinforcement learn-
ing approach for autonomic cloud management,” J. Parallel
Distrib. Comput., vol. 72, no. 2, pp. 95–105, 2012.

[5] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight
resource scaling for cloud applications,” in Proc. 12th IEEE/ACM
Int. Symp. Cluster Cloud Grid Comput., 2012, pp. 644–651.

[6] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement
learning towards automating resource allocation and application
scalability in the cloud,” Concurrency Comput.: Practice Exp.,
vol. 25, no. 12, pp. 1656–1674, 2013.

[7] T. Lorido-Botr�an, J. Miguel-Alonso, and J. A. Lozano, “Auto-
scaling techniques for elastic applications in cloud environments,”
Dept. Comput. Archit. Technol., Univ. Basque Country, Bizkaia,
Spain, Tech. Rep. EHU-KAT-IK-09–12, 2012.

[8] Q. Wang, S. Malkowski, D. Jayasinghe, P. Xiong, C. Pu,
Y. Kanemasa, M. Kawaba, and L. Harada, “The impact of soft
resource allocation on n-tier application scalability,” in Proc. 25th
IEEE Int. Parallel Distrib. Process. Symp., 2011, pp. 1034–1045.

[9] OW2, “Rubbos.” Website, Aug. 2018. [Online]. Available: http://
forge.ow2.org/projects/rubbos/

[10] S. Adler, “The slashdot effect: An analysis of three internet
publications,” Mar. 1999. [Online]. Available: http://ldp.dvo.ru/
LDP/LG/issue38/adler1.html

[11] Apache, “Jmeter.” Website, Aug. 2018. [Online]. Available:
http://jmeter.apache.org/

[12] P. J. Denning and J. P. Buzen, “The operational analysis of queue-
ing network models,” ACM Comput. Surveys, vol. 10, no. 3,
pp. 225–261, 1978.

[13] J. Dilley, R. Friedrich, T. Jin, and J. Rolia, “Measurement tools and
modeling techniques for evaluating web server performance,” in
Proc. Int. Conf. Modelling Techn. Tools Comput. Perform. Eval., 1997,
pp. 155–168.

[14] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning
modeling for virtualized multi-tier applications in cloud data cen-
ter,” in Proc. IEEE 3rd Int. Conf. Cloud Comput., 2010, pp. 370–377.

[15] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, and M. Surendra,
“Controlling quality of service in multi-tier web applications,” in
Proc. 26th IEEE Int. Conf. Distrib. Comput. Syst., 2006, pp. 25–25.

[16] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. Amsterdam, The Netherlands: Elsevier, 2011.

[17] N. J. Gunther, S. Subramanyam, and S. Parvu, “A methodology
for optimizing multithreaded system scalability on multi-cores,”
No. arXiv: 1105.4301, May 2013.

[18] Q. Wang, S. Malkowski, Y. Kanemasa, D. Jayasinghe, P. Xiong,
C. Pu, M. Kawaba, and L. Harada, “The impact of soft resource
allocation on n-tier application scalability,” in Proc. 25th IEEE Int.
Parallel Distrib. Process. Symp., 2011, pp. 1034–1045.

[19] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messag-
ing system for log processing,” in Proc. Int. Workshop Netw. Meets
Databases, 2011, pp. 1–7.

[20] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu,
M. Matsubara, M. Kawaba, and C. Pu, “Detecting transient bottle-
necks in n-tier applications through fine-grained analysis,” in
Proc. 6th Int. Conf. Cloud Comput., 2013, pp. 31–40.

[21] S. Malkowski, M. Hedwig, and C. Pu, “Experimental evaluation of
n-tier systems: Observation and analysis of multi-bottlenecks,” in
Proc. IEEE Int. Symp. Workload Characterization, 2009, pp. 118–127.

[22] Haproxy. Website, Aug. 2018. [Online]. Available: http://www.
haproxy.org/

[23] Amazon, “EC2 autoscaling.” Website, Aug. 2018. [Online]. Avail-
able: https://aws.amazon.com/autoscaling/

[24] A. H. Mahmud and S. Ren, “Online capacity provisioning for
carbon-neutral data center with demand-responsive electricity
prices,” SIGMETRICS Perform. Eval. Rev., vol. 41, no. 2, pp. 26–37,
Aug. 2013.

[25] S. Ren and Y. He, “COCA: Online distributed resource manage-
ment for cost minimization and carbon neutrality in data centers,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2013,
pp. 39:1–39:12.

[26] L. Zhang, Y. Zhang, P. Jamshidi, L. Xu, and C. Pahl, “Workload
patterns for quality-driven dynamic cloud service configuration
and auto-scaling,” in Proc. IEEE/ACM 7th Int. Conf. Utility Cloud
Comput., 2014, pp. 156–165.

[27] Amazon auto scaling group limits. Website, Aug. 2018. [Online].
Available: https://docs.aws.amazon.com/autoscaling/ec2/
userguide/as-account-limits.html

[28] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic
provisioning of multi-tier internet applications,” in Proc. 2nd Int.
Conf. Autonomic Comput., 2005, pp. 217–228.

[29] ITA, “The internet traffic archives: WordCup98,” 1998, [Online].
Available: http://ita.ee.lbl.gov/html/contrib/WorldCup.html

[30] NLANR, “National laboratory for applied network research. Ano-
nymized access logs,” 1995, [Online]. Available: ftp://ftp.ircache.
net/Traces/

[31] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Injecting realistic
burstiness to a traditional client-server benchmark,” in Proc. 6th
Int. Conf. Autonomic Comput., 2009, pp. 149–158.

[32] A. Gandhi, T. Zhu, M. Harchol-Balter, and M. A. Kozuch,
“SOFTScale: Stealing opportunistically for transient scaling,” in
Proc. 13th Int. Middleware Conf., 2012, pp. 142–163.

