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Abstract

In the era of big data, the data-processing pipeline becomes increasingly distributed among multiple sites. To 
connect data consumers with remote producers, a public directory service is essential. This is evidenced by 
adoption in emerging applications such as electronic healthcare.

This work systematically studies the privacy-preserving and security hardening of a public directory service. 
First, we address the privacy preservation of serving a directory over the Internet. With Internet 
eavesdroppers performing attacks with background knowledge, the directory service has to be privacy 
preserving, for the compliance with data-protection laws (e.g., HiPAA). We propose techniques to adaptively 
inject noises to the public directory in such a way that is aware of application-level data schema, effectively 
preserving privacy and achieving high search recall.

Second, we tackle the problem of securely constructing the directory among distrusting data producers. For 
provable security, we model the directory construction problem by secure multi-party computations (MPC). 
For efficiency, we propose a pre-computation framework that minimizes the private computation and 
conducts aggressive pre-computation on public data. In addition, we tackle the systems-level efficiency by 
exploiting data-level parallelism on general-purpose graphics processing units (GPGPU). We apply the 
proposed scheme to real health-care scenarios for constructing patient-locator services in emerging Health 
Information Exchange (or HIE) networks.

For privacy evaluation, we conduct extensive analysis of our noise-injecting techniques against various 
background-knowledge attacks. We conduct experiments on real-world datasets and demonstrate the low
attack success rate for the protection effectiveness. For performance evaluation, we implement our MPC 
optimization techniques on open-source MPC software. Through experiments on local and geo-distributed 
settings, our performance results show that the proposed pre-computation achieves a speedup of more than 
an order of magnitude without security loss.
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1. Introduction

In the era of big-data, personal data is produced,
collected and consumed in digital forms, bringing
unprecedented convenience to the society. As data pro-
duction and consumption are distributed at different
sites, sharing person-specific data over the Internet

∗Corresponding author. Email: ytang100@syr.edu

becomes a popular application paradigm as widely
observed in a variety of domains ranging from elec-
tronic healthcare, social networks, Internet of things,
malware detection, to many others.

A public directory service is a crucial data-
sharing component. In a data-sharing pipeline, a
data consumer queries the directory service to locate
the producer sites that may have the documents of
interest. The directory service maintains the private
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producer-location information, and connects data
consumers and producers. For instance, in electronic
healthcare, HIE or Healthcare Information Exchange
is an emerging data-sharing platform [4, 9] where
the directory called locator service [1, 5, 8, 11] helps
a doctor (data consumer) find the electronic medical
records (EMR) of a visiting patient (data producer).
The data-location information (“which hospitals a
patient has visited”) may reveal privacy-sensitive
facts; for instance, knowing that a celebrity visited a
rehabilitation center, one can infer that s/he may have a
drug problem.
A naive way of constructing the directory is for

any data producer to directly publish its list of
associated people (e.g., the list of patients having
visited a hospital). However, this approach discloses
the private data-location information to network

adversaries performing traffic analysis. This privacy
disclosure leaks “identifiable information” and would
violate data-protection laws (e.g., HIPAA in USA [6],
EC95-46 in European Union [3] and various privacy
laws in Asian countries [49]) that govern the data-
sharing across borders in regulatory domains.
This work aims at providing a practical public

directory service over the Internet. We address
two salient features: 1) privacy preservation against
background-knowledge attacks, and 2) secure and

efficient multi-party construction of the directory
among distrusting data producers. In the following,
we elaborate on the two features and formulate the
research.
First, with the directory data bearing privacy and

being exposed to the public, it is imperative to preserve
privacy. Existing data-privacy and anonymization
techniques are inadequate for preserving privacy in the
public directory. Differential privacy [31] is for the use
in a statistics database but is insufficient for protecting
directory data where the published data retains the
individual records (not some statistical digests). Data
anonymization notions such as k-anonymity [59], l-
diversity [59], t-closeness [45] preserve privacy at a
finer granularity, but is not specific to the background
knowledge attacks in domain applications. In addition,
the random noises used in existing techniques are
insufficient as it lacks the needed models to make the
noises indistinguishable (from true positives) in the
presence of background knowledge.
We propose to model the background-knowledge

exploited in the domain applications and accordingly
select noises such that they are indistinguishable with
true positive records. We propose a top-k similarity
algorithm for selecting the indistinguishable noises
in background knowledge attacks. Specifically, we
aim at making the distribution of noises similar to
that of true positives. The similarity is measured
on the dimension of external, public knowledge. For

instance, in HIE, the similarity between hospitals
(producers) can be defined by hospital specialties and
geographic locations. The top-k computation strikes a
balance between the practical computation complexity
and the needs to counter the background knowledge
attacks of exponentially growing possibilities. While
our background-knowledge modeling may not be
exhaustive, our noise-selecting approach is effective in
HIE and other relevant scenarios as evaluated in our
study based on real-world data.

Second, we address the multi-party construction
of the directory service from data producers. A
defining characteristic is that data producers operate
autonomously and generally do not trust each other
(e.g., hospitals who compete on the same customer
basis). Yet, producers need to publish their private
data to construct the directory service. To guarantee
the provable security, one can model the directory-
construction problem as a secure Multi-Party Compu-
tation (MPC) problem [24, 26, 34, 46, 64] where a joint
computation with inputs private to different parties is
evaluated securely. A naive instantiation of the direc-
tory publication is by embedding entire publication
logic in an MPC protocol, which however causes high
overhead and is impractical, because of the expensive
cryptographic primitives used in constructing an MPC.
A conventional remedy is to identify the private part
of the computation (e.g., by data-flow analysis [17, 52])
and to map only this part to the MPC. Unfortunately,
this approach is not effective in our problem, as the pri-
vate and public data flows of the directory-construction
logic are inter-tangled and separating them becomes
difficult.

We tackle the efficiency of secure multi-party direc-
tory construction. We do so at both the protocol level by
proposing pre-computation techniques and the systems
level by exploiting data-level parallelism. Concretely,
we propose an aggressive pre-computation technique
that minimizes (instead of separating) the private com-
putation for multi-party directory publication. Con-
cretely, we conduct the pre-computation by consider-
ing all possible values of private data. It then applies
expensive MPCs to a simple selection logic, that is,
select from the list of pre-computed results by the
actual value of private data. At the first glimpse, this
optimization technique may seem counter-intuitive as
the pre-computation augments the input space expo-
nentially. In practice, particular to our directory con-
struction problem, its effectiveness relies on the appli-
cation characteristic: The public computation is usu-
ally bulky and private identity data is much smaller.
For instance, achieving the privacy of t-closeness [45]
entails complex computation on the public background
knowledge, such as similarity/distance calculation. In
addition, we propose several policies that vary in the
degree of pre-computation aggressiveness. The policies
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can help the optimization technique adapt to concrete
scenarios with different private-data sizes.
To improve the system-level efficiency, we exploit the

data-level parallelism native in multi-party construc-
tion and implement the pre-computation on General-
Purpose Graphics Processing Units (GPGPU). We
implement our design on real MPC software [24] and
conduct performance evaluation in both local and geo-
distributed settings. Our evaluation verifies the pre-
computation speedup by more than an order of magni-
tude over the conventional approaches. Through eval-
uation on real-world datasets, the assurance of privacy
preservation is also verified.
The contributions of this work are listed as following:

• We address the privacy preserving of directory
data under background knowledge attacks. We
model the background knowledge and propose
techniques to generate indistinguishable noises
even with background knowledge.

• We analyze our noising techniques with various
background-knowledge attacks. We also conduct
an empirical evaluation on real-world datasets
and demonstrate the effectiveness of the protec-
tion.

• We address the security and efficiency in multi-
party directory construction. We propose secure
multi-party pre-computation and tailor it for the
directory construction. The observation is that
the public background knowledge in directory
publication can be isolated from expensive multi-
party computation (MPC). We implement this
optimization design on real MPC software.

• We propose a systems-level optimization tech-
nique for efficient directory construction. The
optimization is by conducting data-parallel pre-
computation and by implementing it on GPGPU.

• We conduct performance evaluation and
demonstrate an order of magnitude performance
speedup.

The rest of the paper is organized as following:
§ 2 formulates the research problem. It presents
background-knowledge attacks in § 3 and noising-
based protection techniques in § 4. The directory
construction with efficiency is presented in § 5.
Performance evaluation is presented next in § 6. § 7
surveys the related work and § 8 concludes the paper.

2. Research Formulation

This section presents the system and threat model,
the security goals, survey of existing techniques, and
preliminary on privacy-preserving data publication
algorithms.

2.1. System Model

The target eco-system involves three roles: data
producers, data consumers, and the host of directory
service. Each data producer owns a table of personal
records where each record is keyed by the identity of
the owner of this record. Given a person of interest,
a data consumer would want to find his/her records
at all producer sites. The directory service helps the
consumer “discover” relevant data producers who
maintain the result records.

