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SUMMARY

Virtualization is being widely used now as an emerging trend. Rapid improvements in network bandwidth,
ubiquitous security hazards and high total cost of ownership of personal computers have created a growing
market for desktop virtualization. Much like server virtualization, virtualizing desktops involves separating
the physical location of a client device from its logical interface. But, the performance and usability of
some traditional desktop frameworks do not satisfy end-users. Other solutions, including WebOS, which
needs to rebuild all daily-used applications into Client/Server mode, cannot be easily accepted by people
in a short time. We present LVD, a system that combines the virtualization technology and inexpensive
personal computers (PCs) to realize a lightweight virtual desktop system. Comparing to the previous
desktop systems, LVD builds an integrated novel desktop environment, which can support the backup,
mobility, suspending and resuming of per-user’s working environment, and support synchronous using
of incompatible applications on different platforms and achieves great saving in power consumption.
We have implemented LVD in a cluster with Xen and compared its performance against widely used
commercial approaches, including Microsoft RDP, Citrix MetaFrameXP and Sun Ray. Experimental
results demonstrate that LVD is effective in performing the functions while imposing little overhead.
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1. INTRODUCTION

Virtualization is being widely used now as an emerging trend. Among the applications, using
virtualization technology on the desktops (e.g. the PC workstations and laptops) is an important
branch. Although server virtualization is now a mainstream technology for data centers (DCs) and
cluster computing communities [1], desktop virtualization has attracted considerable attention in the
recent years, both academically [2,3] and commercially [4]. Desktop virtualization has the potential
to offer a new, cost efficient paradigm shift to ease the demand for resources while maximizing the
return on investment. Combining the potential cost savings with other advantages such as disaster
recovery, robustness, scalability and security makes this an attractive computing model to deploy.
However, the challenges of managing multiple desktops and providing QoS guaranteed operation

interfaces remain. The following lists several open issues in building a novel desktop environment:

• Lack of customizing and managing end-user desktop environments. End-users want to cus-
tomize their desktop environments, deploy their desktops rapidly and automatically, move
their desktop environments onto different physical machines seamlessly. But, it is difficult to
realize these demands based on the traditional schemes, where the desktop environment is tied
to operating system and physical machines.

• Lack of suspending and resuming their working states based on multiple checkpoints. Internet
suspend/resume (ISR) [5] can suspend or resume the last state of desktop working environment,
but it cannot recover one from multiple checkpoints of one desktop environment. Suspending
and resuming from multiple working states is harder than only from the last one state. We
should propose the incremental policy to save the states data, including memory, CPU and
stack states and disk data if necessary.

• Lack of synchronizing incompatible resources from different platforms. In fact, end users want
to operate multiple applications and data sets from different platforms, including different
operating systems and different hardware platforms, at the same time. The reason is because
the server side of all virtual desktop systems uses the remote display protocol to transfer full-
screens to the client side. Hence, the user has to face multiple screens and switch among them.
As a coarse granularity transferring unit, full-screens increase the amount of data transmitted,
resulting in more bandwidth occupation and performance degradation. As a matter of fact,
only the application’s graphical user interface (GUI) that the user interacts with needs to be
transmitted.

On the whole, the architecture of traditional virtual desktop systems imposes fundamental lim-
itations on the customization, convenience, acceleration of pixel data transferring, incompatible
applications merging, desktop environment managing. One desktop environment described in the
above sentences cannot be implemented based on the traditional ideas, even including the popular
desktop solution, WebOS.
In this paper, we propose a lightweight virtual desktop (LVD) management architecture to ad-

dress the above challenges. LVD combines the advantages of centralized management based on
virtualization technology and inexpensive PCs. In our solution, the designed and implemented pro-
totype consists of five parts: the template-based VM repository (TVR), the distributed DC, the
applications cluster (APPC), the VM central manager (VCM) and the client terminal. The key
technologies behind these parts include ‘window-based remote frame buffer (wRFB) protocol’,
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‘zero-copy’, ‘Magnet algorithm [6]’ and so on. With these parts and technologies, LVD provides
a comprehensive suite with important functions: (1) backups, suspends, resumes per-user working
environment; (2) supports for rolling back to different working environments by continuous backup
at different working periods; (3) supports for using incompatible applications of heterogeneous
platforms in a single virtualized platform.
We implement LVD in the cluster with VMs and measure its performance for real applications.

