
Cluster Comput (2010) 13: 113–126
DOI 10.1007/s10586-009-0110-2

Energy optimization schemes in cluster with virtual machines

Xiaofei Liao · Liting Hu · Hai Jin

Received: 15 May 2009 / Accepted: 5 November 2009 / Published online: 20 November 2009
© Springer Science+Business Media, LLC 2009

Abstract Large scale clusters based on virtualization tech-
nologies have been widely used in many areas, including
the data center and cloud computing environment. But how
to save energy is a big challenge for building a “green clus-
ter” recently. However, previous researches, including local
approaches, which focus on saving the energy of the compo-
nents in a single workstation without a global vision on the
whole cluster, and cluster-wide energy saving techniques,
which can only be applied to homogeneous workstations
and specific applications, cannot solve the challenges. This
paper describes the design and implementation of a novel
scheme, called Magnet, that uses live migration of virtual
machines to transfer load among the nodes on a multi-layer
ring-based overlay. This scheme can reduce the power con-
sumption greatly by regarding all the cluster nodes as a
whole based on virtualization technologies. And, it can be
applied to both the homogeneous and heterogeneous servers.
Experimental measurements show that the new method can
reduce the power consumption by 74.8% over base at most
with certain adjustably acceptable overhead. The effective-
ness and performance insights are also analytically veri-
fied.

Keywords Virtual machines · Cluster · Energy

X. Liao (�) · L. Hu · H. Jin
Services Computing Technology and System Lab.,
Cluster and Grid Computing Lab., School of Computer Science
and Technology, Huazhong University of Science
and Technology, Wuhan, China
e-mail: xfliao@hust.edu.cn

H. Jin
e-mail: hjin@hust.edu.cn

1 Introduction

“Green computing” has been a good research topic in cluster
computing for many years. Anecdotal evidence from data
center operators (e.g. [2, 11]) indicates that a significant
fraction of the operation cost of these centers is due to power
consumption and cooling.

Great progresses have been made by applying “green
computing” to clusters. However, the mainstream computer
architecture imposes fundamental limitations on the maxi-
mum energy, which a data center can save.

First one is low utilization. Bohrer et al. have studied
real webserver workloads from sports, e-commerce, finan-
cial, and internet proxy cluster and found that average server
utilization varies between 11% and 50% [19]. Low utiliza-
tion has two causes [3]: to guarantee good performance
at periods of peak demands, processing capacity is over-
provisioned. Another one is the traditional deployment pat-
tern: one application per OS image and one OS image per
PM (Physical Machine). This paradigm makes ad-hoc de-
ployment of applications possible. But, only through consol-
idation at both the OS level and application level, the maxi-
mum power reduction can be achieved.

However, it is a pity that most of the previous local-wide
techniques have focused on the improvement at the applica-
tion level of single workstation without a global vision of the
whole system. They save the energy by reducing the clock
frequency, the supplied voltage or saving interconnect com-
ponents including switches, network interface cards (NICs),
and links [4, 17].

Second one is lacking the support for heterogeneous
nodes. Most of the previous cluster-based techniques [5]
have focused on redistributing the request to the smallest (in
number of nodes) and then turning off the redundant nodes
to save energy. But their work is based on the assumption

mailto:xfliao@hust.edu.cn
mailto:hjin@hust.edu.cn

114 Cluster Comput (2010) 13: 113–126

that all cluster nodes are homogeneous. Actually, real-life
server clusters are almost invariably heterogeneous in terms
of performance, capacity and platforms [9]. A request served
by Linux operation system may be refused if distributed to
a PM on which Windows operation system runs.

The third problem follows from the second. It is the poor
isolation between co-hosted applications within an OS im-
age [3]. Diverse applications have diverse security require-
ments. As a given example, the OS patch required by one
application to update may be incompatible with the other
co-hosted applications.

Although significant progresses have been made on
green computing techniques, including local techniques and
cluster-wide techniques, it seems to reach the bottleneck al-
ready. Fortunately, the emergence of the virtual machine
(VM) gives us a new horizon and thus we can look upon
the problem at a different angle. A virtual machine is orig-
inally defined by Popek and Goldberg as an efficient, iso-
lated duplicate of a real machine. The VM used in our work
is System VM (sometimes called hardware VMs), which al-
lows the multiplexing of the underlying physical machine
between different VMs, each running its own operating sys-
tem.

The virtual machine exhibits the unique advantages as
follows: first, it allows the separation of hardware and soft-
ware and thus addresses the problem caused by heteroge-
neous computing platforms; second, live migration [8, 12]
of VMs allows the workload of a node to be transferred to
another node.

That is not to say, however, that we can make virtual ma-
chines randomly migrate among all nodes. In fact, the poten-
tial overhead caused by live migrations of VMs can not be
ignored, which may have serious negative effect on cluster
utilization, throughput and QoS issues. Therefore the chal-
lenge is how to design a migration strategy to effectively
implement “green computing” and meanwhile influence lit-
tle on the performance of the cluster.

Our “green computing” algorithm tends to turn off the
redundant nodes to save the energy, provided that the sys-
tem performance is guaranteed by the left nodes. The rea-
son is that each node in our cluster consumes approximately
160 watts when idle and 280 watts when all resources are
stretched to the maximum. It means that: (1) there is a rel-
atively small difference in power consumption between an
idle node and a fully utilized node; (2) the penalty for keep-
ing a node powered on is high even if it is idle. Thus, turn-
ing a node off always saves power, even if its load has to be
transferred to one or more other nodes.

We proposed a policy, called Magnet, to implement
“green computing” in the cluster with VMs. Magnet keeps
track of all active nodes and organizes them into concen-
tric, non-overlapping rings in terms of gradually decreasing
workload, so it is easy to “squeeze” the existing running jobs

which are widely distributed among lightweight nodes and
then deliver them onto a subset of current active nodes and
it is also easy to “release” the overweighted nodes, thereby
(1) turning off the redundant nodes to save energy when the
system is in non-intensive computing state to obtain energy
savings; (2) transferring violating jobs or big jobs to the free
nodes when the system is in intensive computing state to
obtain performance gains.

By conducting simulations from generated application
workload with different intensities in the cluster with VMs,
we show that our method can effectively reduce the power
consumption by 67.1%, 72.0%, 69.3%, 72.8% and 74.8% at
most for five application workload groups (light, moderate,
normal, moderately intensive and highly intensive job sub-
mission rates). Our method can increase the cluster utiliza-
tion to 41.9%, 35.44%, 36.57%, 45.17% and 50.61% respec-
tively. Our method can also increase the quality-of-service
for the heavyweight workload group. Plus, we show that
the total migration overhead is acceptable and adjustable.
The effectiveness and performance insights are also demon-
strated through a theoretical analysis.