Formally, sharing personal records in our system
works in two steps: First, a data consumer interested
in a person’s records poses a query to the directory
service and looks up the list of producers who
have this person’s records. Then, the consumer
contacts individual producers and locally searches
the records there. In this process, the query is
based on a personal identity, which we assume is
known globally. In practice, this global identity can
be maintained physically by an identity-management
server or constructed virtually such as by patient record
linkage in healthcare [40, 62].

Directory

Directory 

Pubilication

1 1

1 1

0 1

H1 H2
H1H2

Table of 

personal records

Data producers

Figure 1. System model of public directory: Two data producers
share three people’s records. In the directory, value one means

presence and zero means absence (e.g., producer H1 does not

have gray person’s records). The underscored one in red is a
false positive in the sense that producer H2 does not have the

record of the white person but the directory records the opposite
(for the sake of privacy preservation).

We assume each data producer locally has a data-
protection mechanism in place (e.g., user authentica-
tion and authorization) that prevents an external party
from accessing the records without the data owner’s
consent. Figure 1 illustrates the abstract model of our
system. The model is applicable to data-sharing appli-
cations in regulatory domains; A concrete scenario is
about sharing patient electronic medical records (EMR)
in healthcare information exchange networks, where
data producers are hospitals, personal data are patients’
EMRs and consumers can be physicians diagnosing
patient. The details of the scenario will be elaborated
in § 2.4.
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The target computation of this work is about
building the directory. A baseline is that each data
producer sends its local access-control list to the
third-party directory which enforces the access control
when serving the directory requests. This baseline
however becomes problematic when the directory host
is untrustworthy (e.g., by third-party clouds): First,
enforcing access control with integrity entails user
authentication and authorization to be done by a
trusted party. Second, the local access-control list
reveals the binding between a person and her data
producers, which can be privacy-sensitive in many
applications. For instance, in Healthcare scenarios, the
binding between a patient and a rehabilitation center
can reveal that this person may have a drug problem.
Even when the directory is protected by the host, an
adversary can easily recover the binding by performing

network traffic analysis and extracting this information
from the side-channel of the consumer access trace.
The life cycle of the public directory is of two

stages: serving consumers’ online requests and being
constructed from multiple data produvers. In the
following, we present the security/privacy goals
respectively in the two stages.

2.2. Privacy of Serving the Directory

The directory is served in the public with all containing
data exposed. As mentioned, the directory data bears
privacy and can be a target attracting adversaries. While
there are existing data-privacy definitions, such as k-
anonymity [59], l-diversity [59], t-closeness [45], we
consider the background-knowledge attacks. The attack
leverages external knowledge about the data producers
and personal records to distinguish the noises in the
privacy notions. In § 3 we present the detailed data
model and background knowledge used in attacking
the public directory service.
The privacy preservation of public directory under

background knowledge requires that the false positive
producers are indistinguishable from true positives,
such that the distribution of true positives is similar
to that of false positives. What’s noteworthy is that the
similarity is measured on the dimension of external,
public knowledge. For instance, in HIE, the similarity
between hospitals (producers) can be defined by
hospital specialties and geographic locations. In this
work, we mainly use the notion of ǫ-privacy [61] to
drive further presentation. The main idea of ǫ privacy is
to bound the number of noises or false positives in the
published list of producers by a percentage of ǫ.

2.3. Security of Multi-Party Directory Construction

When constructing the directory, it involves with mul-
tiple mutually distrusting producers. In our problem, a

data producer runs autonomously and distrusts exter-
nal parties including peer producers. Data producers
get engaged in the distributed computation for publish-
ing privacy-preserving directory where they exchange
information with each other.
In the threat model, an adversary can eavesdrop all

messages being exchanged during the distributed direc-
tory publication. For a producer, the adversary can be
a network eavesdropper or a peer producer. Formally,
this is the semi-honest model used in formulating a
secure multi-party computation problem [21], where
the adversary, being a participant in the computation,
honestly follows the protocol execution but is curious
about any data that flows through her during the execu-
tion. Multiple adversaries may collude. Given a network
of n producers, we consider the collusion can be up to
n − 1 peer producers.
The security goal is to assure the data security

in the directory-publication process. Our security
goal is to ensure perfect privacy (in an information-
theoretic sense). Informally, it means an adversary’s
view only depends on her input and public output. In
other words, the messages exchanged in the protocol
execution when the input of other parties take one value
are “indistinguishable” from those when the input of
other parties take another value. More formal treatment
of the MPC data security can be found on classic
texts [26].
Our threat model and security goal fit in the

real-world requirement for policy compliance in data
sharing. In many regulatory domains, a data producer
has the responsibility of protecting the personal data
it maintains and complying data-protection laws. For
instance, HIPAA [6] states any identifiable information
about a patient cannot be shared to any third-party,
without the patient’s consent.
Non-goals of this work include directory data

authenticity, producer-site data protection, key man-
agement, etc. Encrypting data on the directory is
orthogonal, as the content of directory is anyway dis-
closed to the adversary of network eavesdropper per-
forming traffic analysis.

2.4. Applications: Healthcare Locator

One of motivating applications of P3I is the public
locator service in healthcare information exchange
networks (HIE). HIE is a health data-sharing network
where the data is patient electronic medical records
(EMR), data producers are hospitals where each patient
visit results in the generation of new entries in an
EMR, and data consumers are clinical doctors. A typical
application scenario is effective sharing patient’s EMR
during a clinical visit where the doctor diagnosing a
patient needs to view the relevant EMRs of the patient
which are produced and stored in remote hospitals.
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This scenario features privacy-sensitive data. Patient
EMRs are personal, privacy-sensitive documents, the
sharing of which must comply HIPAA [6]. Each hospital
has its local information-security infrastructure in place
(e.g., access control and user authentication).

A directory service, called HIE locator, can be used
to facilitate the EMR sharing between hospitals and to
help discovery of a patient’s previous hospitals. In the
normal case, the list of hospitals is discovered by the
clinical doctor asking for it. However, this is error prone
(e.g., the patient forgets about it) and is inapplicable
in emergency (e.g., the patient is sent to hospital
unconscious). The privacy-preserving directory can
help automate the data discovery and complement the
workflow offline to improve the quality of healthcare.

Hospital H1

Public 

cloud

H2 
True positive

H3 
False positive

H4

Alice

� Locator.Construct (H1,H2,H3,H4)

HIE Locator

C
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a
l 

d
ia

g
n

o
s
is

Physician

Access 

control

EMR

Figure 2. Data-sharing workflow in the HIE: The figure illustrates

how Alice’s medical record (EMR) stored on Hospital H2 is used. It shows

the entire life cycle of this EMR: The EMR was produced when Alice paid

a clinical visit to H2 (1). During the current visit in Hospital H1, Alice’s

physician requires accessing her EMR in H2 (3). The physician first

contacts the third-party locator service hosted on a public cloud (which

is constructed at an earlier time (2) ) and obtains the list of candidate

hospitals H2 and H3. Here, H3 is a noise for privacy preservation

purpose. The physician then contacts both H2 and H3, and find EMR on

H2 (4). Note that the physician can do so because she has the credential

to access data on both H2 and H3. For an adversary obtaining the list

of H2 and H3 , she cannot distinguish which hospitals are noise as she

does not have the credential.

Figure 2 illustrates the abstract workflow of sharing
EMRs in HIE networks. In a clinic scenario, Alice,
the patient, is seeing a physician (data consumer) who
interacts with HIE network (directory) to locate the
hospitals Alice visited before (data producer). In real
HIE applications, the locator service runs healthcare
software (e.g., OpenEMPI [11]) and is hosted by
Amazon AWS alike public clouds. The public clouds
are not trustworthy and it entails the use of our
privacy-preserving directory protocol for publishing

the HIE locator. Concretely, the life cycle of an EMR,
including the data-sharing flow, can be divided into
three stages: 1) EMR production where Alice’s EMRs
are generated or updated to reflect her clinical visit;
here we assume Alice has given consent on delegating
the EMR to the “producer” hospitals. 2) Locator
(periodical) publication where the EMR updates are
published to the public directory of HIE locator in a
privacy-preserving fashion. This is when our directory
publication protocol is being invoked in the overall HIE
workflow. 3) Locator service where the locator serves the
physician’s request to locate Alice’s producer hospitals
(3.1) and find the EMRs of interest there (3.2). In
particular for stage 3.2, after the physician obtains the
list of potential hospitals (including both true and false
positive ones), he will contact each hospital and find
EMRs by going through the local user authentication
and access control there.

3. Background-Knowledge Attacks

3.1. Attack Framework

Background knowledge: In this work, the background
knowledge (B) includes patient demographic informa-
tion (e.g., age, gender, home address) and hospital
profiles (e.g., specialties and location). Specifically, we
represent the profile of each hospital by two metrics, a
specialty vector and its geographic location (e.g., longi-
tude and longitude). The specialty vector is a vector of
ranking scores of the hospital in all specialty categories.
The background knowledge we consider in this work is
realistic and can be obtained from public data sources;
for instance, the hospital profile in terms of location
and specialties is public information available on the
USNEWS website [7]. And patient demographic infor-
mation is from various online census datasets [10].