Then we compare the performances of our LVD prototype system with those of the most current and
widely used desktop systems, including Microsoft Remote Desktop, Citrix MetaFrameXP and Sun
Ray. Experimental results on web and audio/video applications demonstrate that LVD performs
well in its functions improving the response time while decreasing the power consumptions.
The remainder of this paper is organized as follows. Section 2 discusses the related work. Some

typical scenarios of virtualized desktop environments are described in Section 3. The LVD archi-
tecture and key technologies are presented in Sections 4 and 5. Section 6 presents the function
evaluations. Section 7 presents the performance evaluations. We conclude our work in Section 8.

2. RELATED WORKS

Virtual machine can simulate all the hardware components, such as memory, disk, CPU and so
on. A computer that installs a virtual machine monitor can simulate several virtual machines at the
same time. Each of these simulated virtual machines can independently install operating systems
and run applications simultaneously. One virtual machine managed by the virtual machine monitor
(VMM) can be suspended and resumed. The VMM could take a snapshot of a virtual machine’s
memory state, and restore the machine states when the snapshot is created.
We divided the previous virtual desktop techniques into two groups: the physical machine-

based (PM-based) techniques and virtual machine-based (VM-based) techniques. The PM-based
techniques use the remote display protocol or WebOS approach to realize the desktop virtualization,
whereas VM-based techniques improve the traditional work by deploying the virtual machines in the
server side or client side and thus benefit from better fault isolation and higher resource utilization.

2.1. PM-based techniques

There are two kinds of PM-based techniques. The first is called the remote display protocol-based
technique. As one of the earliest desktop virtualization techniques, the thin-client computing model
uses a remote display protocol to communicate between a server and a client over the network.
The protocol allows graphical displays to be virtualized and served across a network to a client
device, while the application logic is executed on the server. The user has remote access to the
resource on the server and the server returns a temporary working environment for the client.
Typical thin-client protocols include VNC [7], RDP [8], THINC [9], pTHINC [10] and so on.
Since the technique mainly depends on continuous display synchronization between user interface
on the client and application logic on the server, how to increase the display efficiency becomes the
main challenge. Being the first thin client capable of transparently playing full-screen video and
audio at full frame rate in both LAN and WAN environments, THINC is the groundwork of other
solutions.
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The second is the WebOS-based technique. WebOS can quickly build on-demand virtual desktop
environments using web technology. Typical WebOS systems include YouOS [11], EyeOS [12],
Glide [13] and Orca desktop [14]. The advantage lies in less bandwidth occupation and better cost-
performance. However, the drawback is obvious: since a web application executes the front end on
the client, and the back end on the server, it fails to be compatible with the original applications
and thus requires their reprogramming.
In sum, the PM-based technique has drawbacks which include that (1) the user’s working envi-

ronment cannot be suspended and resumed; (2) the full-screen image is transmitted from the server
side to the client side resulting in a great amount of transferring data and degradation of the system
performance.

2.2. VM-based techniques

There are also two kinds of VM-based techniques. The first is the server virtualization-based tech-
nique [15]. To simplify administration and to reduce management chores and operating costs while
maintaining reliability and safeguarding against disasters, the significant benefits of server virtual-
ization technology is now being applied for companies’ desktop users. Virtual desktop infrastructure
(VDI) [16] is such an integrated desktop virtualization solution combining server virtualization with
remote presentation technology. The desktop operating systems and applications run inside the vir-
tual machines and the server side distributes such VMs to each user on the client side. Users use
a remote display protocol to access the VM on the server and the server returns all the features of
the VMs.
Client virtualization-based technique is the second one. The typical systems are ISR [5,17,18]

designed by CMU and Collective designed by Stanford. ISR is a mobile computing technology that
can preserve one’s uniquely customized computing environment as one package and then move it
to different locations. ISR is implemented by layering virtual machine technology on distributed
file system technology. It enables a hands-free approach to mobile computing in which commodity
hardware may be widely deployed for transient use. Through rapid and easy personalization and
depersonalization of anonymous hardware, a user is able to suspend work at one machine and to
resume it at another.
Generally, the server virtualization-based technique (1) trades off the user’s ability to customize

their own environment; and (2) forces the user to switch among multiple platforms while the user
wants to run incompatible applications of different operating systems. Client virtualization-based
technique requires a powerful client side running the VM.