The rest of this paper is organized as follows. Section 2
discusses the related work. The Magnet policy is described
in Sect. 3. Section 4 demonstrates the effectiveness of Mag-
net through theoretical analysis. Section 5 describes our sim-
ulation methodology. Section 6 presents the performance
evaluation. We conclude this work in Sect. 7.

2 Related works

We divide previous work into two groups: local and cluster-
wide technique. Local techniques are implemented indepen-
dently by each server, whereas cluster-wide techniques in-
volve multiple servers.

2.1 Local techniques

Most of the local techniques aiming at reducing power con-
sumption of a computing cluster focus on the improvement
of the single node, by reducing the clock frequency, by re-
ducing the supplied voltage or by saving interconnect com-
ponents in computer, such as switches, network interface
cards (NICs), and links. For instance, the DVS system dy-
namically reduces processors’ supply voltages while guar-
anteeing proper operations. The DLS [16] project makes use
of an appropriate adaptive routing algorithm to shut down
links in a judicious way.

Elnozahy [6] proposed a new mechanism called request
batching, in which the incoming requests are accumulated in
memory by the network interface processor while the host
processor of the server is kept in a low-power state. The
host processor is awakened when an accumulated request
has been pended for longer than a batching timeout.

Cluster Comput (2010) 13: 113–126 115

However, such schemes do not achieve the maximal opti-
mization as experimental results (SPECpower_ssj2008 [21])
confirm that the incremental energy savings from slowing
down all CPUs (and scaling down their voltage) are far less
than those from turning a machine off to reduce farm ca-
pacity by the same amount. Plus, request batching trades off
system responsiveness to save energy, so it is not appropri-
ate to trade or e-commerce server in that a very slow server
will drive away customers.

2.2 Cluster-wide techniques

We divide cluster-wide techniques into two groups: the
physical machine based (PM-based) techniques and virtual
machine based (VM-based) techniques.

PM-based technique. Pinheiro et al. [9, 18], Chase et
al. [5] and Heath et al. [10] proposed similar strategies for
managing energy in the context of front-end server clusters.
The basic idea of such approaches is to leverage the ag-
gregate system load and then determine the minimal set of
servers which could handle the load. Finally, energy savings
can be obtained by adjusting the configuration and request
distribution. Kephart et al. [15] coordinated multiple auto-
nomic managers to implement both power and performance
objectives. Chen et al. [7] presented the formalization to the
dynamic optimization problem of server provisioning and
DVS control for multiple applications including a response-
time SLA.

VM-based technique. VMware VirtualCenter Distributed
Resource Scheduler (DRS) [22] allows a collection of virtu-
alized servers to be managed as a single pool of resources
and automates dynamic migrations of VMs to balance load
across hosts, enforcing resource allocation policies. Bobroff
et al. [3] proposed a runtime VM placement strategy to re-
duce the amount of required physical capacity and the rate
of SLA violations. The basic idea is to utilize the variability
in workload to dynamically consolidate VMs.

PM-based techniques have drawbacks including that
(1) they focus solely on homogeneous servers; (2) most
of these approaches fail to deal with run-time reallocation
of the load. VM-based techniques have drawbacks includ-
ing that (1) they focus on load balance issue rather than
power-aware placement issue; (2) they consider little about
VM mapping problem under the constraint of multiple di-
mensions of resource consumption (memory, CPU, network
bandwidth and disk bandwidth); (3) they do not explicitly
consider the live migration overhead which results in un-
desirable behaviours such as system instability and thrash-
ing.

3 MAGNET design

To achieve good performance in the cluster, Magnet faces
the following challenges: (1) how to design a framework to

run in the “green computing” way and meanwhile to influ-
ence little on the performance; (2) how to decrease the over-
head caused by frequent live migrations of VMs; (3) how to
maintain the service continuity and stability (decreasing the
impact of interruption caused by the crash down of unknown
node). In this section, we discuss the situations which lead
to bad performance to the cluster computing first and then
introduce the design of Magnet.

Generally the performance of the cluster, such as through-
put, average job slowdown and QoS issues are likely to
be influenced by two problems, called as inner job block-
ing problem and outer job blocking problem. The former is
caused by certain violating jobs with seriously fluctuant re-
source requirements which lead to node thrashing. Previous
studies (e.g. [24, 25]) focused on balancing the number of
jobs/tasks among the workstations, but the CPU or memory
requirement should be informed in advance. The latter hap-
pens due to the coming of a big job with remarkable work-
ing set requirement which can not be satisfied by the current
active workstations, resulting in the blocked working flow
of rest of the jobs. Towards outer job blocking problem,
existing schemes like backfilling scheduling [20] and gang
scheduling must consider the size of node needed by a job
or estimated runtimes [23].

The above analysis indicates us that if only we could con-
serve the energy globally and meanwhile flexibly address
the job blocking problems, we can obtain a win-win situa-
tion, saving energy and improving performance.

3.1 Overview

As illustrated in Fig. 1, the basic workflow of Magnet is
as follows. First, the multilayer ring-based overlay is con-
structed and new jobs arrive continuously and are submitted
to the service center. Second, a clearing module is employed
to periodically collect the resource demand of each VM. Af-
ter analyzing that historic record by a sliding window, the
irregular VMs will be ruled out. Third, a detector is em-
ployed to supervise the “evil” state of the computing cluster

Fig. 1 The system diagram of Magnet

116 Cluster Comput (2010) 13: 113–126

which can be categorized into four kinds: (1) saving energy
state caused by the arrived lightweight working flow which
persists for a long time; (2) inner job blocking state caused
by node thrashing; (3) outer job blocking state caused by
violating or big jobs; (4) fault tolerance state caused by cer-
tain nodes crashing down due to physical or software mal-
functions. Finally, a controller is employed to choose corre-
sponding strategies to response the “evil” states.

3.2 Clearing module

Not all workloads are suitable for dynamic placement, the
objective of the clearing module is to rule out the VMs
whose workloads are too irregular. There are several prop-
erties a regular VM should have: (1) its workload exhibits
significant variability; (2) In order to make the remapping
of VMs to PMs keep pace with the demand changes, the
timescale over which the resource demand varies must ex-
ceed the reconfiguration interval τ ; (3) resource demand
needs to be predictable during the interval, meaning that the
error distribution is significantly “narrower” than the distri-
bution of demand.

Note that the workload on the VMs in data center exhibits
different features, such as CPU intensive, memory intensive,
I/O intensive. The classification of whether a VM is regular
depends on whether its dominant feature exhibits regular be-
haviour or not (e.g. CPU utilization for a CPU intensive VM,
memory utilization for a memory intensive VM).