Defense by noising: P3I.Query(p) presents false
positive hospitals, serving as noises,1 to obscure the
identities of true positive hospitals which are privacy-
sensitive to patient p. The definition of true/false
positive and negative hospitals are the following.

Definition: For patient p, a hospital that she visited
is defined to be a truly positive hospital, denoted by
TP. The set of all true positive hospitals is denoted by
I0 = {TP}.

A hospital that the patient has never visited before is
defined to be a negative hospital, denoted by N .

Definition: In the P3I, a noise hospital is a hospital
which the patient did not visit but the P3I claims that
the patient visited. A noise hospital is a false positive
and denoted by FP.

1Noise and false positive are interchangeable in this paper.
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A hospital that appears positive in the P3I can be a 
true positive or a false positive, and the set of positive 
hospitals is denoted by I = {P} = {T P} ∪ {FP}.

Table 1. Notations

P: positive hospital FP: true-positive hospital
N : negative hospital TP: false-positive hospital

p: patient I0 = {TP}: true-positive hospitals

ǫ-privacy goal: Given the EMR location of a patient
to a list of positive hospitals, one type of information
leakage that is inevitable to achieving 100% search
recall is that the adversary knows “all the true-positive
hospitals are in the P3I.Query result.” Beyond that,
we assume there is no direct information leaked on a
patient’s visited hospitals. For instance, the adversary
does not know the total number of hospitals visited by
a patient. Our privacy-preservation goal is to achieve ǫ-
privacy for all considered attacks:
Definition: Given an attack that makes a probabilis-

tic claim, ǫ-privacy is defined to be that the success rate
of the attack is statistically upper bounded by ǫ.
Background knowledge attacks: The information

flow of an attack is that the adversary can use the
publicly available P3I to “reversely” infer the true-
positive EMR location I0, and then from I0 (or I in
some cases) infer the sensitive disease information of

the patient. The information flow is I[
a
7→ I0]

b
7→ disease

where [] means optional.
The background knowledge can facilitate the attack

and can be used in two places in the attack information
flow: 1. Inferring disease in step b: Knowing hospital
specialties can assist in step b to infer the patient

disease. The information flow by this attack is I/I0, B
b
7→

disease, where B represents background knowledge.
2. Identifying noises in step a: The background
knowledge can be used in step a to distinguish true
positive hospitals from the noises. The information flow

by this attack is I , B
a
7→ I0(

b
7→ disease).

3.2. Concrete Attacks

Under the above attack model, we consider three spe-
cific attacks. They are classified by attack information
flow and background knowledge (as in Table 2). Attack
I does not rely on any background knowledge and aims
at recovering true positive hospitals in step a. Attack
II exploits background knowledge on the hospital spe-
cialty and aims at inferring patient diseases in step b.
Attack III exploits various background knowledge on
hospital and patient profile and aims at recovering true
positive hospitals in step a. For different attacks, we
present different top-k policies and analyze how the
same ǫ-privacy assurance is achieved by P3I.

Table 2. Attacks: The considered attacks are classified by the type

of background knowledge used in the attack and the information flow

through which the adversary gets to the privacy-disclosing fact on “the

patient’s disease.”

Attacks Background Knowledge Target in info. flow

Attack I ∅ Step a

Attack II Specialty Step b

Attack III Hospital profile, Step a
patient demographic info

Table 3. Modeling P3I data and background-knowledge: This

table describes a scenario that involves one patient and five hospitals that

appear to be positive in P3I, h1, . . . , h5. We consider two cases: one that

all five hospitals are true positives, and one that among the five, h2 and

h3 are the true positives. Background knowledge about hospital specialty

implying patient gender, and geographic distance between hospital and

patient home is presented. We also show the non-matching scores (me

and mf ) on different background knowledge.

Hospitals h1 h2 h3 h4 h5

Case 1 TP TP TP TP TP
Case 2 FP TP TP FP FP

Specialty Cancer Rehab Cancer Woman’s center Rehab
Gender F/M F/M F/M F F/M
me 1 1 1 0 1
Geo-distance 0.4 0.5 1 4 5
mf 2.5 2 1 .25 .2

Attack I. In Attack I, the adversary randomly picks
one hospital from {h1, . . . , h5} without any external
knowledge, and makes a claim that the patient visited
the hospital. The claim, if it’s true, leaks the sensitive
information (knowing a patient visits a rehabilitation
center discloses her drug addiction problem). As
illustrated by case 1 in Table 3, when all five hospitals
are true positive, the claim is always true and any type-I
attack always succeeds.

Attack II. With the background knowledge of hospital
specialties, the adversary can infer the health condition
of the patient. The attack follows the information flow:

I , B
b
7→ disease.

The attack is successful when all positive hospitals
end up with few specialties. Consider the extreme case
that all positive hospitals are of the same type, say
“rehabilitation centers”. Then, nomatter which hospital
is true positive, the adversary can be certain that the
patient must have an addiction-related problem. Note
that this is different from attack I where the hospital
in the claim must be true positive to have the attack to
succeed.

Attack III. In Attack III, the adversary takes on step
a to distinguish noise and true-positive hospitals by
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exploiting the knowledge on patient and hospital
profiles. The patient profile in consideration is her
demographic information such as home address,
gender, age groups, etc. And the hospital profile
includes the hospital’s specialties, location, etc.

The attack works by the common knowledge on
linking patients and hospitals. For instance, given a
male patient, the adversary can easily determine that a
woman’s health center showing up in a P3I search result
must be a false positive. Likewise, to a teenage patient,
a hospital specialized in geriatrics is unlikely to be true
positive. A hospital in the New York State is probably a
false positive to a patient living in the State of Georgia.
In general, the “non-matching” relationship through
background knowledge can assist to reveal the identity
of a noise hospital, thus improving the attack success
rate. We formulate the relationship by non-matching
score m.

Definition: Given the background knowledge B on
patient p and negative hospital N , the non-matching
score mB(p,N ) measures the unlikelihood that the
patient has visited the hospital. The non-matching score
can also be expressed between a true positive hospital P
and a negative hospital N , as mB(P,N ).

Depending on the application scenarios, the non-
matching score can take various values.

• Exact-match: The non-matching score takes a
binary value, indicating whether the hospital
matches the patient. In the previous example
involving patient gender and hospital specialty,
the non-matching score is 1 (0) when a male
(female) patient and a woman’s health center are
considered. The implication of the non-zero score
is that the woman’s health center should not be
chosen as a noise for a male patient.

• Fuzzy-match: The non-matching score takes
values that are continuous. In the previous
example involving a New York hospital and a
patient in Georgia, the non-matching score is
measured by the geographic distance between
the two. The intuition is that the more distant a
hospital is to the patient’s location, the less likely
there is a match between the two. The implication
is that a hospital too far away from a patient
should not be chosen as a noise for the patient.

4. Attack Mitigation with Centralized Directory
Construction

We now describe P3I.Construct({∀H}), that is, how P3I
is constructed with the required level of noises. In this
section, we consider the centralized P3I construction
by assuming a hypothetical authority that exists and is
trusted by all hospitals. Wewill remove this assumption

and present the secure and distributed P3I construction
in the next section.
Asymmetric Deterministic Response: In the P3I

construction, we allow a negative hospital to be
published as a false positive. On the other hand, we
do not allow false negatives, that is, a true positive
hospital will always be published as positive. This rule,
illustrated in Formula 1, leads to 100% search recall2

and prevents any legitimate hospital from escaping the
search result.
We call this publication primitive by asymmetric

deterministic response (or ADR), reminiscent of the
classic randomized response [63]. Comparing the
randomized response, our ADR is asymmetric in
that it treats binary input (N or P) differently or
“asymmetrically”, and is deterministic in that it flips
input 0 based on certain deterministic conditions
(described by top-k policies in § 4.1).

ADR(N ) →















P, chosen as noise by Algo. 1

N , otherwise

ADR(P) → P

Top-k Algorithm: Given a patient whose location
information to hospitals is I0 (i.e. the list of visited
hospitals), the P3I construction problem boils down to
noise generation, that is, properly choosing a certain
number of false positive hospitals. To a specific patient,
the selection favors negative hospitals that may or may
not be similar to the set of true positive hospitals (as
will be discussed in § 4.1). We thus define a hospital-
to-hospital-set distance, D(N, I0), which measures the
dis-similarity between a negative hospital N and the
set of all true positive hospitals of a patient, I0. The
selection stops when certain condition is met. The top-k
algorithm is illustrated in Algorithm 1.

Listing 1: topk(I0)
Sensitive input I0: true positive hospitals visited by a
patient
Non-sensitive output I = {FP} ∪ I0: all positive hospi-
tals

{FP} ← NULL
{P} ← I0

WHILE ( s t o p − c o n d i t i o n ( {FP} ) )
F i n d him s . t .