3. SCENARIOS IN VIRTUALIZED DESKTOP ENVIRONMENT

The following scenarios happen frequently. Figure 1 shows the scenarios in virtualized desktop
environments. From the figure, the end-users often ask a question: can I have different working
environments at home, at the office, and during a trip? At home, I may want a PC with more
entertainment softwares, while at the office, a PCwith corporate applications is needed. Furthermore,
can I logically suspend a machine at one Internet site, then travel to another site and resume it there
on another machine? We call this as the hypothetical capability ‘suspend/resume’. Though, some
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Figure 1. Scenarios in virtualized desktop environment.

previous works ignore the above needs. Collective [19,20] deploys the system disk for each user,
the contents of which at every boot are made identical including the image’s operating system and
applications.
WebOS is a good way to get rid of the limitation of space. However, unfortunately, service

providers have to rebuild all applications provided inWebOS. It is a huge task for every company and
cannot keep the remaining softwares active. The VDI [16,21] system combines server virtualization
with remote presentation technology. The desktop operating systems and applications run inside
the virtual machines (VMs) and the server side distributes such VMs to each user on the client side.
However, the user still has to face two operating platform screens while interacting with applications
on Windows and Linux. Another problem is that a number of previous works have been done to
reduce the power consumption, from the perspective of both local techniques [22,23] and cluster-
wide techniques [24]. Nonetheless, previous schemes seldom take advantage of the virtualization
technology and the characteristic of particular platform to save energy. Most virtual desktop systems
fail to consider the reduction of power consumption of the DC. Undoubtedly, ‘green computing’
has been a hot idea in cluster computing for many years. Anecdotal evidence from DC operators
(e.g. [25]) indicates that a significant fraction of the operation cost of these centers is due to power
consumption and cooling. To lower the cost of management, we should give prominence to the
problem of power consumption.

4. DESIGN OF LVD

The motivation of designing LVD is to solve the challenges discussed in Section 1: (1) how could
the applications be customized and configurable freely by the end user; (2) how could per-user
states be backed up in a storage-saving way and an optional data-sharing way; (3) how could the
incompatible applications running on different operating systems be used by the end user at the
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Figure 2. Architecture of LVD system.

same time without switching the platforms; (4) how could the application display commands be
transmitted bandwidth effectively. We introduce the design of LVD in this section.

4.1. Overall architecture

As illustrated in Figure 2, The LVD system consists of: (a) the TVR; (b) the DC; (c) the application
cluster server (APPC); (d) the VCM and (e) the client terminal. We start by showing how the LVD
works from a user’s perspective.
If it is the first time for a user to login, first, he is presented with a list of appliances by the

VCM on which he can click to begin constructing his personal working environment. Second, the
VCM informs the TVR to create the customized VM image including the operating system and
applications. Meanwhile, the VCM chooses an appropriate physical machine to boot the image
among all the application servers in the cluster on the basis of load-balancing and energy-saving.
Third, the user accesses the running VM using our remote display protocol (wRFB). The user
transmits the commands to the VM and the VM returns the application window updates to the user
interface. Finally, when the end user exits, his working environment, consisting of the user image
and user data, is backed up in the DC.
If the user has already logged in previously, he fetches and runs the latest copies of VM image

from the DC over the Internet, or resumes the suspended VM image locally when the network is un-
available.

4.2. Template-based VM repository (TVR)

The TVR is responsible for customized VM image provision and updating. TVR contains various
operating systems, for example, Linux, Windows including most versions of them, and software.
Once a user’s request arrives, the ordered operating platform and applications (or components) will
be encapsulated and thus a unique VM image is created.
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Moreover, TVR needs to be updated constantly. These upgrades include security patches to
operating systems or installed applications, installations of new software, upgrades of the operating
system to a new version and finally re-installation of the operating system from scratch. All software
upgrades, whether small or big, are accomplished in our system with the same mechanism. The
system administrator prepares a new version of the appliance and deposits it in the repository.
TVR can inform the user that a new version of the appliance is available, encouraging the user to
reconstruct the working environment, or TVR can even force a reconstruction to disallow the use
of the older version. This update approach has some advantages over package and patch systems
such as yum [26], Windows Installer [27]. Patches may fail on some users’ computers because of
interactions with user-installed software. Our updates are guaranteed to move the appliance to a new
consistent state. Users running older versions are unaffected until they perform a reconstruction.