Bobroff [3] proposed a formula to quickly decide whether
a given VM is a good candidate, in which the relative gain
from using the dynamic placement is quantified:

Gain(τ) ≈ 1 − E[U] + Ep(τ)

Lp

(1)

Where E[U], Ep(τ) are the mean of the demand distri-
bution and p-percentile computed empirically from the de-
mand history, Lp is the error distribution provided by well-
studied forecasting algorithms [6, 13]. p is the maximum
probability that the VM demands (exceeding capacity of the
PM). We categorize VMs as regular or irregular based on the
value of (1) (see more details in [3]).

3.3 Multilayer ring based overlay

Preliminaries. Let degrad be the maximum acceptable
weight a node could suffer without performance degrada-
tion. “degrad” can be given by the user expectation, the QoS
requirement of the application and the like. Under different
situations, degrad is different and we can not set a constant
value. Let Max(vm) be the maximum number of VM con-
tainers a node could have. Max(vm) is also uncertain as it
changes in accordance with different configurations of the
physical machine. Let violate be the weight a node could

suffer which leads to unacceptable performance degrada-
tion. For example, let violate be 89%, then the node which
consumes the resource ratio exceeding 89% will be regarded
as violating node and should be released.

In the first operation of Magnet, each node boots up one
VM and new jobs are submitted to these VMs. Then every
VM, with a unique ID, consumes resources of the physical
nodes at different rates (from 0% to 100%). Magnet keeps
tracks of all active nodes, and organizes them into concen-
tric, non-overlapping rings in accordance with decreasing
resource consumed ratios. Magnet maintains 3-layer rings,
the members of each ring suffer the workload that spans the
range [0,degrad/2), [degrad/2,degrad), [degrad,100%).
Magnet deals with the members of the outer ring by squeez-
ing them to the secondary ring. VMs on the secondary ring
are not recommended to be merged together as the sum of
their resource consumption rates exceed the performance
upper bound (degrad).

In the second step, the leader takes the responsibility of
maintaining a stable Magnet ring-based overlay for the rea-
son that the memory and CPU demand of jobs may change
dynamically and the execution time may not be known in
advance. The leader is the node who suffers the maximum
load among its ring members of the same layer.

Third, within each ring, the leader periodically updates
its logical links with its members. At regular intervals, the
leader checks whether the workload of its members is less
than the threshold of its layer and if not, it removes the node
which does not belong to its layer to the alternative appro-
priate layer.

Finally, the Magnet system addresses the resilience is-
sue of Magnet ring-based overlay through the introduction
of co-leaders. Each leader recruits the co-leader at the time
being elected.

To detect unannounced departures, Magnet relies on
heartbeats exchanged among leaders and their crews. Un-
reported nodes are given a fixed time interval before being
considered to be dead. If the failure node happens to be the
leader, the members of the leader’s ring regards co-leader
as the replacement leader. In that sense, co-leader improves
the resilience of the Magnet ring-based overlay by avoiding
dependencies on single node.

3.4 Squeeze measure and release measure

In this section, we analyze the overhead caused by the mi-
grations of VMs and then introduce the “squeeze” and “re-
lease” migration measures which decrease the overhead to
the maximum extent.

VM migration is the key in the energy saving method of
aggregating and redistributing the system load in the cluster
consisting of VMs. The most optimal effect can be achieved
by (1) calculating the overall load of the system and be-
ing divided by the capacity of a single physical machine to

Cluster Comput (2010) 13: 113–126 117

Fig. 2 (a) The “squeeze” steps
in detail. (b) The “release” steps
in detail

get the number of nodes which can handle the overall load;
(2) transferring the scattered load to the calculated minimal
set of servers by a sequence of live migrations. The chal-
lenge is how to obtain the optimal effect meanwhile decrease
the overhead caused by VM migrations.

Overhead. Previous works [8, 26] have conducted a se-
ries of experiments to measure the overhead for migrating a
number of running VMs from one physical host to another.
The results show that, the overhead of VM migrations is re-
flected in two aspects, the time cost for all the migrations
and the throughput loss of the competitive VMs on the tar-
get node.

First, let r be a fixed remote execution cost in second;
let B be the bandwidth; let D be the amount of data in bits
(OS image) to be transferred in the job migration; let N be
the times of all VM migrations. The time cost for all the
migrations can be given by

Overhead(Time(s)) =
(

r + D

B

)
× N (2)

Second, the throughput loss is caused by the VMs’ com-
petition for the shared cache although the VMs have been
already isolated in terms of CPU and memory. It has been
shown that page faults frequently occur in some heavily
loaded nodes but a few memory accesses or no memory ac-
cesses are requested on some lightly loaded nodes or idle
nodes [1]. Therefore, in order to decrease the total through-
put loss, it is recommended to merge lightly loaded VMs
together on the physical host and avoid the situation of trans-
ferring one heavily loaded VM to the host inside which there
is another heavily loaded VM running.

“Squeeze” Measure. The above analysis gives us the di-
rections for minimizing the overhead: the less D, N , and
probability of allocating heavily loaded VMs together, the
less overhead will be achieved. While in energy saving state
or outer job blocking state, Magnet will take “squeeze” mea-
sure to migrate a sequence of VMs on the outer layer ring,

which is similar to the process of constructing an optimal
tree. The difference lies in that the process will stop if the
sum of load of VMs on a physical host exceeds the upper
bound load of their layer (degrad/2). Figure 2(a) presents
the detailed “squeeze” steps. Let the number inside the VM
be the amount of load in terms of a percentage and 33% be
the upper bound of the cluster P1 consisting of outer layer
ring nodes (degrad = 66%). The physical host which con-
tains 4 VMs (4%, 6%, 10% and 26%) will be removed onto
the secondary layer ring. Each step of “squeeze” measure
merges two lightest loaded VMs together and thus guar-
antees the minimal D and minimal probability of the mer-
gence of heavily loaded VMs. Moreover, the process of con-
structing the optimal tree leads a relatively smaller value
of N .

“Release” Measure. While in inner job blocking state,
Magnet will take “release” measure to the VM whose host
machine consumes the resource ratio exceeding the upper
bound (violate). “Release” measure is the inverse process of
“Squeeze” measure and the disjointed violating VMs will be
transferred to the free nodes on the lightly loaded nodes of
the outer layer ring. Figure 2(b) presents the detailed “re-
lease” steps, in which the VM (26%) mutates to be a vi-
olating VM (66%) due to some unknown reasons, e.g. its
jobs’ fluctuant demand of a large memory space. Conse-
quently, the physical machine of the VM (66%) becomes
a violating node (suppose violate is 80%) and then it is re-
leased.

3.5 The rationale of our solutions

In this section, we separately discuss our solutions to the
four common “evil” system states and the rationale behinds
them.

