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ABSTRACT

Low-latency I/O services are essential for latency-sensitive work-

loads when they co-run with throughput-oriented workloads in

cloud data centers. Although advanced SSDs such as Intel Optane

SSDs can offer ultra-low latency at the device layer, I/O interference

among various workloads through the I/O stack can still signifi-

cantly enlarge I/O latency. It is still an open problem to best utilize

ultra-low latency SSDs in cloud computing environments.

In this paper, we analyze the entire I/O stack and reveal that I/O

interference is mainly attributed to resource contention in the SSD

device, transactions commit in the file system, and costly process

scheduling. To address these problems, we propose FastResponse, a

holistic approach to use ultra-low latency SSDs for latency-sensitive

workloads. First, we propose a new I/O scheduler at the block layer

to throttle I/O requests of throughput-oriented workloads, and

thus reduce the resource contention in the SSD device. Second, we

develop a fine-grained journaling scheme to reduce the latency of

transaction at the file system layer. Third, we redesign Completely

Fair Scheduler (CFS) to promote the priority of latency-sensitive

processes.We implement FastResponse in Linux kernel and evaluate

it with several mixed workloads. Compared with the vanilla Linux

and the state-of-the-art SelectISR, FastResponse can reduce the

average response time of latency-sensitive workloads by 18-70% and

10-67%, respectively, and reduce the 99.9th percentile response time

by 58-80% and 52-78%, respectively. Meanwhile, the performance

degradation for throughput-oriented workloads is less than 6%.

CCS CONCEPTS

• General and reference → Performance; • Software and its

engineering → Operating systems.

KEYWORDS

I/O Interference, I/O Scheduling, Ultra Low-Latency SSD, Storage

System

Corresponding Author: Haikun Liu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’22, June 28–30, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9281-5/22/06. . . $15.00
https://doi.org/10.1145/3524059.3532378

ACM Reference Format:

Mingzhe Liu, Haikun Liu, Chencheng Ye, Xiaofei Liao, Hai Jin, Yu Zhang,

Ran Zheng, Liting Hu. 2022. Towards Low-Latency I/O Services for Mixed

Workloads Using Ultra-Low Latency SSDs. In 2022 International Conference

on Supercomputing (ICS ’22), June 28–30, 2022, Virtual Event, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3524059.3532378

1 INTRODUCTION

Datacenters have become the first option for Internet Service Providers

(ISPs) to deploy their workloads such as social media, search en-

gines, online shopping, and advertising [1, 2]. To improve resource

utilization and energy efficiency, a popular trend is to co-locate dif-

ferent kinds of workloads together in datacenter servers [3, 4]. How-

ever, the co-location interference between throughput-oriented

workloads (e.g., MapReduce workloads) and latency-sensitive work-

loads (e.g., database query services) usually causes significant per-

formance degradation for latency-sensitive workloads [5–7].

To meet the Service Level Agreement (SLA), fast storage devices,

such as ultra-low latency (ULL) SSDs [8–10], are used to provide

low-latency cloud services. ULL SSDs can offer 10𝜇s access latency
which is 10 times lower than that of traditional SSDs. However, we

observe that even using ULL SSDs, the response time of latency-

sensitive workloads is still high in case of severe I/O contention.

The tail latency of latency-sensitive workloads can significantly

increase by dozens of times when they co-run with throughput-

oriented workloads (Section 2.2). To alleviate the interference be-

tween throughput-oriented workloads and latency-sensitive work-

loads in the I/O stack, a lot of recent efforts have been made [11–16]

to prioritize I/O requests of latency-sensitive workloads. The I/O

priority is typically enforced at the block-level scheduler or other

layers, such as page cache and the device driver.

However, these approaches have some limitations when applying

them to ULL SSDs due to the following reasons. 1) Most previous

approaches do not consider the cross-layer interference in the entire

I/O stack. For example, many I/O schedulers such as K2 [16] and

D2FQ [17] dispatch requests with high priority (weight) first, but

only work at the block layer. I/O interference in other storage layers

can still enlarge the latency of mission-critical workloads. 2) Most

previous approaches are designed for traditional flash SSDs, and fail

to exploit the promising feature of ULL SSDs. For example, Intel

Optane SSD leverages 3D-XPoint technology. It can achieve very

high bandwidth utilization even with a small queue depth while still

offering low latency. Previous studies [11, 12, 15, 18] cannot fully

utilize these features to provide low-latency I/O services. 3) Previous

approaches usually ignore the impact of process scheduling on the I/O
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latency [13–15]. We find that the cost of process scheduling can be

as high as 22𝜇s when latency-sensitive workloads and throughput-

oriented workloads co-run together (Section 2.2). Since the access

latency of ULL SSDs is as low as 10𝜇s, the cost of process scheduling
is too large relative to ULL SSDs.