4.3. Data center (DC)

The DC performs the following functions: (1) backups per-user state in terms of copies of VM
images; (2) separates per-user VM image into system data and user data that simplifies the man-
agement of user data, for example, simplifying the private data sharing among multiple users.
From the view of the data organization, we use the NFS protocol to store the data, which is fast,

reliable and simple to support demand paging of large objects, such as images. For our prototype,
NFS has the following advantage: in a typical computing session, a user may not access most of
the virtual disk image. We arrange the disk data in a tree with small files. Only a small number
of these files need to be transmitted to the booted VM in the application cluster. The on-demand
transmission mode helps a lot when the bandwidth is limited.
From the view of the data type, the data in DC is divided into two parts: system data and user data.

The system data consists of an operating system and all installed applications. User data consists
of a user’s profile, preferences and private files. The separation has the following advantages: (1)
the files in the user data repository could be classified and protected according to their security
sensibility; (2) if a user wants to share his data, for example, movies, others can get access to them
through NFS conveniently.

4.4. Application cluster (APPC)

After the customized VM image is created by TVR, or fetched from DC, APPC will boot a
customized VM on one of its physical machines to provide service to the remote end user.
The highlights of the APPC module are:

• An advanced remote display protocol wRFB is established to address the limit of simultane-
ously interacting with incompatible applications of different operating systems.

In the previous virtual desktop systems, such as VDI, Sun Desktop Virtualization Solution [28]
and Windows Vista enterprise centralized desktop (VECD) [29], each user is assigned to one virtual
desktop. If the customer wants to use applications of other platforms, he faces multiple desktops
from different VMs and has to switch among them.
Unlike the previous work, we have established a new remote display protocol called wRFB,

which grabs and transfers the application GUI images from multiple VMs to the client side. Then
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Figure 3. Example of the remote display using wRFB protocol.

all these window images will be merged and displayed on a single virtual desktop, as illustrated in
Figure 3.

• A ‘zero-copy’ technique is proposed to improve the efficiency of the image transferring, which
is similar to the share memory extension (SHM) approach in Linux.

The usual method to get the window image is to copy from the process space of the X server
to the process space of the virtual desktop system. The ‘zero-copy’ technique creates a sharing
memory segment for the X server and tells to place the image data of the particular window to
the sharing memory segment, which is visible for both the X server process and the LVD process.
Therefore, the LVD process can get access to the image data directly and thus save the time of
copying, as illustrated in Figure 4.

4.5. VM central manager (VCM)

VCM provides the follows interfaces:

• Client-side interface: authenticating the user and keeping the working records of each user.
For example, a user may login and work for a while in Hong Kong, then he or she will logout
and travel to Seattle. In Seattle, he or she will login and work for a while, then logout, and
come back to Hong Kong. It is highly possible that he or she wants to resume the working
environment in Hong Kong a few days ago rather than Seattle. Therefore, it is necessary to
trace each user’s records at different locations.

• Server-side interface: locating and scheduling the VMs in APPC dynamically in a load-
balancing and energy-saving way. Undoubtedly, the concept of ‘green computing’ has attracted
much attention recently in cluster computing. The migration of the VM inspires us with a novel
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Figure 4. Comparison the usual method with zero copy.

Figure 5. The logic diagram of VCM.

method called ‘Magnet’ to reduce the power consumption, which has been introduced in detail
in our previous work [6]. The key technique is to consolidate the load among the nodes on a
multi-layer ring-based overlay and then keeps the redundant nodes in ‘low power’ state like
‘deep sleep’ or ‘shut down’.

4.6. Client terminal

The LVD’s client terminal is very simple. LVD presents the user with a list of VM images that he
or she has access to, along with the time and locations (see Figure 5). Choosing from a menu, the
user can resume any of his working environments.
The client terminal can be any form of computing hardware, from desktops to handheld or

wearable computers. The highlights of the client terminal module lie in as follows.
On high bandwidth (e.g. 100Mbps) networks, the system performs well, the challenge here

is that a terminal may be disconnected from the network or the bandwidth is highly occupied.
We provide the following solutions: (1) if the terminal is a mobile device, such as a laptop, to
maintain the latest VM image locally is necessary; (2) if the terminal is a thin-client, compare the
standard operating system and application software (e.g. Windows 2000 and the Microsoft Office
suite), the user-specific files are a very small fraction of the image size. Therefore, we distribute
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the large standard disk image-based blocks widely over the network that can be accessed at high
bandwidth from a nearby site. Only the much smaller user-specific state needs to be transmitted at
low bandwidth from the DC.