In saving energy state, Magnet virtually reconfigures
the cluster system to further utilize resources by taking
“squeeze” measure on outer layer nodes (see Fig. 3). At

118 Cluster Comput (2010) 13: 113–126

Fig. 3 Magnet reconfiguration in saving energy state

next step, Magnet switches the high-power state of the re-
leased nodes to the low-power state. There is one question
that why we do not submit these lightweight jobs to certain
nodes from the very beginning and thus save trouble and
overhead of all these migrations. Actually, a situation is ig-
nored, that jobs on cluster may change dynamically, heavily
loaded nodes could become lightly loaded when its jobs are
completed or terminated that we do not know in advance.
Therefore, saving energy is not so much a predetermined
strategy as a feedback-driven process.

In inner job blocking state, it is pressing to make the vi-
olating job migrate to the node which can provide it enough
memory space or CPU resource. More importantly, experi-
ments have shown that a large job is likely to be with long
lifetime [6, 14]. In the sense, the candidate node should not
be a heavyweight node as it is likely to be the same for a
long time and thus causes another inner job blocking state.

The Magnet system takes “release” measure on the vio-
lating VMs. Magnet maintains a multilayer ring-based over-
lay among which the lightweight workload nodes are orga-
nized to be on the outer layer ring, so it is easy to find the
candidate nodes by requesting the corresponding outer layer
leader for the list of its members and then choosing one of
them, as illustrated in Fig. 4.

In outer job blocking state, a new job is coming, which
demands large memory space and CPU resource. Unfortu-
nately, the available space of each individual node is not
large enough to serve it and thus the following submis-
sions to the workstation will be blocked. However, if the
idle memory spaces of all individual nodes can be accumu-
lated, then the sum may fit the large job. The Magnet system
takes “squeeze” measure on outer layer nodes to release the
resources.

More importantly, our policy can provide both the cen-
tralized and distributed job scheduling approaches in the
cluster. Previous FEP (Front End Process) emphasizes a lot

Fig. 4 Magnet reconfiguration in inner job blocking state

on the characterization of jobs by adjusting its scheduling
strategies in accordance with job types, such as rigid jobs
and moldable jobs. Undoubtedly, the centralized manage-
ment has many advantages. However, when the scalability
is restricted or high fault tolerance is required, distributed
management is an alternative scheme of great importance.
Our approach can transfer the responsibilities of the FEP to
the workstations in cluster, making the workstations them-
selves decide which node to run certain task. In other words,
the computing cluster acts like a “black box” which is trans-
parent to the user and the FEP.

4 Analysis

4.1 Energy saving modeling

Preliminaries: Let V be the set of all workstations; let t be
the given interval for Magnet reconfiguration; let SM(t) ⊂ V

be the set of the active workstations during t ; let ε be the
average watt of electricity consumed by one workstation per
second; let �E = (|V | − |SM|) × ε × t , representing the
energy saved during t .

Assuming that node Ni follows Poisson distribution to
be required of Ki percentage of resource (0 < Ki < 100)
with the mean rate λi (intensity of workload) [25], hence
the probability density of resource consumption of Ni can
be calculated as P(Xi = ki) = e−λi λ

ki

i /ki !.
As the sum of N independent Poisson distributions still

follows Poisson distribution, at time t , the sum of workload
on all the workstations follows Poisson distribution. Sup-
pose that the mean workload of the outer layer ring, the
secondary ring and the inner layer ring is load1 ∈ [0, k1),
load2 ∈ [k1, k2) and load3 ∈ [k2,100], respectively.

Assuming the percentage of workstations suffering
load1, load2, load3 is P1, P2, and P3 respectively, so there

Cluster Comput (2010) 13: 113–126 119

are |V |P1, |V |P2, |V |P3 workstations on the outer ring, the
secondary ring, and the inner ring, where

P1 =
∫ k1

0

e−λλr

r! dr, P2 =
∫ k2

k1

e−λλr

r! dr,

P3 =
∫ 100

k2

e−λλr

r! dr

(3)

and P1 + P2 + P3 = 1
Before reconfiguration: |SM| = |V |.
After reconfiguration:
The load on the outer ring and the secondary ring will

be partially “squeezed” or “transferred”. Magnet only deals
with the members of the outer ring by squeezing them to the
secondary ring, then

|SM| = |V |P 1
Load1

Load2
+ |V |P2 + |V |P3 (4)

and then

|V | − |SM| = |V | − |V |P1
Load1

Load2
+ |V |P2 + |V |P3

= |V |P1

(
1 − Load1

Load2

)
(5)

Thus, the saved energy can be given by

�E = (|V | − |SM|) × ε × t

= |V |P1

(
1 − Load1

Load2

)
× ε × t

= |V |
(∫ k1

0

e−λλr

r! dr

)(
1 − Load1

Load2

)
× ε × t (6)

We have load1 < load2, so �E > 0.
The above model gives conditions for the Magnet recon-

figuration to reduce the total electricity. A key condition for
performance gains is from k1, λ and variance between load1

and load2. The more k1, the less and the larger difference
between load1 and load2, the more energy will be saved.

4.2 Quality of service modeling

The total execution time of job i in a workload for i = 1,2,

. . . , n, texe(i) is expressed as texe(i) = tcpu(i) + tpage(i) +
tque(i), where tcpu(i), tpage(i), tque(i) are the CPU service
time, the paging time for page faults, the queuing time wait-
ing in a job queue.

Texe =
n∑

i=1

tcpu(i) +
n∑

i=1

tpage(i) +
n∑

i=1

tque(i)

Texe = Tcpu + Tpage + Tque

(7)

After Magnet reconfiguration, with (2), we have

T̂exe = T̂cpu + T̂page + T̂que + T̂mig

T̂exe = T̂cpu + T̂page + T̂que +
(

r + D

B

)
× N

(8)

The jobs demand identical CPU service on both cluster
environments, so that Tcpu = T̂cpu.

For inner job blocking problem, the paging time reduc-
tion (Tpage − T̂page) can be achieved by making jobs with
large memory demands migrate to the nodes of the outer
ring which has enough resources. The inner job blocking
problem happens during the running process of the system,
so that T̂que = Tque. In that sense,

�T = Texe − T̂exe = (Tpage − T̂page) − T̂mig

�T = (Tpage − T̂page) −
(

r + D

B

)
× N

(9)

For outer job blocking problem, we can conclude that
T̂que > Tque as Magnet helps keep the workflow smooth. It is
under the assumption that the total resource can satisfy the
jobs, so T̂page = Tpage. Then we have

�T = Texe − T̂exe = (Tque − T̂que) − T̂mig

�T = (Tque − T̂que) −
(

r + D

B

)
× N

(10)

The above model gives conditions for the Magnet recon-
figuration to reduce the total execution time of jobs. Equa-
tion (9) and (10) tell us that the more Magnet reconfigures
the nodes to maintain the stable overlay, the more difference
of Tpage and T̂page or Tque and T̂que will be obtained. How-
ever, note that the migration times N will increase too, so
�T is not always positive. Certainly, less D (data amount)
and larger B (bandwidth) will lead to smaller time cost for
migrations.