In this paper, we first identify three root causes of I/O interfer-

ence in the entire I/O stack. Specifically, in the file system layer, a

compound transaction committed by JBD2 usually contains uncor-

related file updates, and thus enlarges the latency of synchronous

writes. In the block device layer, burst I/O requests can significantly

increase the queue depth of ULL SSDs, and thus enlarge the I/O

latency. Moreover, the CFS scheduler usually takes a long time to

reschedule the latency-sensitive process after it is awakened. To

shorten the latency of mission-critical I/O requests, we propose

FastResponse, a holistic and cross-stack approach for ULL SSDs. We

offer user-level APIs to characterize the attribute of co-running I/O

workloads, and coordinate different I/O layers together to mitigate

the I/O interference. FastResponse can greatly reduce the response

time of latency-sensitive workloads while having trivial impact on

the performance of throughput-oriented workloads.

We make the following contributions in this paper:

• We identify the root causes of I/O interference on ULL SSDs

for co-running workloads, including compound transaction

commit in the file system layer, resource contention in the

block device layer, and costly process scheduling (Section 2).

• In the block layer, we split large I/O requests into small

ones to mitigate their impact on latency-sensitive I/Os. We

also throttle I/O requests of throughput-oriented workloads

moderately to mitigate the interference on latency-sensitive

workloads (Section 3.3).

• In the file system layer, we develop a lightweight journal-

ing scheme for latency-sensitive workloads particularly, and

commit file-level transactions for latency-sensitive work-

loads individually to mitigate the I/O interference. Since

transactions committed by latency-sensitive processes only

contain file metadata, the latency of compound transactions

can be significantly reduced (Section 3.4).

• We redesignComplete Fair Scheduler (CFS) to fully exploit the

feature of ULL SSDs. The new process scheduler promotes

the priority of latency-sensitive processes to minimize the

waiting time after critical processes are woken up (Section

3.5).

We implement FastResponse based on Linux kernel 5.3.7, and the

source code is available at Github [19]. We evaluate FastResponse

with several I/O benchmarks. Compared with the vanilla Linux,

FastResponse can significantly reduce the average and 99.9th re-

sponse time of latency-sensitive workloads by 18-70% and 58-80%,

respectively. Compared with the state-of-the-art SelectISR [11], Fas-

tResponse can reduce the average and 99.9th percentile response

time by 10-67% and 52-78%, respectively, with less than 6% perfor-

mance degradation for throughput-oriented workloads.

The remainder of this paper is organized as follows. Section 2

discusses the background and motivation. Section 3 describes the

design and implementation of FastResponse. Sections 4 presents the

experimental setup and performance evaluation. Section 5 discusses

the related work. We conclude in Section 6.
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Figure 1: An overview of I/O stack

2 BACKGROUND AND MOTIVATION

2.1 Linux I/O Stack

Fig. 1 illustrates the I/O stack of a typical Linux system. It consists

of multiple layers: page cache, file system, multi-queue block layer,

and NVMe driver. In the following, we elaborate the read and write

paths across the I/O stack.

Read Path. Fig. 2 illustrates the operations in the read path. The

process enters the kernel space via a read system call. (1) The data is

first retrieved from the page cache. Upon a cachemiss, free pages are

allocated to buffer I/O requests. (2) The file system inserts pages into

the page cache, retrieves the logical block address (LBA), and finally

sends I/O requests to the underlying layer through a bio structure.

(3) The multi-queue block layer (blk-mq) performs I/O scheduling

and dispatch. It converts the bio structure into a request structure
and puts it into per-core software queues mapped to hardware

queues. (4) The NVMe driver converts the request structure into
a nvme_command structure and puts it into the submission queue

(SQ). Then, the I/O process yields the CPU and waits for the I/O

completion. When the I/O operation in the device is completed,

the device controller writes an entry in the completion queue (CQ)

and sends a message signaled interrupt (MSI) to a CPU core. (5)

The interrupted core executes an Interrupt Service Routine (ISR) to

handle the I/O completion. In this stage, the blocked I/O process is

woken up. However, only when the process scheduler reschedules

it, it can obtain CPU time to complete the following-up work such

as copying pages to the user. Therefore, the process scheduling is

on the critical path of an I/O operation. At last, the read system call

returns.

Write Path. The write system call usually writes data from a

buffer to the page cache and returns immediately. However, when

applications perform synchronous writes (i.e., write()+ fsync()),
the kernel should perform several I/O operations to write back dirty

blocks and metadata to guarantee data consistency.

Fig. 3 shows operations of the fsync in the ext4 file system. First,

the application thread writes dirty blocks of the target file (‘D1’)

and waits for the I/O completion. Second, the kernel wakes up the

Journaling Block Device (JBD2) thread in ext4 file system to commit a

compound transaction which contains updates of multiple files. The
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Figure 4: I/O interference due to co-running latency-

sensitive database workloads (RocksDB) and a throughput-

oriented workload (Bayes) on ULL SSD.

JBD2 thread should write back all dirty blocks of other files involved

(‘D2’) in the transaction. Third, after data blocks are written to the

device, the JBD2 thread writes back metadata blocks (‘JD’), such as

the inode bitmap, external extent blocks. Finally, it writes a commit

block (‘JC’) to guarantee the integrity of a transaction. Overall,

one fsync contains four device I/O operations and six process

scheduling in the entire I/O path.