5. KEY TECHNOLOGIES

5.1. VM template scheme

To deploy a virtual machine for an application, the traditional procedure is extremely time-consuming.
The process goes like this: first, create a virtual machine with a blank disk image; second, install
an operating system (Guest OS) on this virtual machine; and finally, setup the application and its
requirements. Our system uses templates to simplify the disk image preparing process. A template
is a disk image with pre-installed operating system with or without certain application software.
The user can pick a proper template according to the requirements and make a duplicate of it as
his/her own disk image.
Though installing an operating system from the beginning for a virtual machine is replaced by a

much timesaving cloning, it is still a long-lasting process to duplicate dozens of disk images. With
shared external storage, our system could generate a disk image from a virtual machine template
in a couple of seconds by utilizing incremental file technology, which is often used in database
backup.
An incremental disk image can be used to store the changes to another disk image, without

actually affecting the contents of the original image. Figure 6(a) illustrates how incremental disk
image works. As it shows, incremental disk image and base disk image are combined to be an
integrated disk image for a virtual machine. Base disk image is read-only, which means that all
write operations act on incremental disk image. When you want to read an area, you first check to
see if that area is allocated within the incremental disk image. If not, you read the area from the
base disk image.

(a) (b)

Figure 6. (a) Working principle of incremental disk image and (b) Shared base disk image and multilevel
incremental disk images (IDI: incremental disk image).
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Figure 7. Multiple-VM manager architecture.

Furthermore, as Figure 6(b) shows, multiple incremental images can share one base image, which
itself could be an incremental image based on other images. The incremental image files are very
small and easy to create and transfer, hence they distinctively reduced the space consuming, and
the VM deployment time is lesser than copying the whole raw image file.

5.2. Multiple VM management scheme

Since each desktop user needs several virtual machines in DC, it is necessary to effectively manage
huge amounts of virtual machines on multiple physical machines. Hence our multiple-VM man-
agement system should have features such as easily monitoring the status of VMs and hosts as well
as related information; simultaneously deploying many VMs according to the user’s requirement;
and automatically allocating proper resource to each VM to balance the workload.
We design a three-layer multiple-VM management architecture in which each layer is loosely

coupled with its neighbors. As Figure 7 shows, the underlying layer provides services for the upper
neighboring layer. Communications between neighbored layers are mostly through TCP/IP with
the exception of a few data link layer packets streamed between VMM Daemon and VM Agent.
Take full virtualization of Xen for example, the monitor and input peripherals are emulated by

QEMU that converts the virtual machine’s screen output, keyboard input and mouse action into
network stream packaged by RFB (Remote Frame Buffer) protocol based on TCP/IP. An RFB
client such as VNC Viewer can get the graphic console directly by establishing a connection with
the RFB server created by VMM. Unfortunately, as cluster nodes usually share a private internal
network isolated from external Internet for security reasons, the user interface might be unable to
directly connect to RFB servers running on such nodes. To solve this problem, Manage Center
should act as a gateway to forward RFB packets from internal nodes to the user interface.
VMM Daemon is the implementation of single-host service layer providing primitive functions

manipulating VMM and virtual machines on local physical machine. It usually works in the back-
ground as a system service that receives remote instructions from Manage Center, carries out the
tasks assigned and returns the results.
Single-node service layer is the only layer that deals directly with several heterogeneous VMMs

such as Xen, VMware, KVM, thus VMM Daemon must hide most trivial details of various VMM
interfaces and expose a unified high-level interface to multi-node service layer. Additionally, it is
worth noting that different versions of VMM may also have a wide range of distinctions.
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Virtual machine agent is installed inside Guest OS. This layer is optional so that the whole
multiple-VM management system could work well without it, but if the VM agent is on duty,
much more features would be available to administrators. To manage a large number of virtual
machines, the VM agent performs the following functions: (1) reports system information including
CPU usage, memory allocation, network status, process information, etc.; (2) changes system
configuration including network configuration, user password, system services, etc.; (3) controls
system including safety shutdown, safety rebooting, formatting disk, installing software, etc.