5 Experimental environment

5.1 A simulated cluster with VMs

We have simulated a cluster with 64 homogeneous hosts,
each of which has an AMD Athlon 3500+ processor and
1 GB DDR RAM. Storage is accessed via iSCSI proto-
col from a NetApp F840 network attached storage server
(NAS). Moreover, each host has an Intel Pro/1000 NIC to
transfer the images of the VMs with 1000 Mbps network
bandwidth. We used Xen 3.10 as the virtual machine moni-
tor on each host in all cases and the host kernel for XenLinux
is a modified version of Linux 2.6.18.

120 Cluster Comput (2010) 13: 113–126

Table 1 Execution
performance of the seven
applications

Program Data size Lifetime (s) CPU time (s) Working set (MB) I/O

bit-r 223 192.26 191.85 64.22 0.06

m-sort 223 82.76 0.84 64.27 0.27

m-m 1,7002 4902.29 4901.12 66.37 0.0

t-sim 31,061 41.63 38.79 4.64 6.5

metis 1 MB∼4 MB 124.41 112.85 1.37 4.30 2.8

r-sphere 150,000 318.64 298.18 36.84 39.66 6.1

r-wing 500,000 72.28 28.98 19.53 23.39 58.38

In simulations of the cluster, the virtual machine is con-
figured to use 512 MB of RAM, the memory page size is
4 Kbytes, page fault service time is 10 ms, and the con-
text switch time is 0.1 ms. The remote submission/execution
cost, r , is 0.01 second for 1000 Mbps network. Each host
maintains a dynamically changed load index file which con-
tains CPU, memory, and I/O load status information. The
Magnet system periodically collects the load information
among the workstations.

5.2 Application workload

In order to effectively conduct Magnet policy with unknown
CPU or memory demands, in this section we need to select
different benchmark programs which are representing differ-
ent types of jobs and then we mix them together to generate
the application workload at different submission rates.

The large scientific and system programs we use are
from [6], and they are representative CPU-intensive, memo-
ry-intensive, and/or I/O-active jobs: bit-reversals (bit-r),
merge-sort (m-sort), matrix multiplication (m-m), a trace-
driven simulation (t-sim), partitioning meshes (metis), cell-
projection volume rendering for a sphere (r-sphere), and
cell-projection volume rendering for flow of an aircraft wing
(r-wing). Chen [6] have measured the execution perfor-
mances of each program and monitored their memory per-
formance in a dedicated computing environment. Table 1
[6] presents the results of all the seven programs, where the
“data size” is the number of entries of the input data, the
“working set” gives a range of the memory space demand
during the execution, the “lifetime” is the total execution
time of each program.

SPECpower_ssj2008 [21] shows the relationship be-
tween the workload and the power consumptions (Table 2),
which have been formalized by us to calculate the power
consumption under certain target load. The results are ap-
plied as “input file”.

The application workload consisting of different types of
jobs is randomly submitted into the cluster. Each job has a
header item recording the submission time, the job ID, and
its lifetime measure in the dedicated environment. Follow-
ing the header item, the execution activities of the jobs are

Table 2 Benchmark result summary

Target Load Actual Load ssj_ops Average Power

100% 99.2% 40,852 336

90% 89.1% 36,677 308

80% 80.7% 33,235 288

70% 69.0% 28,398 263

60% 58.7% 24,157 241

50% 49.8% 20,512 225

40% 39.5% 16,281 207

30% 30.0% 12,337 194

20% 20.0% 8,237 181

10% 10.1% 4,142 170

Active Idle Active Idle 0 159

recorded in a time interval of every 100 ms including CPU
cycles, the memory allocation demand and the details of its
VM migrations including its VM container ID, the source
and destination node, the start and the end time. Thus, the
power consumption can be calculated by the closely moni-
tored CPU and memory utilization rates with Table 2. Mean-
while, the total execution time, the average slowdown and
the time cost of migrations can be given by the logs.

5.3 Job submission rate generation

In order to implement our policy across a broad range of
workload intensities, we have conducted our experiment at
different submission rates.

Similar to [8], we have also generated the job submission
rates by the lognormal function:

Rin(t) =
⎧⎨
⎩

1√
2πσ

e
−(ln t−μ)2

2σ2 t > 0

0 t ≤ 0
(11)

Where Rin(t) is the lognormal arrival rate function, t is
the time duration for job submissions in a unit of seconds,
and the values of μ and σ adjust the degree of the sub-
mission rate. The lognormal job submission rate has been
observed in several practical studies (see [6, 11]). Five ap-
plication workload groups with different arrival rates are

Cluster Comput (2010) 13: 113–126 121

Table 3 Job submission rates
of the application workload Application Workload σ μ Amount of Jobs Submission Duration (s)

APP-1 3.9 3.9 318 5,499

APP-2 4.1 4.1 450 5,503

APP-3 4.3 4.3 565 5,497

APP-4 4.5 4.5 707 5,510

APP-5 4.6 4.6 993 5,498

illustrated in Table 3, where “APP-1”, “APP-2”, “APP-3”,
“APP-4”, “APP-5” represents light, moderate, normal, mod-
erately intensive, and highly intensive submission rate, re-
spectively, “Submission Duration” is the time duration for
job submissions in a unit of seconds.

5.4 Migration cost estimation

The approach we proposed is a continual optimization ap-
proach, where we dynamically make the VMs migrate from
one physical server to another in order to minimize the total
power consumption. The migration process between the two
hosts involves the following stages: pre-migration, reserva-
tion, iterative pre-copy, stop-and-copy, commitment, and ac-
tivation [8], which requires creation of a checkpoint on sec-
ondary storage and retrieval of the VM image on the target
server, so applications can continue running during the mi-
gration. However, the performance of applications may be
influenced in the transition because of cache misses (hard-
ware caches are not migrated) and potential application qui-
escence. Thus, it is necessary to estimate the following cost:
(1) time cost for one-time migration of the VM on which the
benchmark program r-wing runs; (2) performance cost of r-
wing in terms of running time for 30 operations while keep-
ing the memory footprint of background fma low; (3) per-
formance cost of r-wing in terms of running time for 30 op-
erations while increasing the memory footprint of back-
ground fma.

Generally speaking, the time cost for the one-time VM
migration contains the shutdown delay, the migration dura-
tion and the startup delay. As the VM is shut down after
being migrated, the shutdown delay is irrelevant to the exe-
cution time of jobs running on the VM. As the booting of a
new VM is informed in advance, the startup delay is irrel-
evant to execution time of jobs running on the VM neither.
Therefore, we disregard the shutdown delay and startup de-
lay of the 512M VM in our simulation.