D(him, {P}) = min∀i<I0∪{FP}D(hi , {P})
{FP} . add (him )
{P} . add (him )

2Search precision in P3I is sacrificed for better privacy preservation.
The implication of low search precision is that there are extra
hospitals the record-searcher needs to contact.
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RETURN {FP} ∪ I0

4.1. Mitigation and Security Analysis

ǫ-Privacy under Attack I. Recall that the topk function
in Algorithm 1 exposes two methods to configure: stop
condition and distance definition; we call those two top-
k policy. To mitigate Attack I, we use a top-k policy
as below. Here, we re-use the notation of FP to denote
the number of false positive hospitals. The distance is
simply set to constant 1 which gives negative hospitals
equal chances to be chosen as noise.

Attack-I mitigation:

• Top-k stop condition:

FP ≥ TP(ǫ−1 − 1) (1)

• Distance definition: DI (N, {P}) = 1

Proposition: P3I can mitigate Attack-I with assured
ǫ-privacy.

Proof. From the top-k stop condition in Equation 1, we
can have the following.

FP ≥ TP(ǫ−1 − 1)

⇒
TP

FP + TP
≤ ǫ (2)

Given Attack I follows the information flow I
a
7→ I0,

the success rate is:
Pr(I0|I) =

Pr({TP})
Pr({TP}∪{FP})

= TP
TP+FP ≤ ǫ

ǫ-privacy thus holds.

ǫ-Privacy under Attack II. Straw-man by l-Diversity:
Attack II might be mitigated by l-diversity [48] which
in the P3I context works by making a patient’s diseases
“anonymous” among l alternative diseases. However,
l-diversity does not automatically lead to ǫ-privacy:
While the former has restricts the number of different
specialties, the latter restricts the number of negative
specialties.3

ǫ-Privacy Assurance The intuition of the protection
is to choose enough false positive hospitals such that
the false positive specialties suffice to bound the rate
that the adversary can successfully pick a true-positive

3 To be more specific, consider a counterexample against adopting
l-diversity in P3I. In Table 3 (case 1), 3-diversity, is already there
without any noises. Because all true-positives have totally three
specialties, that is, Cancer, Rehab, Woman’s center. However, given
no noises, the success rate of Attack II can be as high as 100%, leading
to a situation that achieves 3-diversity yet no protection in the sense
of ǫ-privacy.

specialty. Formally, the top-k policy that assures ǫ-
privacy under Attack II is described below. Here,
FPs (TPs) denotes the number of false (true) positive
specialties. A false positive specialty is a disease that a
patient does not have but there is at least one positive
hospital that is specialized in.

Attack-II mitigation:

• Top-k stop condition:

FPs ≤
TPs

1 − ǫ−1
(3)

• Distance definition:

DII (N, {Pi }) = ‖S(N ) \ ∪iS(Pi )‖

= ‖ ∩i [S(N ) \ S(Pi )]‖ (4)

The distance DI I between a negative hospital N and
a set of positive hospitals {Pi } is defined in Equation 4.
Here, S(·) denotes the vector of specialties of a hospital.
We use hamming distance to capture the difference (\)
between two specialty vectors. The distance definition
favors the noises with different specialties from the true
positive specialties. Thus, the number of false positive
hospitals needed can be minimal, resulting in better
search precision and performance.
Proposition: P3I can mitigate Attack-II with assured

ǫ-privacy.

Proof. From the top-k stop condition in Equation 3, we
can have the following.

FPs ≤
TPs

1 − ǫ−1

⇒
FPs

FPs + TPs
≤ ǫ (5)

Attack II follows the information flow I , B
a
7→ disease

and is about recovering true positive specialties TPs
from the false positive ones FPs. Then, the success rate
is:
Pr(disease|I , B) = FPs

FPs+TPs
≤ ǫ

Thus, the success rate is bounded by ǫ, hence ǫ-
privacy.

ǫ-Privacy under Attack III (Exact-match). We use the
following top-k policy to mitigate Attack III with exact-
match semantics.

Attack III mitigation (exact-match):

• Top-k stop condition:

FP ≥ TP(ǫ−1 − 1) (6)

• Distance definition:

DIII (N, {Pi }) =
∑

i

mB(N,Pi ) == 0?0 : ∞ (7)
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Proposition: P3I can mitigate Attack-III with assured
ǫ-privacy in the sense of exact-match semantic.

Proof. Given Attack III follows the information flow

I , B
a
7→ I0, the success rate is:

Pr(I0|I , B) =
TP

TP + FP0
(8)

Here, we consider two types of false positive
hospitals, the matching ones with zero-valued score
(FP0) and non-matching ones with one-valued score
(FP1). FP1 can be distinguished by the adversary with
background knowledge and thus should be discarded
in accounting the success rate.
Our distance in Equation 7 is defined in such a

way that any non-matching hospitals would lead to a
distance of an infinitely large value, and thus will not
be chosen by Algorithm 1. In other words, there are no
non-matching hospitals that can be chosen as noises,
that is,

FP1 = 0

⇒ FP = FP0 + FP1 = FP0 (9)

Combining Equation 6, 8, 9, we can arrive at ǫ-
privacy:
Pr(I0|I , B) ≤ ǫ

ǫ-Privacy under Attack III (Fuzzy-match). We use the
following top-k policy to mitigate Attack III with fuzzy-
match semantics.

Attack III mitigation (fuzzy-match):

• Top-k stop condition:
∑

∀{TP}mB(TP)
∑

∀P∈{FP}∪{TP}mB(P)
≤ ǫ (10)

• Distance definition:

DIII (N, {Pi }) = min
i

mB(N,Pi ) (11)

Under Attack III with fuzzymatching, what a rational
adversary would do is to bias the attack towards
positive hospitals with a small non-matching score.
Specifically, we consider the adversary pick a positive
hospital with probability inversely proportional to the
non-matching score.4 In the previous example about a
Georgia patient, the adversary would avoid choosing
the New York hospital due to its high non-matching
score (or long geographic distance).
Proposition: P3I can mitigate Attack-III with assured

ǫ-privacy in the sense of fuzzy-match semantic.

4Another strategy is for an adversary to deterministically pick the
hospital with the maximal score, which ignores all score information
other than the maximal one.

Proof. To the rational adversary, the success rate can be
modeled by Equation 12.5

Pr(I0|I , B) =

∑

∀TP∈I0 mB(TP)
∑

∀P∈I mB(P)
(12)

The intuition of Equation 12 can be best illustrated by
the Georgia patient example. Assuming there are five
hospitals in the P3I search result, and the distances of
the five hospitals to the patient home are 2.5, 2, 1, .25, .2
as in Table 3. Considering case 2 where there are two
true positives, h2 and h3, the success rate following the
calculation in Equation 12 is Pr(I0|I , B) = 2+1

2.5+2+1+.25+.2 .
Plugging Equation 10 into Equation 12, we arrive at

the ǫ-privacy: Pr(I0|I , B) ≤ ǫ.

5. Secure Multi-Party Directory Construction with
Optimization

In this section, we present the secure directory
publication and the optimization techniques based on
pre-computation. The general idea is to abstract the
computation at different levels and precompute the
computation at a specific level. This way, we present a
series of precomputation techniques (in § 5.3, § 5.4) that
vary in their aggressiveness. To start with, we present
the naive approach based on multi-party computation
(MPC) without precomputation. We first introduce the
background on MPC.

5.1. Preliminary: Multi-Party Computation

In our protocol, we make use of existing multi-party
computation (MPC) protocols whose background is
presented here. In general, the purpose of MPC is
to evaluate a function whose inputs are provided by
different parties. Each input is private to its provider
party. The protocol of MPC ensures that it does
not leak any information about the private inputs
even when the computation states are exchanged and
shared. Different computational models exist in MPC,
including circuit and RAM. After decades of studies,
there are a variety of MPC protocols realizing different
computation models, specialized for different network
scales (for two, three or many parties). In particular,
the protocol of GMW [34] is for multi-party, Boolean-
circuit based MPC that is constructed based on the
primitives of secret-sharing and oblivious transfers. The
protocol of multi-server Private-Information Retrieval
(ms-PIR) [36, 41] is a RAM-based MPC with multiple
servers interacting a client on the computation of
a simple selection operation (e.g., like a database
selection).

5The basic assumption is that all true-positive hospitals have a non-
matching score close to zero.
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MPC causes high overhead, mainly due to the 
“data -oblivious” representation of the computation 
and cryptographic primitives being used in the 
construction. For more-than-three party computation, 
the use of secret sharing also cause high overhead as 
the shares need to be broadcast in the entire network. 
This unscalability (in data and network sizes) makes 
it challenging to apply MPC for real-world distributed 
applications.
In practice, the common way MPC is used for 

many-party distributed applications is based on the 
“outsourcing” paradigm. That is, given multiple input 
parties, the GMW protocol distributes the input 
shares to a small number of computing parties (e.g., 
three parties as in the Sharemind system [22]). The 
data security heavily relies on the non-collusion 
assumption of the computing parties. In our work, 
we deem this outsourcing model unsuitable for the 
target application. In HIPAA, a hospital cannot share 
patient data with any third-party entity without patient 
consent. Therefore, our problem considers each input 
party as computing party and the MPC protocol needs 
to run directly on a medium or large network.