5.3. Multiple checkpoints scheme

In this paper, we propose a full-system checkpointing mechanism that supports time-travel opera-
tions in desktop environments. Virtual machine technology is adopted to implement the complete
checkpoint/restart mechanism. The checkpoint consists of all the transient and persistent dates that
compose the whole state of a running user execution environment. The Xen mechanism of system
snapshot is extended to save the transient data, for example, memory, CPU states; the persistent
state (e.g. file system) is incrementally checkpointed with COWmechanism. The implementation of
the Xen VM checkpoint mechanism is implemented as the following: (1) change the VM identifier
to avoid conflicts with other VM management tasks; (2) stop the VM; (3) dump the VM memory
into a file; (4) flushs I/Os and save the CPU state.
Xen currently only supports saving the transient state of a virtual machine, hence only the latest

snapshot can be used to rollback to the prior saving state, that is, it does not support multiple
checkpoints. Xen assumes that the disk image, that is, the VM file system, is unique for a given
VM. As VM restart requires the snapshot of transient state and VM disk image to be at a consistent
state to avoid corruption/errors, this assumption implies that Xen is not suitable for providing VM
time-travel mechanism, that is, it is not possible to take a complete checkpointing of a VM. To
implement a multiple checkpoint, the version of transient state snapshot must strictly associate with
the version of VM file system.
However, Xen VM’s file system represents the complete OS file system and the installed appli-

cation data, which may include several gigabytes of data, hence to checkpoint/restart of the whole
file system may be an expensive task. We design an incremental checkpoint for the VM disk image
using COW mechanism. Our approach reduces the checkpointing size by only capturing the data
that has been changed from a prior disk state (possibly the original installation state). Figure 8
presents a structure of incremental image tree for multi-checkpoint. We choose some most popular
OS images as basic image files, and then backup these image files into COW format as incremental
image files. When the user installs new software, the application files would be saved in the incre-
mental image file. Once a file becomes a basic image, the file is set to read-only authority, and all
the write operation would only take effect on the incremental image file, hence the basic file will
not be corrupted. A checkpoint version includes the incremental image file, user privacy data, the
snapshot file of the transient state, which points the current version of incremental image file. The
incremental image file can also be the basic file of another one for mostly sharing the data. But note
that once an incremental image file becomes a basic file, its file attribute should be set to read-only,
that is, only the leaf node in the tree can be written. When the user execution environment is rolled
back to prior versions, a new incremental file will be created to save all the modifications of the
system, for example, user profile data, application configuration data. The incremental backup file
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Figure 8. Multi-checkpoint file structure.

is very small, and it is easy to create and transfer, hence it distinctively reduces the disk space
consuming.
From the view of the desktop users, their private data should be accessed anywhere with uniform

remote view. We use the NFS protocol to store user persistent data, that is, films, photos, archives,
which are mostly considered as large file size. For our prototype, NFS has much advantage: it is
fast, reliable and simple to support on-demand paging of large objects. The on-demand transmission
mode helps a lot when the bandwidth is limited. It also supports multi-platform access transparently.

6. FUNCTION EVALUATION

We have provided some quantitative measurements of the system to give a sense of how the system
behaves. In this section we study the feasibility of the system functions.

6.1. Experimental setup

As shown in Figure 9, our test-bed consists of six computers connected by a switched Fast-Ethernet
network: two thin clients, a DC, a virtual central manager, a packet monitor, a TVR, a network
emulator for emulating various network environments, an application server and a web server used
for testing web applications. All computers have an AMD Athlon 3500+ processor and 1GB DDR
RAM. Storage is accessed via iSCSI protocol from a NetApp F840 network attached storage server
(NAS). The guest kernel is Linux 2.4.18 ported to UM-Linux, and the host kernel for UM-Linux
is a modified version of Linux 2.4.18. The virtual machine is configured to use 512MB of RAM,
the memory page size is 4 kbytes, page fault service time is 10ms and the context switch time
is 0.1ms.
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Figure 9. Test-bed configuration.

As shown in Figure 9, the network simulator machine is placed in the middle of the network
between the thin client and server machines to control the available network bandwidth between
the thin client and server. This is done using a dedicated PC installed with two 100Mbps Ethernet
interfaces running the Cloud [30], a software network bandwidth simulator that could vary the
effective network bandwidth between the two network interfaces. The thin clients and servers are
separated from one another on isolated 100 Mbps networks, which are then connected via the
network simulator. Here, the server-side network is connected to one of the network interfaces PC
and the client-side network is connected to the other network interface in the network simulator.
We refer to the server-side interface as the East gateway and the client-side interface as the West
gateway. The Cloud software can then be used to vary the bandwidth on either of the two gateways
from the maximum of 100Mbps to as little as 2400 bps. To ensure that this simulator does not
itself introduce extra delay into our tests, we measure round-trip ping times with and without the
simulator between the client and the server. There are no significant differences and round-trip ping
times are roughly 0.57ms in both cases.
A packet monitor is used in the test-bed to monitor and record traffic on the network between

the client and the server. The packet monitor used is a PC running Etherpeek 4, a software packet
monitor that timestamps and records all packet traffic visible by the PC. As shown in Figure 9,
the packet monitor is generally attached to the client-side network to monitor client-side network
traffic, though it can be moved to other parts of the test-bed to monitor server-side traffic as well.