2.2 Motivation

We co-run latency-sensitive workloads (readrandom or fillsync in

RocksDB [20]) with Bayes [21] (a throughput-oriented workload)

on a server equipped with the ULL SSD. The fillsync benchmark

writes a set of values with random order using the syncmode. Bayes

performs machine learning (20 GB dataset) on Hadoop framework.
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Figure 5: The breakdown of the average latency for readran-

dom and fillsync

Detailed experimental setup can be found in Section 4. As shown

in Figure 4, the average latencies of the readrandom and fillsync in

the co-running model increase by 1.5× and 2.7× compared with the

stand-alone execution model, respectively. The 99.9th percentile

latency even increases by dozens of times. To explore the root

causes, we profile the execute time spent in the I/O stack for the

read and fsync paths, respectively.
Fig. 5(a) shows the time breakdown for the read path. 𝑇𝑃𝐶 , 𝑇𝐹𝑆 ,

𝑇𝐵𝑙𝑘 , and𝑇𝐷𝑒𝑣 represent the time spent in the page cache layer, the

file system layer, the blk-mq layer, and the device layer, respectively.

𝑇𝑆𝑐ℎ𝑒𝑑 represents the waiting time due to process scheduling. The

execution time in each portion increases significantly. Particularly,

the dominant portions T𝐷𝑒𝑣 and T𝑆𝑐ℎ𝑒𝑑 increase by 2.4× and 5.5×,

respectively.
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Figure 6: The performance characteristics of ULL SSD.

Fig. 5(b) shows the time breakdown of the fsync path. 𝑇𝐷1, 𝑇𝐷2,

𝑇𝐽 𝐷 , and 𝑇𝐽𝐶 represent the time spent in writing data blocks of the

target file, data blocks of other uncorrelated files, journal blocks,

and the commit block, respectively. 𝑇𝑆𝑐ℎ𝑒𝑑 represents the waiting

time for process scheduling after waking up JBD2 thread and fsync
thread.𝑇𝐷2 and𝑇𝑆𝑐ℎ𝑒𝑑 are trivial when fillsync runs alone. However,

when it co-runs with Bayes, 𝑇𝐷2 and 𝑇𝑆𝑐ℎ𝑒𝑑 increase by 15× and

9.4×, respectively. The latency of other portions also increases by

2-3×.

According to the above observations, we identify three root

causes for the co-location interference as follows.

Root Cause 1: The block layer is unable to limit the arrival

rate of burst I/O requests to ULL SSDs. At first, we explore the

reason of significant latency increased in the device for the read

path. We measure the average latency and throughput of Optane

SSD using FIO benchmark [22] for the random read pattern. The

I/O queue depth (the number of requests submitted but not yet

completed) ranges from 1 to 32, and the I/O size ranges from 1 KB

to 128 KB.

As shown in Fig.6, for all request sizes, once the queue depth

exceeds a certain value (8), the throughput does not increase any

more, but the latency increases significantly. Also, the Optane SSD

approaches its maximumbandwidthwhen the request size increases

to 32 KB. Moreover, the request latency increases rapidly with the

growth of request size. We observe that the performance of the

Optane SSD for the random write pattern is similar to the random

read pattern. Therefore, it is essential to use moderate-sized I/O

requests (no more than 32KB) and maintain a relatively low queue

depth (no more than 8) to reduce the request latency while still best

utilizing the maximum bandwidth of ULL SSDs.

The queue depth of ULL SSDs usually increases significantly

because most throughput-oriented applications generate burst I/Os.

In our experiment, the queue depth even exceeds 160, and thus sig-

nificantly enlarges the request latency. Moreover, some filesystems

such as HDFS usually use large blocks (e.g., 128 KB), which also

exacerbates the I/O congestion in ULL SSDs. Unfortunately, the

block layer is unable to limit the arrival rate of burst I/O requests

to the device. The contention in the device often results in long

latency of I/O requests.

Root Cause 2: A compound transaction committed by JBD2

usually involves uncorrelatedfile updates, and thus increases

virtual time
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next
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Core m
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struct rq
cfs
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struct rq
cfs
rt
...

point to p1 
conditionally

Figure 7: The scheduling of the awakened I/O process

the latency of synchronous writes. File systems also have a sig-

nificant impact on the latency of I/O requests. Here, we explore

the reason for the increased latency in the fsync path. Ext4 file

system guarantees data consistency by keeping all updates in a

large compound transaction. Thus, the file system has to spend

more time in waiting for the transaction committing due to the

following two reasons: 1) The transaction involves dirty data blocks

of other uncorrelated files, and thus introduces 𝑇𝐷2. 2) JBD2 has to

submit more metadata blocks which also lead to a growth of 𝑇𝐽 𝐷 .
Particularly, the latency due to the journaling file system increases

significantly when the block device is busy.

Root Cause 3: CFS is unable to schedule latency-sensitive

processes immediately even if they are awakened. We now ex-

plore the reason about the increased latency in process scheduling.

Fig. 7 illustrates the scheduling of I/O process. CFS schedules pro-

cesses according to the virtual time, i.e. vtime. Generally, a process
with a smaller vtime is scheduled first. When a suspended process

(e.g., p1) is woken up, p1 is inserted into the current run queue of a

CPU core, but it still has to wait till it is rescheduled. To schedule

p1 immediately, CFS maintains a pointer next to point to a process
that should be scheduled first in the next scheduling period.