We have measured the time cost and performance cost
for the live migration of a VM with 512 MB of RAM, as
illustrated in Fig. 5. The physical machine is a 3.6 GHz Pen-
tium PC with 1 GB main memory and a swap space of 1 GB,
running Linux version 2.6.9. The foreground load is r-wing
as described in Table 2. The background load is a compute-
intensive application namely fma from an HPC suite. We

Fig. 5 Migration cost in second of a 512M VM at a time while under
different background load

vary the intensity of the background load fma and mea-
sure the performance with and without an increased memory
footprint.

We observe that migrations time is independent of the
background load and depended only on the VM characteris-
tics. However, it is based on the premise that the network is
idle. Once the task execution environment is communication
intensive, the bandwidth will be partially occupied and thus
the result is not likely the same.

We also observe that the throughput of the foreground
r-wing decreases with increasing of the background traffic
(memory footprint). It means that although the applications
are isolated in terms of CPU and memory, they still com-
pete for the shared cache and thus the performance degrades
because of many cache misses. However, the performance
degradation can be limited to a certain range as long as the
background traffic is not intensive.

6 Performance evaluations

6.1 Measured metrics and reconfiguration parameters

To better evaluate the performance of Magnet, we use the
metrics as follows: (1) Power savings over base is defined as

122 Cluster Comput (2010) 13: 113–126

the ratio of the saved electricity to the total electricity during
the entire lifetime of the application workload in percentage
terms. (2) Cluster utilization is defined as the average ra-
tio between the amounts of consumed memory volume to
all memory space of active workstations (rule out the “shut
down” nodes) during the entire lifetime of the application
workload in percentage terms. (3) Total execution time is
defined as the sum of the total CPU service time, the total
paging time for page faults, the total queuing time waiting in
a job queue and the total migration time. (4) Job slowdown
is defined as the average ratio between its wall-clock execu-
tion time and its CPU execution time of all nodes. Plus, we
also use the metric (5) MT/ET which is defined as the av-
erage ratio between the cumulative Magnet reconfiguration
time and its total execution time to evaluate the overhead of
Magnet.

For our experiment, we refer to the time interval between
reconfigurations as the elapse parameter. Let degrad = 80%
and Max(vm) = 3. The workload of each layer ranges in
(0%∼40%), (40%∼80%), (80%∼100%), respectively, of
the base resource. To guarantee the QoS of the tasks, the
number of the active nodes should not be less than one third
of the number of the “shut down” nodes and for our experi-
ment, the threshold is eight. The threshold changes accord-
ing to the different QoS requirements of the services.

Finally, towards each metric, we compare some of the
following policies: (1) basic method without any virtual re-
configuration (Base); (2) current methods (Combined DVS
and Batching, Disk Intense Batching and Disk Intense
DVS [9]); (3) Magnet method with expected results deduced
by mathematical analysis (Expected-Magnet); (4) Magnet
method with practical results (Magnet).

The Expected-Magnet results can be calculated with the
following formula:

�E = |V |
(∫ k1

0

e−λλr

r! dr

)(
1 − Load1

Load2

)
× ε × t,

where |V | = 64, Load1
Load2

= (1 + 0.4)/(1 + 0.8). Since the

selected application workload tends to be lightweight,∫ k1
0

e−λλr

r! dr is set to 1, and ε is set to 170 watts (average
power from SPECpower_ssj2008).

6.2 Improving power consumption

Figure 6 presents the energy savings (in percentage) for the
Magnet policy under five application workloads with an in-
creasing elapse parameter, 250 seconds, 500 seconds and
1000 seconds. Compared to Combined (DVS+Batching),
Disk-intensive-DVS and Disk-intensive-Batching methods,
the Magnet policy exhibites much more power savings.

From Fig. 6(a), it can be seen that Magnet method, un-
der the reconfiguration elapse of 250 seconds, significantly

reduces power consumptions. The figure shows that power
consumptions are reduced by 67.09%, 72.02%, 67.55%,
72.77% and 74.81% for light, moderate, normal, moderately
intensive and highly intensive job submissions, respectively
(APP-1,2,3,4,5).

From Fig. 6(b) and Fig. 6(c), regarding an increasingly
Magnet reconfiguration elapse (500 seconds and 1000 sec-
onds), the power consumptions are reduced by 67.36%,
69.53%, 69.28%, 70.79%, 70.67% and 61.81%, 63.69%,
63.68%, 69.90%, 68.28%. Note that when elapse is 1000
seconds, Magnet performs worse than that of 250 seconds
and 500 seconds in the energy saving. It suggests that Mag-
net performs better while its ring-based overlay is main-
tained more frequently, for the reason that the less interval
time between Magnet reconfigurations, the more redundant
workstations can switch to “shut down” state. Meanwhile,
from Fig. 6(a), Fig. 6(b) and Fig. 6(c), we can see that the
less elapse is, the closer the practical Magnet results come
to the theoretical Magnet results.

6.3 Improving cluster utilization

We have also observed the average total consumed mem-
ory volumes during the lifetime of job executions in each
workload group. Figure 7 presents the comparative average
cluster utilization during lifetimes of five workload groups
using Magnet scheme and basic scheme.

Compared to the original cluster utilization (10.24%,
14.73%, 18.75%, 20.20% and 21.20% for workload APP-
1,2,3,4,5 respectively), our method can increase the aver-
age cluster utilization significantly. When elapse is 250 sec-
onds, the average cluster utilization is increased by 41.89%,
32.04%, 36.57%, 45.17% and 50.61% respectively; when
elapse is 500 seconds, it is increased by 33.72%, 35.44%,
32.36%, 34.40% and 39.68% respectively; when elapse is
1000 seconds, it is increased by 29.59%, 27.05%, 24.42%,
36.10% and 34.97%, respectively.

The increase of the average cluster utilization is caused
mainly by the decreasing number of the idle nodes. By
means of turning off the idle nodes, the overall workload can
be “squeezed” onto a subset of active workstations and thus
increase the throughput. Comparing bars of different elapse
parameters (250 seconds, 500 seconds and 1000 seconds), it
is clear that less value of elapse parameter leads to further
utilization of active workstations.

6.4 Improving quality of service

Figure 8 and Fig. 9 present the comparative total execution
time and job slowdown under five workloads using Magnet
scheme and basic scheme with respect to an increasing value

Cluster Comput (2010) 13: 113–126 123

Fig. 6 Energy savings for Magnet, Expected-Magnet and current methods (a) elapse = 250 seconds, (b) elapse = 500 seconds,
(c) elapse = 1000 seconds

of elapse parameter, from 250 seconds to 1000 seconds.
From Fig. 8, it can be seen that when elapse is 250 seconds,
the total execution time is reduced by −37.10%, −17.83%,
−27.66%, 3.47% and 4.96% for workload APP-1,2,3,4,5,
respectively; when elapse is 500 seconds, it is reduced
by −40.72%, −21.65%, −5.62%, 0.30% and 5.10%; when
elapse is 1000 seconds, it is reduced by −50.0%, −10.51%,
15.52%, 3.98% and −9.43%.