5.2. MPC-based Publication

Privacy-preserving directory publication is an MPC 
problem as the input data are spread across multiple 
producers and are private to them. The naive way 
to realize directory publication is thus to place the 
computation as in List 1 into the MPC; this approach
is denoted by M0. Given the circuit representation 
of MPC program, the algorithm in List 1 can be 
easily converted to a circuit; the algorithm is a nested 
loop with pair-wise distance computation, and the 
data/control flow is essentially oblivious. In particular, 
we represent each producer by a vector (e.g., specialties 
of a hospital) and the similarity between producers 
can be realized by hamming distance. More complex 
string similarity computation is realized by dynamic-
programming based algorithms which are also data 
oblivious. The security of this approach inherent from 
that of MPC.

This MPC approach is inefficient especially in big-
data sharing scenario where there are a large amount 
of personal records. This is due to the expensive 
cryptographic primitives (e.g., oblivious transfers, etc) 
used in MPC protocols. To improve the performance, 
it relies on reducing the use of MPC in the distributed 
directory publication.

5.3. Full Precomputation Scheme

To reduce the use of MPC, we propose application-
level precomputation. Given the topK(T , S) algorithm 
in List 1 where only input T (the true producers) is 
private, we pre-compute the algorithm on the public

input S and all possible values of private input T .
The precomputation result is a table of results under
different T values. Then, we use the actual value of
T to privately look up this table and to securely
retrieve the result entry. This stage can be realized
in MPC using protocols such as multi-server private
information retrieval (ms-PIR) [36, 41]. Formally, the
full precomputation is to compute topK(2S , S) where 2S

is the power set of S which includes all possible values
of private T . This scheme is named M1.

The precomputation is effective in our directory-
publication problem, provided the following character-
istics. First the topK algorithm invokes some complex
computation such as distance computation (i.e. Line 7
in List 1) which involve background knowledge about
the producer profiles (e.g., hospital specialties and
geographic locations). Precomputation avoids placing
these complex computations in MPC which reduces
overhead. Second, the precomputation only needs to be
done once and its results can be reused for publishing
different people’s entries. Third, given the indepen-
dence between different values, one can leverage data-
parallelism to facilitate the computation. Note that the
precomputation needs to be done for all possible value
of T , that is, the power set of all producers; although
the possibility combination grows exponentially with
the number of producers, we only consider the data-
producer network is moderately large. For instance, in
healthcare, a regional or statewide HIE typically con-
sists of less than hundreds of hospitals in a consortium.

The security of precomputation relies on the fact
that no private value is involves in the precomputation.
Private data only occurs in the actual MPC computa-
tion.

5.4. Selective Precomputation Schemes

The full precomputation scheme considers the direc-
tory computation of topK as a whole for precompu-
tation. In this section, we dive into the computation
topK() and selectively precompute certain computation-
intensive parts in topK(). Concretely, our selective tech-
nique considers topK consists of distance-computation
at different granularity. For one, it is to pre-compute the
distance between T and S − T , considering all possible
values of T . This way, we have the selective precom-
putation, M2. For the other, it is to pre-compute the
distance between all pairwise data producers. This yield
the selective precomputation scheme, M3.

In M2, the precomputation considers all possible
values of true-producer T . Given a value T ∗, it
precomputes the set-wise distance between T ∗ and S −
T ∗. This produces a distance table for the subsequent
MPC. In the MPC, it first follows the computation in
List 1 until Line 6. Then for Line 6 to 9, it is replaced
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by a secure lookup into the precomputation table. The
lookup is realized by the ms-PIR protocol as in M1.
In M3, it precomputes the pair-wise distance matrix.

That is, for any producer s1 and s2 ∈ S, it precomputes
their distance and stores it in a table. Then, in the MPC
stage, it follows the algorithm in List 1 except that
the call to dist(T[i],S[j]) is replaced by a ms-PIR
lookup to the precomputation table.
The security of these precomputation schemes are

straightforward, as all private-data related computa-
tions are placed inside theMPC/ms-PIR protocol whose
security is proven. The precomputation only considers
the public data.
In summary, the topK computation for privacy-

preserving directory publication can be modeled as a
process that issues a series of call to dist(T[i],S[j]).
Our pre-computation schemes partitions this computa-
tion process at different “break” points and selectively
places a certain partition to precomputation and the
rest of computation into MPC/ms-PIR. Table 4 illus-
trates the three pre-computation schemes from this
computation-partitioning perspective.

5.5. Data-Parallel Pre-Computation

The pre-computation handles multiple independent
input values. There is innate data parallelism that can
be exploited for better performing pre-computation.
In our system, we realize it by data-parallel pre-
computation tasks where each task with distinct
input value runs in a dedicated thread. Different
threads run concurrently and without synchronization.
We implement this data-parallel pre-computation
framework on both multi-core CPU and general-
purpose GPU (GPGPU). Given the large number of
possibilities in input values (and the simplicity of
each task), GPGPU lends itself to the parallel pre-
computation due to its scalable execution model.
In implementation, the CPU implementation is based

on pthread library [13]. We pack multiple possible
input values in one thread and the number of threads
is twice the number of hyper-threads in hardware. The
GPGPU implementation is based on CUDA library [2].
In this case, the underlying NVidia-Tesla GPU has
global memory of 5 GB and threads run in one grid
of 65,635 blocks, each of 1024 GPU threads. This
architecture allows to scale the number of threads to 227

and can easily handle the producer networks of more
than 27 parties.

6. Evaluation

In this section, we study the feasibility of our technique
for HIE applications in a holistic manner. Lacking
benchmark dataset in existing literature, we first
present a real healthcare dataset to populate the HIE
data producers and locator. This sets up a target

scenario for the performance study which we will
present next. The purpose of performance evaluation is
to answer the following question:What is the overhead of
privacy-preserving directory publication? and how effective
is the proposed precomputation technique in performance
optimization?

6.1. Dataset

USNEWS dataset The USNEWS dataset [7] is used
to model hospital profiles. The dataset considers
16 primary hospital-specialty categories, such as
cardiology and rehabilitation (the entire list of
specialties is shown in Table 6). For each category, a
hospital is associated with a rating of three grades:
“Nationally ranked”, “High-performing”, and “Null”.
We map “Nationally ranked” to value 2, “High-
performing” to value 1, and “Null” (i.e. the hospital
does not have the department for this specialty)
to value 0. Each hospital is associated with other
profile information, such as the resident city and
state. Currently, we select the dataset to include 40
top-ranked hospitals (out of 180) in the New York
metropolitan area.

Open-NY Health Dataset ("Sparcs") To model
patient-wise hospital visits, we use an OPEN-
NY dataset, called Sparcs [14]. The public dataset
includes inpatient discharge records with identifiable
information removed. At the finest granularity,
it provides per-visit per-patient information (e.g.,
patient age group, gender, race, ethnicity and other
de-identified information), the facility information
(e.g., zip-code, name, service areas) and other per-
visit information (e.g., admission type, the length
of stay). Given the identifiable patient information
is removed, we model the per-patient visit history
by aggregating the records based on available quasi-
identity information (i.e. age group, race, ethnicity,
etc).

6.2. Protection Effectiveness

In our security analysis, we consider a probabilistic
attacker and the ǫ-privacy assurance, which come with
two limitations: one is that it only considers attacks
against one specific patient, and the other is that ǫ-
privacy provides assurance in a statistical sense. To
complement the security analysis, we move forward to
measure the variance of success rate in a broader sense,
that is, considering all patients.
Given the flexibility that the attacker now has in

choosing which patient to attack, we consider the
attacker can naturally exhaust all her options and
target on the most vulnerable patient. The attacker
can gauge the vulnerability of a patient by various
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Table 4. Partitioning topK algorithm to the precomputation-MPC framework: For notation in this table, T , S are true and all

producers as in the topK() algorithm in List 1. Di for i = 1, 2, 3 are the table storing precomputation results. MPC is secure
multi-party computation protocol and msPIR is a special MPC protocol for multi-server private information retrieval.

Pre-compute MPC+msPIR

M0 - topK(T , S)

M1 D1 = topK(2S , S) LookupmsPIR(D1, T )

M2 D2 = dist(2S , S) topK2MPC (T , S) invoking LookupmsPIR(D2, T )
M3 D3 = dist(S, S) topK3MPC (T , S) invoking LookupmsPIR(D3, T [i], S[j])

Table 5. Specialty catalog in the USNEWS dataset

Table 6. Specialty catalog in the USNEWS dataset

IndexName Index Name
0 Cancer 8 Neurology & Neurosurgery
1 Cardiology & Heart Surgery 9 Ophthalmology
2 Diabetes & Endocrinology 10 Orthopedic
3 Ear, Nose & Throat 11 Psychiatry
4 Gastroenterology & GI Surgery 12 Pulmonology
5 Geriatrics 13 Rehabilitation
6 Gynecology 14 Rheumatology
7 Nephrology 15 Urology

Table 7. Experiment platform

New York Server
CPU Xeon(R) E5-2640 v3 @ 2.60GHz

2 processors/16 cores/32 hyper-threads
Memory 245 GB

California Server
CPU Xeon(R) E5-2687W @ 3.10GHz

2 processors/16 cores/32 hyper-threads
Memory 256 GB
GPGPU Nvidia Tesla K20c

1 grid/65535 blocks/227 threads
Global Memory 5119MB

metrics, such as, the one with the smallest number of
specialties in her positive hospitals. Then, given the P3I
is configured with a user-defined ǫ, we measure the
actual success rates (of attacks on vulnerable patients)
and report those that are larger than epsilon. In the
experiment, we consider epsilon = 0.4 and 0.5. Note
that we deliberately avoid to use average success rate
(by multiple patients), since it is the largest success rate
that makes the system vulnerable.