The scheduling of p1 may be postponed when p1 co-runs with
Bayes for two reasons. (1) The scheduler cannot schedule p1 imme-

diately because it may wait a long time to begin the next scheduling

period. Without a preemption mechanism, Bayesmay run for a long

time, and the CPU has no opportunity to schedule p1 until an inter-

rupt is triggered. (2) The pointer next can point to p1 only when

the difference of vtime between the current running process and

p1 is larger than a given threshold (4 milliseconds on our server).

We note that the next pointer still does not work for ULL SSDs

even using a smaller threshold (e.g., 1 ms), since the threshold is

still two orders of magnitude higher than the access latency of ULL

SSDs. On the other hand, a shorter scheduling interval may cause

frequent context switching and waste CPU time.

3 DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of Fas-

tResponse, including the workload characterization, the block layer

enhancement, a file-level journaling scheme, and the extension of

CFS process scheduler.
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3.1 Overview

In order to solve the above problems, our goal is to mitigate I/O

interference in the file system layer, the block layer, and process

scheduling. There remain three key technical challenges: (1) how

to deliver the attribute of latency-sensitive I/Os through the I/O

stack, (2) how to mitigate interference in different layers of the

entire I/O path, and (3) how to mitigate the negative impact on

throughput-oriented workloads.

With these challenges in mind, we propose FastResponse, a holis-

tic approach for improving the performance of latency-sensitive

workloads using ULL SSDs. FastResponse is composed of four key

modules, as shown in Fig. 8. The attribute of I/Os is defined by

user APIs, and the OS kernel passes the tagged attribute through

the entire I/O stack (�). When a read system call misses in the

page cache, the file system sends the bio structure to underlying

layers after pages are allocated(�). When an fsync system call is

invoked, the file system commits file-level transactions for latency-

sensitive processes to guarantee data consistency (�). When the

blk-mq receives the upper-layer bio, our I/O scheduler throttles the

requests of throughput-oriented workloads (�). Then, the current

I/O process yields CPU to another process(�). Once the I/O request

is completed, ISR wakes up the previous process (�). CFS gives a

high priority to the critical I/O process so that it can be scheduled

immediately (�).

3.2 Workload Characteristic Awareness

At first, we should identifywhether a I/O request is latency-sensitive

(also called critical) or not in the storage stack. It is difficult for the

kernel to predict the criticality of I/Os by their patterns or history

behaviors [13]. Instead, we provide APIs for users to characterize

the attribute of latency-sensitive I/Os. The attribute is then deliv-

ered through the entire I/O stack. As shown in Fig. 8, we extend the

data structures in different I/O layers to pass the I/O attribute. A new

entry is added in task_struct and address_space to identify the

I/O attribute. We also extend the bi_opf (in bio) and cmd_flags

bio bio

request request

bio

request

bioBlk-mq Layer
bio 
split

Per core 
software 
queues

Hardware
dispatch 
queues

search 
& merge

reorder

NVMe 
Driver
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Figure 9: Anoverviewof blk-mq enhancement, the optimiza-

tions include (1) splitting the large and non-critical I/Os, (2)

bypassing I/O queues for critical requests, and (3) throttling

non-critical I/O requests.

(in request) to store the attribute. Note that the attribute should
be passed across the entire I/O stack because other I/O layers may

fetch invalid task_struct reference [11].
The API can be used flexibly to set the attribute of I/O requests.

If programmers are aware of the characteristics of applications,

they can modify the applications to define the attribute of latency-

sensitive tasks of a code segment or the entire lifetime of a thread.

On the other hand, since client users may selfishly configure their

applications with the high priority, the API can be only provided

for system administrators to set the attribute of I/O requests at the

server side.

3.3 Blk-mq Enhancement

Main idea. In the block layer, our goal is to control the rate of

dispatching large I/O requests to the underlying device layer, and

thus mitigate the impact of I/O contention on the latency of critical

requests. More specifically, we design a lightweight I/O scheduler

to split large non-critical I/O requests and throttle them effectively.

I/O scheduler. To limit the arrival rate of large I/O requests to

ULL SSDs while still fully utilizing their high bandwidth, we design

a new I/O scheduler called Limited Depth (LD), as shown in Fig. 9.

We use tokens to throttle the number of non-critical requests to

ULL SSDs moderately. Each non-critical request is dispatched with

a token which is released during the I/O completion. Thus, non-

critical requests are blocked if there is no available token. In this

way, the impact of I/O interference on latency-sensitive requests in

the device can be mitigated. Moreover, unlike BFQ [23] and MQ-

DD [24] that use a global queue to dispatch all requests, LD attaches

a dispatch queue to each hardware queue, and thus can fully utilize

the high bandwidth of ULL SSDs through parallel I/O dispatching.

On the other hand, we bypass these I/O queues for latency-sensitive
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I/Os because I/O scheduling often has a negative impact on the

latency [25, 26] and these I/Os should not be throttled.