[33] H. Jayathilaka, C. Krintz, and R. Wolski, “Response time service
level agreements for cloud-hosted web applications,” in Proc. 6th
ACM Symp. Cloud Comput., 2015, pp. 315–328.

[34] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux, J. Lejeune,
J. Sopena, L. Arantes, and P. Sens, “Towards QoS-oriented SLA
guarantees for online cloud services,” in Proc. 13th IEEE/ACM Int.
Symp. Cluster Cloud Grid Comput., 2013, pp. 50–57.

[35] E. B. Lakew, E. Elmroth, et al., “Service level and performance
aware dynamic resource allocation in overbooked data centers,”
in Proc. 16th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput.,
2016, pp. 42–51.

868 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

https://memcached.org//
http://forge.ow2.org/projects/rubbos/
http://forge.ow2.org/projects/rubbos/
http://ldp.dvo.ru/LDP/LG/issue38/adler1.html
http://ldp.dvo.ru/LDP/LG/issue38/adler1.html
http://jmeter.apache.org/
http://www.haproxy.org/
http://www.haproxy.org/
https://aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-account-limits.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-account-limits.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

[36] L. Wang, J. Xu, H. A. Duran-Limon, and M. Zhao, “QoS-driven
cloud resource management through fuzzy model predictive con-
trol,” in Proc. IEEE Int. Conf. Autonomic Comput., 2015, pp. 81–90.

[37] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi,
“An analytical model for multi-tier internet services and its
applications,” ACM SIGMETRICS Perform. Eval. Rev., vol. 33,
no. 1, pp. 291–302, 2005.

[38] A. Newell, G. Kliot, I. Menache, A. Gopalan, S. Akiyama, and
M. Silberstein, “Optimizing distributed actor systems for dynamic
interactive services,” in Proc. 11th Eur. Conf. Comput. Syst., 2016,
pp. 38:1–38:15.

[39] G. Franks, D. Petriu, M. Woodside, J. Xu, and P. Tregunno,
“Layered bottlenecks and their mitigation,” in Proc. 3rd Int. Conf.
Quantitative Eval. Syst., 2006, pp. 103–114.

[40] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi,
“Enhanced modeling and solution of layered queueing networks,”
IEEE Trans. Softw. Eng., vol. 35, no. 2, pp. 148–161,Mar./Apr. 2009.

[41] W. Zheng, R. Bianchini, and T. D. Nguyen, “Automatic configura-
tion of internet services,” ACM SIGOPS Operating Syst. Rev.,
vol. 41, no. 3, 2007, Art. no. 219.

[42] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigating
interference in cloud services by middleware reconfiguration,” in
Proc. 15th Int. Middleware Conf., 2014, pp. 277–288.

Qingyang Wang received the BSc degree in
computer science and engineering from Wuhan
University, in 2004, the MSc degree in computer
science and engineering from the Chinese Acad-
emy of Sciences, in 2007, and the PhD degree
from the College of Computing, Georgia Institute
of Technology, in 2014. He is an assistant profes-
sor with the Department of EECS, Louisiana
State University-Baton Rouge. His research is in
distributed systems and cloud computing with a
current focus on performance and scalability

analysis of large-scale web applications (e.g., Amazon.com). He has led
research projects with LSU on cloud performance measurements, scal-
able web application design, and automated system management in
clouds. He is a recipient of the Best Student Paper award in IEEE Cloud
2011. He is a member of the IEEE.

Hui Chen received the bachelor’s and PhD
degrees from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2006 and
2012, respectively. He is currently a research staff
in the 2012Lab ofHuawei Company. Before joining
Huawei, he has worked as an assistant researcher
with Louisiana State University, Auburn University
and Shenzhen Institutes of Advanced Technology,
Chinese Academy ofSciences for totally five years.
His research interests include cloud computing,
energy efficiency management of data center, and
big data processing. He is amember of the IEEE.

Shungeng Zhang received the BEng degree
from the School of Software Engineering, HuaZ-
hong University of Science & Technology, in
2014. He is working toward the PhD degree in
the Department of EECS, Louisiana State Univer-
sity-Baton Rouge. He is currently working in the
cloud computing lab as a research assistant. His
research interest lies in performance and scal-
ability analysis of Internet server architecture,
aiming to achieve responsive web applications
running in the cloud. He is a member of the IEEE.

Liting Hu received the BSc degree in computer
science from the Huazhong University of Science
and Technology, China, and the PhD degree in
computer science from the Georgia Institute of
Technology. Her research is in the general area
of distributed systems and its intersection with
big data analytics, resource management, power
management, and system virtualization. She
interned at IBM T.J. Watson Research Center,
Intel Science and Technology Center for Cloud
Computing, Microsoft Research Asia, VMware,
and has been working closely with them. She is a
member of the IEEE.

Balaji Palanisamy received the MS and PhD
degrees in computer science from the College of
Computing, Georgia Tech, in 2009 and 2013,
respectively. He is an assistant professor with the
School of Information Science, University of Pitts-
burgh. His primary research interests lie in scalable
and privacy-conscious resource management for
large-scale distributed andmobile systems. At Uni-
versity of Pittsburgh, he codirects research in the
Laboratory of Research and Education on Security
Assured Information Systems (LERSAIS). He

received the Best Paper Award at the Fifth International Conference on
Cloud Computing, 2012. He is a member of the IEEE and is currently the
chair of the IEEECommunications Society Pittsburgh Chapter.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: INTEGRATING CONCURRENCY CONTROL IN N-TIER APPLICATION SCALING MANAGEMENT IN THE CLOUD 869

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 10,2023 at 18:27:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