6.2. Function evaluation

In function evaluation, we have evaluated three main functions of the LVD system: customizing
per-user’s working environment, suspending/resuming per-user’s state and the synchronous use of
incompatible applications on different platforms.
If it is the first time for a user to login, first, he or she is presented with a list of appliances by the

VCM on which he can click to begin constructing his personal working environment, as illustrated
in Figure 10. If the user wants to leave for a while, he or she can suspend his working environment.
When he or she comes back, the user can resume it. Finally, as Figure 10 shows, synchronous use
of Microsoft Office Word 2007 on Window XP and Qt designer 3.3.3 on Linux Redhat 7.0 can be
obtained.
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Figure 10. The customization of operating system and applications.

7. PERFORMANCE EVALUATION

In this section, we assess the LVD display performance in various network environments. We run
each of the three application benchmarks on the baseline PC platform and the five thin-client plat-
forms on different operating systems. The five specific platform configurations considered are PC
running LVD on Linux (LVD), Microsoft Terminal Services RDP 5.0 on Windows 2000 (RDP
Win2K), Citrix Metaframe 1.8 running on Windows 2000 (Citrix Win2K), LapLink 2000 on Win-
dows NT 4.0 Terminal Server Edition (LapLink WinNT) and Sun Ray.

7.1. Application benchmarks

To measure the performance of the thin-client platforms, we use a simple Java latency benchmark
and a selection of benchmarks from the Ziff-Davis i-Bench benchmark suite, version 1.01, as
shown in Table I. The Java latency benchmark is used to measure the latency of basic operations
on a thin-client platform, such as responding to a single keystroke. The i-Bench benchmarks used
are the Web Text Page Load and Flash benchmarks, which can be used to provide a measure of
web-based and multimedia-oriented application performance. All the benchmarks are designed to
be executed within a web browser to provide a common application environment across different
platforms.
For our evaluation study, we run the three application benchmarks on each platform and use

the network simulator to vary the network bandwidth between client and server to examine the
impact of network bandwidth on the thin-client performance. All the tests are run on each system at
the bandwidth listed in Table II. Eight different network bandwidth configurations are considered,
representing LAN, T1, DSL and ISDN. We focus our evaluation on network bandwidth and do not
consider the different network latencies associated with different network technologies, which is
beyond the scope of this paper.
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Table I. Characteristics of the application benchmarks.

Benchmark type Application benchmark Operation

Latency benchmark Java applet Typing a character, scrolling text, filling a screen
region. Downloading an image

Web-based benchmark Web text page load Downloading a sequence of 109 web pages.
Scrolling down 200 pixels

Multimedia oriented Benchmark Flash benchmark Streaming a 98 kB Macromedia Flash animation
chip from the server side ( uses vector graphics
and contains 315 550*400 frames)

Table II. Bandwidth tested.

Network type simulated Bandwidth tested

LAN 100Mbps, 10Mbps
T1 1.5Mbps
DSL 512 kbps
ISDN 256 kbps, 128 kbps

7.2. Latency benchmark results

We run the latency benchmark using each thin-client platform at the full 100Mbps network band-
width to measure the latency of each of the thin-client platforms when the network capacity is not
the limiting factor. We measure both the latency and the data transferred for each of the four oper-
ations, draw letter, fill red box, scroll text and load bitmap. These results are shown in Figures 11
and 12, respectively.
Limits. To achieve a good subjective performance, the latency between user input and system

response should be below the threshold of human perception. For simple tasks such as typing,
cursor motion or mouse selection, the system response time should be less than 50–150ms to keep
users from noticing a delay.
Compared with other platforms, LVD is able to complete any operations within 100ms, including

the basic draw letter, fill box and scroll text operations. Comparing Figures 11 and 12, we can see
that the latency and the data transferred are not at all correlated in many cases. While LVD has less
latency for most of the tests, it also requires more data transfer.