Splitting large non-critical requests. Because large non-critical

requests also lead to a high degree of resource contention on ULL

SSDs, we split a large non-critical bio into multiple small bio, and
thus offer more opportunities to serve critical requests. We find

that the optimal block size is 32 KB because this configuration can

achieve almost the maximum bandwidth of ULL SSDs. However, if

the split sub-requests are served out of order, the parent request

has to wait for the last sub-request to complete, and the latency of

the parent large request would be very high. Also, the throughput

of non-critical applications declines. To this end, our I/O scheduler

inserts the split sub-requests into the queue in order according to

their LBAs so that they can be dispatched consecutively.

3.4 File-level Journaling

Main idea. Fig. 10 shows different transactions commit in the file

system. To shorten the latency of critical I/O processes, we de-

sign a file-level journaling called fjournaling particularly. Since
fjournaling commits file-level transactions (f-transactions) that

only include minimum metadata of the fsynced file, the latency

of f-transaction can be minimized. To simplify the implementa-

tion of fjournaling while still guaranteeing crash consistency,

fjournaling is implemented with no dependency on the normal

journaling (i.e., JBD2). Thus, the metadata blocks committed by

fjournaling would be committed again by JBD2 later.

fjournaling reduces the latency of fsync() in three ways. (1)

It does not have to wait for writing back data blocks of uncorrelated

files involved in the compound transaction, and thus 𝑇𝐷2 can be

completely eliminated. (2) It reduces the amount of metadata blocks

submitted, and thus 𝑇𝐽 𝐷 is reduced. (3) The fsync process itself is

responsible for committing transactions, and thus avoids the cost

of process scheduling for JBD2 thread and fsync thread wake-up,

i.e., 𝑇𝑆𝑐ℎ𝑒𝑑 can be completely eliminated.

Fjournaling. fjournaling only commits minimum metadata

including the inode entry and external extent blocks that are nec-

essary for crash recovery. Other metadata blocks shared between
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Figure 11: The data structure of the f-transaction, file A and

B are updated by latency-sensitive processes.

multiple files, such as block bitmap, inode table, and global descrip-

tor table (GDT) are not recorded because they can be recovered

based on f-transactions and the latest normal transaction commit-

ted by JBD2. As shown in Fig. 10, we commit f-transactions in a

new area, which is separated from the normal journal area. Since

blocks of a transaction in the disk must be continuous, we separate

the journal area of the fjournaling and the normal journaling so

that normal transactions and f-transactions can be committed in

parallel.

File-level transaction. Fig. 11 shows the data structure of an

f-transaction. Like the normal transaction, an f-transaction is com-

posed of a header block, several metadata blocks (i.e., external extent

blocks), and a commit block. The header block is composed of a

journal header, several F_entry, and several block tags which store

the mapping between each metadata block and its block number in

the file system. Note that only modified external extent blocks are

recorded for each uncommitted file. The commit block is used to

validate the completion of an f-transaction.

Crash recovery. Because dirty data blocks are written to the

device before a transaction is committed, we only need to recover

the committed transactions upon a system crash. Here, we only

describe the recovery of f-transactions. First, the crash recovery

module scans the normal journal area, redoes the valid normal

transactions that have been committed in the log but not yet check-

pointed, and finds the valid transaction with the largest ID (Max_ID
). Then, the fjournal area is scanned. If the ID of an f-transaction is

greater than the Max_ID, this f-transaction is valid. We continue to

find out all valid f-transactions. Finally, the crash recovery module

redoes all valid f-transactions in order.

For each valid f-transaction, the crash recovery module can re-

cover the file blocks being written and the block bitmap using the

inode structure, the external extent blocks, and the block tags. The

inode number and the inode structure are used to recover file sys-

tem level metadata, i.e. inode table, inode bitmap, and GDT. After

all valid f-transactions are redone, the normal journal area and the

fjournal area are reclaimed, and the file system can perform other

operations.

3.5 Latency Sensitivity Aware Process
Scheduling

Main idea. Our goal is to schedule critical I/O processes immedi-

ately after they are awakened. Since the process pointed by the
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Algorithm 1 Wake up the critical I/O process

1: if next is NULL or points to a non-critical process then

2: if the awakened_process is critical then

3: next of CFS_RQ points to the awakened_process;

4: mark CFS_RQ as need_rescheduled;

5: end if

6: else

7: enter normal wake-up flow;

8: end if

pointer next or with minimum vtime is scheduled first, this process
can be scheduled earlier in the next scheduling period. To schedule

the suspended critical I/O process as soon as possible, we should

(1) point next to the suspended I/O process, and (2) begin the next

scheduling period as soon as possible. We modify CFS based on these

two principles.

Process scheduling policy. In the traditional CFS algorithm,

the next points to an awakened process (p1) only when the differ-

ence of vtime between the current running process and p1 is larger
than a given threshold (4 ms on our server). Although a larger

threshold can avoid frequent context switching, it impedes the

adoption of ULL SSDs because the access latency of these devices

can be as low as tens of microseconds. To address this problem, we

redesign CFS to adapt to ULL SSDs. In our process scheduler, kernel

first wakes up the I/O process that is suspended on a certain CPU,

and then checks whether it can preempt the current running pro-

cess on that CPU. As shown in Algorithm 1, if the awakened_process

is critical, (1) the next of the CFS’s run-queue (CFS_RQ) points to
it immediately, oblivious to the time threshold for setting the next;
(2) and marks the CFS_RQ as need_rescheduled so that the CPU can

quickly begin the next scheduling period. In this way, the process

pointed by next can be scheduled as quickly as possible.