Overall effectiveness. We compare the case of P3I with
alternatives, including no-protection and grouping-
based PPI. “No-protection” is the baseline which
publishes raw location meta-data (i.e., patient-to-
hospital information) without any noises. Grouping
PPIs [19, 61] are based on the idea ofK-anonymity (note
to avoid confusion, we use K for K-anonymity, and k for
top-k), which works by randomly grouping K hospitals
together. We present our study results in Table 8. Here,
for P3I, we use the policy of adaptively choosing top-k to
achieve a constant diversity l. To make the comparison
fair, we use the same budget for injecting noises; that
is, the amount of total false positives in P3I is kept

the same to that in grouping-based PPI. In the table,
it is clear that P3I achieves significantly smaller attack
success rate and number of incidents.

Table 8. Effectiveness of P3I

Avg. success rate (> .5) No. of incidents (> .5)

P3 I 0.537651 14
No-protection
(Broadcasting)

0.782902 2349

PPIs [19, 61] 0.68231 1298

Effectiveness of top-k algorithm. We first report all
incidents with success rates higher than the user-
defined ǫ = 0.5. The results are reported in Figure 3a
where the x axis is the index of patients (in our
processed health dataset, there are totally 280, 000
patients). It is easy to see that the no-protection
approach results in much more densely distributed
dots than P3I under various configurations of k.
Furthermore, it is often the case that no-protection
results in 100% success rate, implying the real-world
dataset is vulnerable to probabilistic attacks when
without protection. This result is consistent to Table 8
and explains the difference there.

We then manually vary the value of k to measure
its effect on the attack success rate. The experiment
result is presented in Figure 3b and 3c. It is interesting
to see that it is not always the case that setting a
larger k results in better protection; the protection
in terms of larger-than-configured-ǫ incident rate is
minimized at k = 6. Our preliminary inspection shows
that this is relevant to the fact that real-world dataset
is erroneous and does not fully match with some of
our assumptions (e.g., patient does not always go to the
nearest hospitals).

6.3. Performance of Directory Publication

We first conduct micro-benchmark to test the perfor-
mance of data-parallel precomputation. Then, we test
the overall performance of secure directory publication,
with a machine of multi-core processor and in a geo-
distributed setting.
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Figure 4. Pre-computation performance with GPGPU

Micro-benchmark of Pre-computation. The pre-
computation is implemented with data parallelism
(as described in 5.5) and runs on multi-core CPU and
GPGPU. We report the time to pre-compute on GPGPU
and that on CPU in Figure 4. This figure also includes a
baseline which is the 5% execution time of running M0

(i.e. without any precomputation).

The performance result in Figure 4a shows that
GPGPU based pre-computation is effective in reducing
the execution time, and its overhead is negligible
comparing the baseline. Concretely, the CPU based
precomputation has its execution time to quickly
surpass the baseline when the network grows over 15
parties. The GPGPU-based precomputation has much
lower overhead than the baseline for any network with
less than 28 parties.

For more than 28 parties, all GPU threads are
occupied and it will need multiple iterations in
transferring data from GPU’s global memory to host
memory. As a result, the GPGPU precomputation time
increases exponentially, also reported in the Figure 4b
(note that the y axis is of log scale). With a single
GPGPU card, the precomputation time surpasses the

baseline when the network is larger than about 40
parties. Here, we stress that the typical scale of a
healthcare consortium is usually medium-sized (e.g.,
tens of hospitals and clinical centers). For nation-
wide healthcare systems, there may be thousands of
hospitals. In this case, one can use more GPGPU cards
to do the precomputation in parallel, while retaining
the efficiency.

Overall Performance with MPC. The MPC-based imple-
mentation of directory publication is realized on the
GMW software [24], an open-source MPC software and
Percy++ [12], an open-source multi-server PIR soft-
ware. We note that our precomputation protocol only
relies on the general MPC and PIR interface and other
MPC “backend” software can be used in our proto-
col. The GMW protocol exposes a circuit-based pro-
gramming interface that requires MPC programmers
to write a generator for Boolean circuit encapsulating
the intended computation logic. At runtime, the GMW
protocol runs on multiple parties where each party
generates and executes the circuit by iterating through
all gates in the circuit (following a topologically sorted
order); for each gate, the evaluation is synchronized
across all parties. The GMW protocol makes bit-wise
use of two cryptographic primitives which provides
the security of the protocol, that is, secret sharing [57]
and oblivious transfer [54]. In particular, the per-gate
evaluation in GMW is to broadcast the shares of input-
wire bit to all the parties in the entire network. In
our application, we manually express the logic of topK
algorithm in the GMW Boolean circuit, and tightly
estimate the number of gates to pre-allocate so that the
unused GMW circuit can be optimized out. Our GMW-
based implementation consists of about 1500 lines of
C++ code.

Multi-processing execution platform: We first run
our protocol on a single node with multi-processing.
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Figure 5. Performance of directory publication based on precomputation and MPC

The machine specs are in Table 7 (the New York server).
In this setting, each process represents a data producer
and runs a GMW party. In the execution, each process
holds a dedicated copy of the entire circuit allocated in
its virtual-memory space and without shared memory.
The machine has memory large enough (245 GB in
total) to hold all circuit copies of the 39 parties without
paging.

Results on multi-processing: To measure the perfor-
mance of MPC, we used four metrics, the number of
AND gates (1), end-to-end execution time (2), memory
consumption (3) and communication costs (4). 1) We
report the number of AND gates in the compiled GMW
Boolean circuit. This metric helps evaluate the perfor-
mance in a hardware-independent fashion. We only
consider AND gates in a circuit and ignore other gates
(i.e., XOR gates) because evaluating XOR is free (i.e.
free-XOR technique [25]) and evaluating AND gates
dominates the cost. 2) We report the wall-clock time
from launching the first process to the completion of the
last process. 3) We report the size of the heap memory
in GMW that stores all circuit gates. It is measured
by the Valgrind framework (particularly the Massif
memory profiler [56]). 4) We report the party-to-party
communication overhead, by monitoring all outbound
messages through the socket port of each process using
IPTraf6.

In the experiment, we vary the number of parties
(or data producers) and present the result in Figure 5.
Figure 5a reports the result of AND gate number
and Figure 5b reports wall-clock running time. They
both show that the pre-computation based schemes
(i.e. M1,M2,M3) outperform the baseline without
pre-computation. Notably, the M1 scheme causes
the best performance with a speedup of 13 times
(comparing the baseline M0) in the setting of 39
parties. This result demonstrates the effectiveness of
pre-computation techniques that off-loads computation
from the expensive MPC. In terms of memory

6http://iptraf.seul.org/

consumption in Figure 5c, M1 and M2 are close,
reducing up to memory consumption roughly by an
order of magnitude comparing M0 and M3. It shows
that while M1 produces pre-computation results as
additional data, its much smaller circuit (for simple
lookup operation in ms-PIR) makes the overall saving
of memory footprint as compared to the baselineM0. In
Figure 5d, the communication overhead of M1 stays to
be the smallest among the four schemes, with a saving
of more than 2 orders of magnitudes comparing M0.
This is consistent with the result in the number of AND
gates.

Geo-distributed execution platform: We conduct
the experiment with two servers set apart more than
3000 miles (one server in the State of New York, and the
other in the State of California). The bandwidth is 100
Mbps. The specification of the two servers is illustrated
in Table 7. Each server runs half of the parties
with multiprocessing. Different parties communicate
through sockets. The precomputation runs only in one
server.

Results with geo-distributed execution report the
execution time of the four schemes in the geo-
distributed setting. The results are in Figure 6. For
comparison, we include the results in the single-node
setting. The execution time grows super-linearly with
the number of parties in a network. For M0, M2 and
M3, running them on two geo-distributed nodes leads
to longer execution time. Interestingly for M1, the geo-
distributed execution is faster than the single-node
one. In this case, the performance slowdown caused
by the slower communication channels is offset by the
performance gain from the extra hardware (e.g., CPU)
on multiple nodes. We suspect this performance result
is due to that the MPC is dominated more by the local
computations (on secret shares) and less by the network
communications.