7.3. Web page load benchmark results

We run the Web benchmark on each of the thin-client platforms using network bandwidth from
128 kbps to 100Mbps, as listed in Table II. We also run the Web benchmark on the baseline PC
platform for comparison. For each run, we measure the total time required to display all 109 web
pages of the Web benchmark and logged complete packet traces using the packet monitor. We
find that at high bandwidth, the page load times are limited by the server speed as the server is
completely busy. Figures 13 and 14 illustrate the total normalized web page download times and
total data transferred for each run, respectively.
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Figure 11. Latency test time to completion.

Figure 12. Latency test data transferred.

As shown in Figure 13, almost all the platforms complete the Web benchmark in less than 50 s at
network bandwidth with 4Mbps or greater, corresponding to an average of less than half a second
per page.
Limits. At network bandwidth below 4Mbps, the performance of the thin-client platforms begins

to degrade. As shown in Figures 13 and 14, LVD does not take longer to complete the Web
benchmark at lower bandwidth, but instead loses data resulting in missed or incomplete screen
updates. On the other hand, RDP and Citrix behave in a similar manner to the baseline PC client by
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Figure 13. Web page load time.

Figure 14. Web page data transferred.

taking longer to complete the Web benchmark as the network bandwidth decreases, but continuing
to send the same amount of data even at lower bandwidth. As shown in Figure 13, LVD transfers
less and less data at the lower network bandwidth unlike the other platforms that all transfer roughly
the same amount of data.
In general, while a comparison of Citrix with Sun Ray shows that the graphics-based encoding

approach is more efficient for screen updates we note that LVD needs to send less data than those of
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Figure 15. Flash test frame rate.

RDP in WinNT and Win2K, and Citrix in WinNT. Instead, the LVD results indicate that for Web-
based applications, a pixel-based encoding approach could encode screen updates with comparable
efficiency as graphics-based encoding approaches.

7.4. Flash benchmark results

We run the Flash animation test on each of the thin-client platforms using the network bandwidth
listed in Table II, and also run the benchmark on the baseline platforms for comparison. The results
are illustrated in Figures 15 and 16.
We find that a frame rate, about 16 fps, produces good subjective results, with smooth display, no

skipped screens and no tearing or jerky movement. The 100 kB animation is downloaded completely
to the server prior to playback, hence the bandwidth does not affect the frame rate on the baseline.
However, we examine the time required for this download in the baseline case and find that there
are no significant delays except a brief one when the bandwidth is limited to 128 kbps. In general,
the LVD system experiences a similar fall-off in the performance at 128 kbps bandwidth or below,
indicating that LAN bandwidth is required to support multimedia applications.
Limits. As with the web test results, LVD is slightly less efficient than the platforms with graphics-

based encodings. LVD maintains an almost constant rate for the benchmark at all bandwidth, but
drops many screens on the client’s display at the low end of the range. Its performance is only
comparable in smoothness to the baseline when the data transferred reaches a plateau.

7.5. Power reduction results

After analyzing the characteristics of workflow of LVD, we propose a new schedule policy called
Magnet for cluster with VMs to achieve the energy savings, which can be accessed in [6]. Magnet
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Figure 16. Flash test data transferred.

keeps track of all active nodes and organizes them into concentric, non-overlapping rings in terms
of gradually decreasing the workload, hence it is easy to squeeze the existing running jobs that are
widely distributed among lightweight nodes and then deliver them to a subset of current active nodes
and it is also easy to release the over-weighted nodes, thereby (1) turning off the redundant nodes
to save energy when the system is in non-intensive computing state; (2) transferring violating jobs
or big jobs to the free nodes when the system is in intensive computing state to obtain performance
gains. We apply the policy to the application cluster. The experimental measurements show that the
new method can reduce the power consumption by 74.8% over base at most with certain adjustably
acceptable overhead.

8. CONCLUSIONS

This paper presents LVD, a prototype of a system management architecture for managing
desktop computers. This paper concentrates on the design issues of a complete system. By com-
bining ‘wRFB protocol’, ‘zero-copy’ and ‘Magnet algorithm’ with the technology of virtual-
ization, LVD provides several novel functions including the backup, mobility, suspending and
resuming of per-user’s working environment, the customization of working environment and the
synchronous using of incompatible applications on different platforms. In this paper, we also de-
scribe several key technologies in the lightweight virtualized desktop. Some experiments show
the good performance of the system in addition to achieving great saving in power consump-
tion. In the future, we will try to optimize the display performance by exploring more intelligent
schemes.
The demo video for the lightweight virtualized desktop system can be obtained from [31].
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