Before the process pointed by next is scheduled, it may still be

replaced by other processes. This would postpone the scheduling

of the awakened critical process. Therefore, once next points to

a critical process, we do not change the next until the awakened
critical process is rescheduled.

Our process scheduling scheme has very little negative impact

on non-critical processes. It is not possible to starve non-critical

processes due to the following reasons. First, the process pointed by

next is scheduled only if the difference between its vtime and the

minimum vtime is less than a given threshold. Second, the critical

process is rescheduled according to our policies only when it is

woken up. These two constraints still offer massive opportunities

to schedule non-critical processes.

4 EVALUATION

4.1 Methodology

System configurations. We evaluate the proposed techniques on

an Inspur server. It is equipped with two octa-core 2.40 GHz Intel

Xeon CPU E5-2630 v3 processor, 32GB 2666 MHz DDR4 memory,

and a 480GB Intel Optane 900P SSD. The proposed techniques are

integrated into a vanilla Linux kernel 5.3.7. By default, the operating

system adopts ext4 file system with data journaling mode set as

ordered.

Table 1: Workloads characteristics

Workload
Workload R:W Avg Arrival Interval (ms)

Type Ratio Reads Writes

Throughput-oriented Workloads
Terasort Offline analytics 30:70 0.67 0.29
Bayes Machine learning 57:43 1.11 1.47

Kmeans Machine learning 33:67 1.99 0.97
PageRank Websearch 70:30 1.31 3.14
Index Websearch 20:80 0.78 0.19

Latency-sensitive Workloads

RocksDB
readrandom 99:1 0.4 -
fillsync 1:99 - 0.5

Compared systems. To elaborate our designs in different I/O

layers, we evaluate the following schemes:

1. Vanilla: A vanilla Linux kernel with default configurations is

used as a baseline;

2. SelectISR: FLASHSHARE [11] is so far the most relevant work

to FastResponse. FLASHSHARE proposes cross-stack optimiza-

tions to reduce I/O interference through the software layer to

the device layer. Because our work focuses on software ap-

proaches for public available ULL SSD devices, we only imple-

ment the software solution–SelectISR proposed in FLASHSHARE

for a fair comparison. The major techniques include bypassing

the block layer and polling I/O completions for critical I/Os.

3. B-Opt: Compared with Vanilla, we optimize the block layer

and propose LD I/O scheduler to split large non-critical requests

and to throttle non-critical requests;

4. BS-Opt: Compared with B-Opt, we further optimize CFS to

shorten the waiting time for scheduling latency-sensitive pro-

cesses;

5. BSJ-Opt: Based on BS-Opt, we propose fjournaling to op-

timize synchronous writes for latency-sensitive applications.

This is the full design of FastResponse.

Applications and workloads. We evaluate the proposed tech-

niques by co-running a latency-sensitive application and a throughput-

oriented application.

For latency-sensitive application, we use RocksDB, an embed-

ded, persistent key-value store underpinning a lot of low-latency

services [27, 28]. It stores 40 GB dataset with regular-sized 4-byte

keys and 4KB values. We use a widely-used workload generator–

DBbench [29] to generate two workloads with diverse I/O charac-

teristics, readrandom and fillsync. Readrandom is read-dominant. It

reads random key-value pairs in the key-value store. Occasionally,

it updates random key-value pairs using the asyncmode. Fillsync is

write-dominant. It frequently updates random key-value pairs using

the sync mode. To emulate a real-world scenario as suggested by a

previous work [30], the workloads send two thousands requests to

RocksDB per second.

For throughput-oriented applications, we adopt several applica-

tions selected from HiBench [21] and BigDatabench [31]. They ex-

hibit various read-write ratios and request arrival intervals. We de-

ploy MapReduce and HDFS on a single server in pseudo-distributed

mode. The datasets of the applications all exceed 10 GB. The size

of the read and write requests are all around 128 KB. Table 1 sum-

marizes the characteristics of these workloads.
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Figure 12: The response time of readrandom in RocksDB when it co-runs with various throughput-oriented workloads
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Figure 13: The response time of fillsync in RocksDB when it co-runs with various throughput-oriented workloads

4.2 Latency

In the following, we analyze the performance of read and write

paths using workloads readrandom and fillsync, respectively.