Note that the results are not positive for light job sub-
missions, moderate job submissions and normal job sub-
missions (APP-1,2,3). It is not surprising since job block-
ing problems happen under light workload and thus the time
increased by live migrations exceeds the time reduced by
addressing job blocking problems.

Figure 9 shows that Magnet generally decreases the av-
erage job slowdown under workload APP-1,2,3,4,5. When
elapse is 250 seconds, we are able to reduce the aver-
age job slowdown by −43.82%, 17.61%, 15.35%, 22.85%
and 38.21%; when elapse is 500 seconds, it is reduced
by −6.74%, 17.39%, 46.93%, 31.84% and 31.79%; when
elapse was 1000 seconds, it is reduced by 2.00%, 32.98%,
52.28%, 48.4% and 39.62%. Note that the results are not
positive for light job submissions when elapse is 250 sec-
onds and 500 seconds, the reason is that frequent migrations
lead to longer waiting time addressed much less job block-
ing problems for lightweight working flow. Therefore, the
time increased by live migrations exceeds the time reduced
by addressing job blocking problems.

124 Cluster Comput (2010) 13: 113–126

Fig. 7 The average cluster utilizations of the five application workload
groups scheduled by Magnet scheme and the basic scheme (Base) with
increasing elapses

Fig. 8 The total execution times of the five application workload
groups scheduled by Magnet scheme and the basic scheme (Base) with
increasing elapses

6.5 Overhead analysis

As frequent Magnet reconfiguration will cause noticeable
overhead, it is important to make sure that the QoS is not
sacrificed excessively in favor of power and energy sav-
ings.

Finally, we test the MT/ET (Magnet reconfiguration
time/Total execution time) and the average cumulative mi-
gration times during the entire lifetimes of the five different
working flows (see Fig. 10) while increasing the interval be-
tween reconfigurations (elapse) gradually. MT can be esti-
mated as the product of the migration cost in second and the
total times of migrations. It shows that the increase of elapse
leads to the decrease of MT/ET , indicating that although

Fig. 9 The average slowdowns of the five application workload groups
scheduled by Magnet scheme and the basic scheme (Base) with in-
creasing elapses

Fig. 10 MT/ET in percentage terms and the average cumulative mi-
gration times during the entire lifetimes for APP-1,2,3,4,5 with increas-
ing elapses

smaller value of elapse parameter achieves better perfor-
mance on energy saving, it is at the expanse of more over-
head on the total execution time. However, considering the
benefits (more energy savings and cluster utilization) carried
by high frequency (see Fig. 6, Fig. 7), it seems that the most
optimal approach is a balanced one that an appropriate value
of elapse parameter should be chosen.

In the Magnet scheme, we can collect the states of
all nodes in the cluster by central manger or in distrib-
uted manner. In distributed manner, one responsible node
in the cluster will be elected by voting algorithm dynam-
ically. Then the voted node will play the same roles of
the central manger. In our further research, we will focus
on the distributed algorithm and give more detail experi-
ments.

Cluster Comput (2010) 13: 113–126 125

7 Conclusions

This paper aims at providing effective strategies to reduce
the power consumption and meanwhile influence little on
the performance. The contributions can be described as fol-
lows: (1) our scheme addresses the limitations caused by
heterogeneous computing platforms; (2) an adaptive Magnet
approach is proposed to obtain significant energy savings by
taking the advantage of live migration of VMs; (3) through
the theoretical analysis, we propose the “squeeze” and “re-
lease” measures to guide the live migrations aiming at
the minimal overhead. Experimental results show that the
method have positive impact on the average job slowdown
and minor negative impact on the total execution time. Par-
ticularly, the overhead is adjustable by changing the para-
meter elapse.

In the future, we will try to optimize the power re-
duction effect by exploring more intelligent schemes ac-
cording to the characteristics of jobs such as CPU inten-
sive, memory intensive or I/O intensive. Also, we will
analyze the strategies of the migration of multiple VMs,
e.g. parallel migration and serial migration, to further re-
duce the impact of VM migration on the system perfor-
mance.

Acknowledgements This work is supported by National 973 Basic
Research Program of China under grant No. 2007CB310900, Program
for New Century Excellent Talents in University under grant NCET-08-
0218, China National Natural Science Fundation (NSFC) under grant
No. 60703050,60973133, Wuhan Chenguang Research Plan Founda-
tion with No. 200850731350 and the Ministry of Education-Intel Infor-
mation Technology Special Research Fundation under grant No. MOE-
INTEL-08-06.

References

1. Acharya, A., Setia, S.: Availability and utility of idle memory
in workstation clusters. In: Proceedings of ACM SIGMETRICS
Conference on Measuring and Modeling of Computer Systems,
pp. 35–46 (1999)

2. APC-American Power Conversion. Determining Total Cost of
Ownership for Data Center and Network Room Infrastructure.
ftp://www.apcmedia.com/salestools/CMRP-5T9PQG_R2_EN.pdf
(2003)

3. Bobroff, N., Kochut, A., Beaty, K.A.: Dynamic placement of vir-
tual machines for managing SLA violations. In: Proceedings of
9th IFIP/IEEE International Symposium on Integrated Network
Management, pp. 119–128. IEEE, New York (2007)

4. Burd, T., Pering, T., Stratakos, A., Brodersen, R.: A dynamic volt-
age scaled microprocessor system. In: Proceedings of IEEE Inter-
national Conference on Solid-State Circuits, pp. 294–295 (2000)

5. Chase, J., Anderson, D., Thackar, P., Vahdat, A., Boyle, R.: Man-
aging energy and server resources in hosting centers. In: Pro-
ceedings of the 18th Symposium on Operating Systems Principles
(2001)

6. Chen, S., Xiao, L., Zhang, X.: Adaptive and virtual reconfigura-
tions for effective dynamic job scheduling in cluster systems. In:
Proceedings of the 22nd International Conference on Distributed
Computing and Systems (ICDCS 2002) (2002)

7. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., Gau-
tam, N.: Managing server energy and operational costs in hosting
centers. In: Proceedings of the 2005 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer
Systems, Banff, Alberta, Canada (2005)

8. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C.,
Pratt, I., Warfield, A.: Live migration of virtual machines. In: Pro-
ceedings of 2nd Symposium on Networked Systems Design and
Implementation (NSDI 2005), USENIX (2005)