7. Related Work
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Figure 6. Geo-distributed performance on the Internet

7.1. Privacy-Preserving Data Federation

Multi-party noise generation Distributed differential
privacy [30, 53, 63] is proposed to support privacy-
preserving aggregations. The randomized response [63]
provides differential privacy yet with uncontrollable
noises and loss of utility. PrivaDA [32] is proposed
to achieve the optimal utility and performance
optimization by adopting arithmetic circuit based MPC
for the noise generation. Existing multi-party noise
generation takes a randomized approach and mainly
targets for statistical aggregation (e.g., distributed
differential privacy). This is inapplicable to our
problem which features deterministic noise generation
for the rigorous privacy guarantee, and needs to serve
non-aggregation queries.

PPI Privacy-Preserving Index or PPI is proposed
to federate and index distributed access-controlled
documents [18, 19] and databases (e.g., patient
medical records in the HIE locator service) [61]
among autonomous providers. Being stored on an
untrusted server, PPI entails preserving the content
privacy of all participant providers or hospitals.
Inspired by the privacy definition of K-anonymity [59],
existing PPI work [18, 19, 61] follows the grouping-
based approach; it organizes providers into disjoint
privacy groups of size K , such that providers from
the same group are indistinguishable. However, K-
anonymity, while easy to construct, does not guarantee
high-quality privacy preservation. In addition, early
approaches of PPI construction [47, 60] are based
on randomized responses [63], an iterative protocol
that takes indefinite number of rounds to converge
and may produce incorrect result (with certain
probability). To avoid those drawbacks, ǫ-PPI combines
randomized responses with a minimal use of multi-
party computation to construct PPI correctly and
efficiently.

7.2. MPC Frameworks and Optimization

In the last decade, practical MPC has attracted
a large body of research work with a focus on
programming language support and optimization [16,
20–22, 24, 37, 43, 50, 55]. Practical MPCs are
built on top of cryptographic protocols, such as
Yao’s garbled circuits [64] or GMW protocol [34],
with protocol-level optimization, such as Oblivious
Transfer (OT) extensions [38], or for stronger security,
such as resilience with dishonest majority [27]. The
MPC protocols assume a circuit interface to express
the computation, and practical programming support
focuses on compiling a program written in a high-level
language into the circuit. Existing MPC protocols and
systems mainly focus on a small-scale computing that
involves 2 or 3 parties. To the general MPC problem,
a fundamental trade-off exists between performance
and computation generality; for instance, randomized
responses [63] and other techniques for privacy-
preserving data mining take an ad-hoc and domain-
specific approach, which can be efficient at scale. By
contrast, the general-purpose MPC is rather expensive.

MPCOptimization High performance overhead stays
to be one of the major hurdles to applying MPC in prac-
tice, which is partly caused by MPC’s fine-grained use
(e.g., per single bit) of expensive cryptographic primi-
tives, and the need to transfer all possible computation
results for the “obliviousness” of computation flow. Var-
ious optimization techniques are proposed to utilize the
programming semantics to reduce the circuit size and
depth (e.g., by using the hardware synthesis tools [28,
58]) and optimize the resource utilization (e.g., just-
in-time compilation and pipelined execution [37, 43]).
Program analysis [42] is used to automatically infer
privacy-sensitive data and constraints MPC only to the
sensitive data. [44] conducts pre-processing on verifi-
cation of MPC and results in general transformation
from a passively secure protocol to an actively secure
one. Our MPC optimization is currently specific to
the directory construction problem, while holding the
potential to apply to more generic computations.
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Some programming frameworks support high-level 
programming languages with compilers (e.g., Fair-
play(MP) for SFDL [21, 50], Sharemind for SecreC [39], 
CBMC-GC for ANSI C [33], PCF for C [43], Wyste-
ria for a high-level typed specification language [55], 
PICCO for C with extension [66]), while others expose a 
quite low-level circuit based interface (e.g., GMW [24], 
JustGarble [20], OTExtension [16]); particularly both 
boolean circuit (e.g., GMW) and arithmetic circuit (e.g., 
SEPIA [23]) are considered. In addition, some advanced 
technique designs based on hybrid model that combines 
both boolean or arithmetic circuits (e.g., ABY [29], 
TASTY [35], Wysteria [55]).

7.3. Anonymization Definitions

Publishing public-use data about individuals with-
out revealing sensitive information has received a 
lot of research attentions in the last decade. Var-
ious anonymization definitions have been proposed 
and gained popularity, including K-anonymity [59],
l-diversity [48], t-closeness [45], and differential pri-
vacy [31]. In addition, prior work [51] formally studied
the information leakage under background knowledge
attacks by formulating the problem using a proposed
declarative language. These anonymity notions how-
ever are generally inapplicable to the PPI problem –
they are mainly designed for statistic analysis or aggre-
gation style computation where the result is global per-
table data, while PPI needs to serve queries specific to
individual records.
r-confidentiality [65] is a privacy notion specific to

the PPI problem. It assumes a probabilistic attacker
on PPI and considers the increase of attack success-
rate with/without using the background knowledge. By
contrast, our proposed ǫ-privacy considers to bound the
attack success-rate (instead of the increase) which we
believe provides better privacy control.

8. Conclusion

This work presents an MPC-precomputation frame-
work tailored for privacy-preserving data publication
for data-sharing applications. The pre-computation
framework improves the performance by minimizing
the private-data computation and realizing the public-
data only pre-computation in a data-parallel fashion.
Several pre-computation policies are proposed with
varying degrees on the aggressiveness. It is demon-
strated that the proposed pre-computation scheme is
applicable in real health-care scenarios. Based on real
datasets and implementation on open-source MPC soft-
ware, the performance study shows that the proposed
pre-computation achieves a speedup of more than an
order of magnitude without security loss.

References

[1] CommonWell: http://www.commonwellalliance.org/.
[2] Cuda: https://en.wikipedia.org/wiki/cuda.
[3] Directive 95/46/ec of the european parliament and of

the council.
[4] GaHIN: http://www.gahin.org/.
[5] HealthEConnections: http://www.healtheconnections.org/rhio.
[6] HiPAA, http://www.cms.hhs.gov/hipaageninfo/.
[7] http://health.usnews.com/best-hospitals/area/new-

york-ny/specialty.
[8] NHIN Connect, http://www.connectopensource.org/.
[9] NHIN: https://www.healthit.gov.

[10] Ohio voter files: https://www6.sos.state.oh.us/ords/f?p=111:1.
[11] OpenEMPI: http://www.openempi.org/.
[12] Percy++/pir in c++: http://percy.sourceforge.net/.
[13] pthread: https://en.wikipedia.org/wiki/posix_threads.
[14] SPARCS: http://www.health.ny.gov/statistics/sparcs/.
[15] 2015 IEEE Symposium on Security and Privacy, SP 2015,

San Jose, CA, USA, May 17-21, 2015. IEEE Computer
Society, 2015.

[16] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner.
More efficient oblivious transfer and extensions for faster
secure computation. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013, pages 535–548, 2013.

[17] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and
J. Duggan. SMCQL: secure query processing for private
data networks. CoRR, abs/1606.06808, 2016.

[18] M. Bawa, R. J. Bayardo, Jr, R. Agrawal, and J. Vaidya.
Privacy-preserving indexing of documents on the
network. The VLDB Journal, 18(4), 2009.

[19] M. Bawa, R. J. B. Jr., and R. Agrawal. Privacy-preserving
indexing of documents on the network. In VLDB, pages
922–933, 2003.

[20] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway.
Efficient garbling from a fixed-key blockcipher. In
2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 478–492.
IEEE Computer Society, 2013.

[21] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a
system for secure multi-party computation. In P. Ning,
P. F. Syverson, and S. Jha, editors, ACM Conference on
Computer and Communications Security, pages 257–266.
ACM, 2008.

[22] D. Bogdanov, S. Laur, and J. Willemson. Sharemind:
A framework for fast privacy-preserving computations.
In Computer Security - ESORICS 2008, 13th European
Symposium on Research in Computer Security, Málaga,
Spain, October 6-8, 2008. Proceedings, pages 192–206,
2008.

[23] M. Burkhart, M. Strasser, D. Many, and X. A.
Dimitropoulos. SEPIA: privacy-preserving aggregation
of multi-domain network events and statistics. In
19th USENIX Security Symposium, Washington, DC, USA,
August 11-13, 2010, Proceedings, pages 223–240. USENIX
Association, 2010.

[24] S. G. Choi, K. Hwang, J. Katz, T. Malkin, and
D. Rubenstein. Secure multi-party computation of
boolean circuits with applications to privacy in on-
line marketplaces. In O. Dunkelman, editor, Topics in

16

Y. Tang et al.Y. Tang et al.

EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 01 2019 | Volume 6 | Issue 19 | e5



Privacy-Preserving Multi-Party Directory Services

Cryptology - CT-RSA 2012 - The Cryptographers’ Track
at the RSA Conference 2012, San Francisco, CA, USA,
February 27 - March 2, 2012. Proceedings, volume 7178
of Lecture Notes in Computer Science, pages 416–432.
Springer, 2012.

[25] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou. On
the security of the free-xor technique. In Theory of
Cryptography, pages 39–53. Springer, 2012.

[26] R. Cramer, I. Damgård, and J. B. Nielsen. Secure
Multiparty Computation and Secret Sharing. Cambridge
University Press, 2015.