Read path. Fig. 12 shows the average, 99th, and 99.9th percentile

response time (latency) of serving readrandom requests in RocksDB

when it co-runs with different throughput-oriented workloads. Be-

cause the read path does not involve the optimization on journaling,

we do not evaluate the BSJ-Opt in this case. Compared to Vanilla,

BS-Opt substantially reduces the average response time by 36%,

and the 99.9th percentile response time by 77% on average. In con-

trast, SelectISR can only reduce the average, the 99th, and the

99.9th percentile response times by 21%, 19%, and 28% on average,

respectively. Even the partial solution B-Opt shows much lower

latency compared with SelectISR.
Vanilla suffers from severe I/O interference for co-running ap-

plications, and thus represents the longest response time. SelectISR
polls critical I/O requests to avoid the cost of context-switching

introduced by interrupts (about 2𝜇s). More importantly, a critical

I/O process does not yield CPU time to other processes, and thus

does not suffer from long waiting time for the process scheduling.

However, since SelectISR is unable to reduce the latency in the

device layer, it still achieves less performance optimization relative

to B-Opt and BS-Opt, especially for the tail latency. Since B-Opt
splits large non-critical requests and throttles non-critical requests

to avoid resource contention in the device, it greatly reduces the

99th response time by 49% compared with SelectISR. The benefit
is more significant when the latency-sensitive workload readran-

dom co-runs with throughput-oriented workloads, such as Terasort

and Index.

Compared with B-Opt, BS-Opt further reduces the average, 99th,
and 99.9th response time by 16%, 40%, and 59%, respectively. When

readrandom co-runs with CPU-intensive workloads, such as Bayes

and Kmeans, BS-Opt can even reduce the 99th latency by 56% by

using the preemptive scheduling technique. These experimental

results demonstrate the effectiveness of our optimizations on miti-

gating the co-location interference for latency-sensitive workloads.

Synchronous write path. Fig. 13 shows the average, 99th, and

99.9th percentile response time (latency) of the fillsync workload

when it co-runs with different workloads. Compared with the

vanilla Linux, SelectISR, B-Opt, and BS-Opt only reduce the av-

erage response time by 10%, 6%, and 18%, respectively. However,

BSJ-Opt can significantly reduce the average response time by 58%,

the 99th response time by 83%, and the 99.9th response time by

74% on average. This implies that our journaling optimization is

dominant for reducing the latency of synchronous writes.

Compared with readrandom, B-Opt yields less response time

reduction for fillsync. The reason is that fillsync involves four I/O

operations while readrandom only incurs one I/O operation. B-Opt
can reduce the latency of critical requests in the device layer (i.e.,

𝑇𝐷1, 𝑇𝐽 𝐷 , and 𝑇𝐽𝐶 are reduced). However, B-Opt may even have

a negative impact on reducing 𝑇𝐷2. Since dirty blocks of uncorre-

lated files involved in the compound transaction may be written

back before fsync(), JBD2 has to wait for the completion of this

operation. However, as these requests are not considered as critical,

the blk-mq layer may throttle these I/O requests, and thus even

increases 𝑇𝐷2, offsetting the benefits of B-Opt. This negative effect
is particularly obvious for I/O intensive workloads, such as Index.

This effect also results in even higher 99th response time.
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Figure 14: Normalized performance of throughput-oriented

workloads when they co-run with readrandom or fillsync

Although the goal of BS-Opt is not to accelerate the write-back

operations for other uncorrelated files, we still notice a moderate re-

duction (11%) of the average response time compared with Vanilla.
Fsync introduces four I/O operations that all suffer from costly pro-

cess scheduling, and there are also two times of process scheduling

after waking up the JBD2 thread and the fsync thread. Since our
process scheduler can promote the priority of critical I/O processes,

BS-Opt can further reduce the 99th percentile latency compared

with B-Opt. Similarly, SelectISR can avoid a long waiting time

caused by process scheduling, and thus can reduce the average

response time by up to 16% compared with Vanilla.
BSJ-Opt shows a significant reduction of response time for

latency-sensitive workloads, as shown in Fig. 13. The reason is

that BSJ-Opt allows the fsync thread itself to commit file-level

transactions, and thus 𝑇𝑆𝑐ℎ𝑒𝑑 is removed. The number of journal

blocks is also reduced because only metadata blocks are written

to ULL SSDs. More importantly, the fsync thread no longer needs

to wait for the completion of uncorrelated data blocks, i.e., 𝑇𝐷2

is removed. Overall, compared with BS-Opt, BSJ-Opt reduces the
average, 99th, and 99.9th response time by up to 48%, 78%, and

64%, respectively. This demonstrates that the tail latency of fsync
operations is mainly attributed to the cost of writing uncorrelated

data blocks to the device, and our journaling scheme is effective for

reducing the tail latency.

4.3 Throughput

Although we aim to reduce the response time of latency-sensitive

workloads, the performance loss of throughput-oriented workloads

is reasonable. Fig. 14 shows the throughput of throughput-oriented

workloads when they co-run with readrandom and fillsync, respec-

tively, all normalized to Vanilla. Overall, the performance degrada-

tion is marginal (no more than 6% for all applications). The reason

is that throughput-oriented workloads are oblivious to the latency

of each individual request, but are sensitive to the bandwidth of

storage device. Our proposals can still maintain high utilization of

the bandwidth of ULL SSD while reducing the latency of latency-

sensitive workloads.