9. Elnozahy, E.N., Kistler, M., Rajamony, R.: Energy conservation
policies for Web servers. In: Proceedings of the 4th USENIX Sym-
posium on Internet Technologies and Systems (2003)

10. Heath, T., Diniz, B., Carrera, E.V., Meira, W. Jr., Bianchini, R.:
Energy conservation in heterogeneous server clusters. In: Proceed-
ings of the Tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2005), pp. 186–195.
ACM, New York (2005)

11. Hopkins, M.: The onsite energy generation option. Data
Center J. (2004). http://datacenterjournal.com/News/Article.asp?
article_id=66

12. Huang, W., Gao, Q., Liu, J., Panda, D.K.: High performance
virtual machine migration with RDMA over modern intercon-
nects. In: Proceedings of IEEE International Conference on Clus-
ter Computing (Cluster 2007), September (2007)

13. Jenkins, G., Reinsel, G., Box, G.: Time Series Analysis: Forecast-
ing and Control. Prentice-Hall, New York (1994)

14. Jiang, S., Zhang, X.: TPF: a system thrashing protection facility in
Linux. Softw. Pract. Exp. 32(3), 295–318 (2002)

15. Kephart, J.O., Chan, H., Das, R., Levine, D.W., Tesauro, G., Raw-
son, F., Lefurgy, C.: Coordinating multiple autonomic managers
to achieve specified power-performance tradeoffs. In: Proceedings
of the Fourth International Conference on Autonomic Computing
(ICAC-4), p. 24. IEEE Computer Society, Washington (2007)

16. Kim, E.J., Yum, K.H., Link, G.M., Vijaykrishnan, N., Kan-
demir, M., Irwin, M.J., Yousif, M., Das, C.R.: Energy optimiza-
tion techniques in cluster interconnects. In: Proceedings of In-
ternational Symposium on Low Power Electronics and Design
(ISLPED 2003), pp. 459–464. ACM, New York (2003)

17. Kim, E.J., Yum, K.H., Link, G.M., Vijaykrishnan, N., Kan-
demir, M., Irwin, M.J., Yousif, M., Das, C.R.: A holistic approach
to designing energy-efficient cluster interconnects. IEEE Trans.
Comput. 54(6) (2005)

18. Pinheiro, E., Bianchini, R., Carrera, E., Heath, T.: Dynamic cluster
reconfiguration for power and performance. In: Benini, L., Kan-
demir, M., Ramanujam, J. (eds.) Compilers and Operating Sys-
tems for Low Power. Kluwer Academic, Dordrecht (2003)

19. Shafi, H., Bohrer, P.J., Phelan, J.: Design and validation of a per-
formance and power simulator for PowerPC systems. IBM J. Res.
Develop. 47, 641–652 (2003)

20. Shmueli, E., Feitelson, D.G.: Backfilling with look ahead to op-
timize the performance of parallel job scheduling. In: Feitelson,
D.G., Rudolph, L., Schwiegelshohn, U. (eds.) Job Scheduling
Strategies for Parallel Processing. Lecture Notes on Computer Sci-
ence, vol. 2862, pp. 228–251. Springer, Berlin (2003)

21. Standard Performance Evaluation Corporation. [Online]. Avail-
able: www.spec.org (2008)

22. VMware Distributed Resource Scheduler. [Online]. Available:
http://www.vmware.com/products/vi/vc/drs.html (2008)

23. Wiseman, Y., Feitelson, D.G.: Paired gang scheduling. IEEE
Trans. Parallel Distrib. Syst. 14(6), 581–592 (2003)

24. Xiao, L., Zhang, X., Kubricht, S.A.: Incorporating job migra-
tion and network RAM to share cluster memory resources. In:

ftp://www.apcmedia.com/salestools/CMRP-5T9PQG_R2_EN.pdf
http://datacenterjournal.com/News/Article.asp?article_id=66
http://datacenterjournal.com/News/Article.asp?article_id=66
http://www.spec.org
http://www.vmware.com/products/vi/vc/drs.html

126 Cluster Comput (2010) 13: 113–126

Proceedings of the 9th IEEE International Symposium on High
Performance Distributed Computing (HPDC 2000), pp. 71–78
(2000)

25. Zhang, X., Qu, Y., Xiao, L.: Improving distributed workload per-
formance by sharing both CPU and memory resources. In: Pro-
ceedings of 20th International Conference on Distributed Com-
puting Systems (ICDCS 2000), pp. 233–241 (2000)

26. Zhao, M., Figueiredo, R.J.: Experimental study of virtual machine
migration in support of reservation of cluster resources. In: Pro-
ceedings of 2nd International Workshop on Virtualization Tech-
nologies in Distributed Computing (VTDC 2007) (2007)

Xiaofei Liao received a Ph.D. de-
gree in computer science and en-
gineering from Huazhong Univer-
sity of Science and Technology
(HUST), China, in 2005. He is now
an associate professor in School
of Computer Science and Technol-
ogy at HUST. His research interests
are in the areas of computing sys-
tem virtualization, peer-to-peer sys-
tem, cluster computing and stream-
ing services. He is a member of the
IEEE and the IEEE Computer Soci-
ety.

Liting Hu was Ph.D. candidate in
computer engineering from Hua-
zhong University of Science and
Technology (HUST). Her research
interests are in the areas of comput-
ing system virtualization and cluster
computing.

Hai Jin received a B.Sc., a M.Sc.
and a Ph.D. degree in computer
engineering from Huazhong Uni-
versity of Science and Technology
(HUST) in 1988, 1991 and 1994,
respectively. Now he is a professor
of computer science and engineer-
ing at HUST in China. He is now
the Dean of School of Computer
Science and Technology at HUST.
He is the chief scientist of National
973 Basic Research Program, “Ba-
sic Theory and Methodology of Vir-
tualization Technology for Comput-
ing System”, and the largest grid

computing project, ChinaGrid, in China. He is a senior member of
IEEE and member of ACM. He is the member of Grid Forum Steering
Group (GFSG). His research interests include virtualization technol-
ogy, cluster computing and grid computing, peer-to-peer computing,
network storage, network security, and high assurance computing.

	Energy optimization schemes in cluster with virtual machines
	Abstract
	Introduction
	Related works
	Local techniques
	Cluster-wide techniques

	MAGNET design
	Overview
	Clearing module
	Multilayer ring based overlay
	Squeeze measure and release measure
	The rationale of our solutions

	Analysis
	Energy saving modeling
	Quality of service modeling

	Experimental environment
	A simulated cluster with VMs
	Application workload
	Job submission rate generation
	Migration cost estimation

	Performance evaluations
	Measured metrics and reconfiguration parameters
	Improving power consumption
	Improving cluster utilization
	Improving quality of service
	Overhead analysis

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