[27] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and
N. P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In J. Crampton,
S. Jajodia, and K. Mayes, editors, Computer Security -
ESORICS 2013 - 18th European Symposium on Research
in Computer Security, Egham, UK, September 9-13, 2013.
Proceedings, volume 8134 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2013.

[28] D. Demmler, G. Dessouky, F. Koushanfar, A. Sadeghi,
T. Schneider, and S. Zeitouni. Automated synthesis
of optimized circuits for secure computation. In
I. Ray, N. Li, and C. Kruegel, editors, Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6,
2015, pages 1504–1517. ACM, 2015.

[29] D. Demmler, T. Schneider, and M. Zohner. Aby - a
framework for efficient mixed-protocol secure two-party
computation. In Network and Distributed System Security
Symposium (NDSS’15), Feb. 2015.

[30] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In S. Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, 25th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May 28 -
June 1, 2006, Proceedings, volume 4004 of Lecture Notes
in Computer Science, pages 486–503. Springer, 2006.

[31] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis.
In S. Halevi and T. Rabin, editors, TCC, volume 3876
of Lecture Notes in Computer Science, pages 265–284.
Springer, 2006.

[32] F. Eigner, M. Maffei, I. Pryvalov, F. Pampaloni, and
A. Kate. Differentially private data aggregation with
optimal utility. In Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC 2014,
New Orleans, LA, USA, December 8-12, 2014, pages 316–
325, 2014.

[33] M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart, and
H. Veith. CBMC-GC: an ANSI C compiler for secure
two-party computations. In A. Cohen, editor, Compiler
Construction - 23rd International Conference, CC 2014,
Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014. Proceedings, volume 8409 of Lecture
Notes in Computer Science, pages 244–249. Springer,
2014.

[34] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game or A completeness theorem for
protocols with honest majority. In A. V. Aho, editor,

Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, 1987, New York, New York, USA, pages 218–
229. ACM, 1987.

[35] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg. Tasty: tool for automating secure two-
party computations. In ACM CCS, pages 451–462, 2010.

[36] R. Henry, F. G. Olumofin, and I. Goldberg. Practical PIR
for electronic commerce. In Proceedings of the 18th ACM
Conference on Computer and Communications Security,
CCS 2011, Chicago, Illinois, USA, October 17-21, 2011,
pages 677–690, 2011.

[37] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits. In
USENIX Security Symposium. USENIX Association, 2011.

[38] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending
oblivious transfers efficiently. In Advances in Cryptology
- CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, pages 145–161, 2003.

[39] R. Jagomägis. Secrec: a privacy-aware programming
language with applications in data mining.

[40] P. Jurczyk, J. J. Lu, L. Xiong, J. D. Cragan, and A. Correa.
FRIL: A tool for comparative record linkage. In AMIA
2008, American Medical Informatics Association Annual
Symposium, Washington, DC, USA, November 8-12, 2008,
2008.

[41] M. Keller and P. Scholl. Efficient, oblivious data
structures for MPC. In Advances in Cryptology -
ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014,
Proceedings, Part II, pages 506–525, 2014.

[42] F. Kerschbaum. Automatically optimizing secure
computation. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pages 703–
714, 2011.

[43] B. Kreuter, A. Shelat, B. Mood, and K. R. B. Butler. PCF:
A portable circuit format for scalable two-party secure
computation. In Proceedings of the 22th USENIX Security
Symposium, Washington, DC, USA, August 14-16, 2013,
pages 321–336, 2013.

[44] P. Laud and A. Pankova. Preprocessing-based verifica-
tion of multiparty protocols with honest majority. IACR
Cryptology ePrint Archive, 2015:674, 2015.

[45] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In
Proceedings of the 23rd International Conference on Data
Engineering, ICDE 2007, The Marmara Hotel, Istanbul,
Turkey, April 15-20, 2007, pages 106–115, 2007.

[46] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and
E. Shi. Oblivm: A programming framework for secure
computation. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015
[15], pages 359–376.

[47] Y. T. L. Liu. Privacy-preserving multi-keyword search
in information networks. IEEE Trans. Knowl. Data Eng.,
27(9):2424–2437, 2015.

[48] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-
subramaniam. l-diversity: Privacy beyond k-anonymity.
In ICDE, page 24, 2006.

17
EAI Endorsed Transactions on 

Security and Safety 
01 2019 - 01 2019 | Volume 6 | Issue 19 | e5



[49] A. B. Makulilo. Asian Data Privacy Laws, Trade and
Human Rights Perspective, by graham greenleaf. I. J. Law
and Information Technology, 23(3):322–324, 2015.

[50] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
- secure two-party computation system. In M. Blaze,
editor, USENIX Security Symposium, pages 287–302.
USENIX, 2004.

[51] D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke,
and J. Y. Halpern. Worst-case background knowledge for
privacy-preserving data publishing. In Proceedings of the
23rd International Conference on Data Engineering, ICDE
2007, The Marmara Hotel, Istanbul, Turkey, April 15-20,
2007, pages 126–135, 2007.

[52] S. McCamant and M. D. Ernst. Quantitative information
flow as network flow capacity. In Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, June 7-13,
2008, pages 193–205, 2008.

[53] M. Pettai and P. Laud. Combining differential privacy
and secure multiparty computation. In Proceedings of the
31st Annual Computer Security Applications Conference,
Los Angeles, CA, USA, December 7-11, 2015, pages 421–
430, 2015.

[54] M. O. Rabin. How to exchange secrets with oblivious
transfer. IACR Cryptology ePrint Archive, 2005:187, 2005.

[55] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria:
A programming language for generic, mixed-mode
multiparty computations. In 2014 IEEE Symposium on
Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-
21, 2014, pages 655–670. IEEE Computer Society, 2014.

[56] J. Seward, N. Nethercote, and J. Weidendorfer. Valgrind
3.3-Advanced Debugging and Profiling for GNU/Linux
applications. Network Theory Ltd., 2008.

[57] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[58] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider,
and F. Koushanfar. Tinygarble: Highly compressed
and scalable sequential garbled circuits. In 2015 IEEE

Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015 [15], pages 411–428.

[59] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 10(5):557–570, 2002.

[60] Y. Tang, L. Liu, A. Iyengar, K. Lee, and Q. Zhang. e-
ppi: Locator service in information networks with per-
sonalized privacy preservation. In IEEE 34th Inter-
national Conference on Distributed Computing Systems,
ICDCS 2014, Madrid, Spain, June 30 - July 3, 2014, pages
186–197, 2014.

[61] Y. Tang, T. Wang, and L. Liu. Privacy preserving indexing
for ehealth information networks. In CIKM, pages 905–
914, 2011.

[62] C. Toth, E. Durham, M. Kantarcioglu, Y. Xue, and
B. Malin. Soempi: A secure open enterprise master
patient index software toolkit for private record linkage.
In AMIA Annual Symposium Proceedings, volume 2014,
page 1105. American Medical Informatics Association,
2014.

[63] S. L. Warner. Randomized response: A survey technique
for eliminating evasive answer bias. Journal of the
American Statistical Association, 60(309):63–69, 1965.

[64] A. C. Yao. How to generate and exchange secrets
(extended abstract). In 27th Annual Symposium on
Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 162–167. IEEE Computer Society,
1986.

[65] S. Zerr, E. Demidova, D. Olmedilla, W. Nejdl,
M. Winslett, and S. Mitra. Zerber: r-confidential
indexing for distributed documents. In EDBT, pages
287–298, 2008.

[66] Y. Zhang, A. Steele, and M. Blanton. PICCO:
a general-purpose compiler for private distributed
computation. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013, pages 813–826, 2013.

18

Y. Tang et al.

EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 01 2019 | Volume 6 | Issue 19 | e5


	1 Introduction
	2 Research Formulation
	2.1 System Model
	2.2 Privacy of Serving the Directory
	2.3 Security of Multi-Party Directory Construction
	2.4 Applications: Healthcare Locator

	3 Background-Knowledge Attacks
	3.1 Attack Framework
	3.2 Concrete Attacks
	Attack I
	Attack II
	Attack III


	4 Attack Mitigation with Centralized Directory Construction
	4.1 Mitigation and Security Analysis
	-Privacy under Attack I
	-Privacy under Attack II
	-Privacy under Attack III (Exact-match)
	-Privacy under Attack III (Fuzzy-match)


	5 Secure Multi-Party Directory Construction with Optimization
	5.1 Preliminary: Multi-Party Computation
	5.2 MPC-based Publication
	5.3 Full Precomputation Scheme
	5.4 Selective Precomputation Schemes
	5.5 Data-Parallel Pre-Computation

	6 Evaluation
	6.1 Dataset
	6.2 Protection Effectiveness
	Overall effectiveness
	Effectiveness of top-k algorithm

	6.3 Performance of Directory Publication
	Micro-benchmark of Pre-computation
	Overall Performance with MPC


	7 Related Work
	7.1 Privacy-Preserving Data Federation
	7.2 MPC Frameworks and Optimization
	7.3 Anonymization Definitions

	8 Conclusion