Overall, SelectISR reduces the total throughput of mixed work-

loads by 1.6% due to the polling scheme. Since SelectISR consumes

a large amount of CPU resource for polling the I/O completion of

critical requests, less CPU time is assigned to throughput-oriented

applications. B-Opt reduces the application throughput by about
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Figure 15: The latency breakdown of readrandom and fill-

sync in RocksDB when they co-run with Bayes (the defini-

tion of each portion of the time is described in Section 2.1)

1.9% because we throttle non-critical requests and split large non-

critical requests. BS-Opt further reduces the throughput by 1.2%

because we postpone the scheduling of throughput-oriented work-

loads moderately, and thus reduce the CPU time for throughput-

oriented workloads to some extend.

BSJ-Opt even improves the application throughput by 4% on

average compared with BS-Opt, as shown in Fig. 14(b). The reason

is that f-transactions are committed by critical processes while

JBD2 does not have to commit normal transactions frequently for

fsync(). As a result, less CPU time is spent in handling lock con-

tention by JBD2, and more CPU time can be spent by throughput-

oriented workloads.

4.4 Analysis of Latency in the I/O Stack

We further analyze the root cause of latency reduction in the I/O

stack. Fig. 15 shows the breakdown of I/O latencies when readran-

dom or fillsync co-runs with Bayes.

In the read path, as shown in Fig. 15(a), there is no 𝑇𝑆𝑐ℎ𝑒𝑑 for

SelectISR because its polling scheme completely eliminates the

cost of process scheduling. B-Opt reduces the latency in the device

layer from 26𝜇s to 17𝜇s, because it can alleviate I/O contention in

the SSD device by throttling non-critical burst I/O requests and

splitting large requests. Throughput-oriented applications often

generate burst I/Os which result in extremely large queue depth

(even over 160). This is the root cause of high tail latency. Fig. 16

illustrates the high correlation between the spike latency in the de-

vice layer and the queue depth. Since B-Opt can sustain a relatively

low queue depth (about 10), and thus significantly lowers the tail

latency in the device layer compared with Vanilla. BS-Opt reduces
the cost of process scheduling from 22𝜇s to 7𝜇s because our sched-
uler can identify awakened critical I/O processes and schedule them

first in the next scheduling period. Similar to BS-Opt, SelectISR
achieves almost equivalent improvement for CPU-intensive work-

loads such as Bayes. However, for some I/O intensive workloads

such as TeraSort, SelectISR is no longer effective because the la-
tency in the device layer (i.e.,𝑇𝐷𝑒𝑣 ) becomes dominant, as shown in

Fig. 17. Moreover, SelectISR leads to heavy CPU load due to the

polling mechanism, as shown in Fig. 18. When the request issue rate

of readrandom and fillsync is not limited (about 50K requests/sec),

BSJ-Opt only consumes 73.47% and 41.23% CPU resource, while

SelectISR incurs almost 100% CPU utilization.
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In the synchronous write path as shown in Fig. 15(b), we con-

figure JBD2 as a critical process in B-Opt, BS-Opt, and SelectISR
so that the journaling operation can be scheduled as soon as possi-

ble. SelectISR can reduce 𝑇𝐷1, 𝑇𝐷2, and 𝑇𝐽𝐶 moderately because

it polls the I/O completions for those I/Os. However, SelectISR
has no impact on T𝑆𝑐ℎ𝑒𝑑 since the wake-up of the JBD2 and fsync
threads does not involve I/O operation. B-Opt can also reduce 𝑇𝐷1,

𝑇𝐽 𝐷 , and𝑇𝐽𝐶 . The I/O requests issued by these three operations are

dispatched directly to the device. However,𝑇𝐷2 increases from 18𝜇s
to 34 𝜇s because some dirty blocks of uncorrelated files involved in

the transaction are written back before fsync(). However, since
writing these dirty blocks are not considered as critical I/Os, the

blk-mq layer throttles these requests and increases their latency.

BS-Opt further reduces 𝑇𝐷1, 𝑇𝐷2, 𝑇𝐽 𝐷 , and 𝑇𝐽𝐶 relative to B-Opt
because these four I/O operations all involve process scheduling.

Moreover, T𝑆𝑐ℎ𝑒𝑑 is significantly reduced due to the same reason.

4 6 8 10 12 14 16
100
200
300
400
500
600

# of tokens

Average
99th percentile

R
es
po
ns
e
tim

e
(u
s)

(a) Resp. time vs. tokens

1000 2000 3000 4000
50
100

300

350

Requests/sec

R
es
po
ns
e
tim

e
(u
s)

Average
99th percentile

(b) Resp. time vs. request issue rate

Figure 19: The response time of readrandomwhen it co-runs

with TeraSort, varying with the number of tokens and the

request issue rate of readrandom

Since BSJ-Opt allows the fsync thread to commit file-level transac-

tions by itself, there is no need to wake up JBD2 and fsync threads.
Thus, 𝑇𝑆𝑐ℎ𝑒𝑑 can be completely removed. As BSJ-Opt only records

metadata blocks of the file to be written, the amount of metadata

blocks is also reduced, i.e., 𝑇𝐽 𝐷 is reduced. Moreover, because the

fsync thread does not have to wait for writing back dirty blocks of

uncorrelated files, 𝑇𝐷2 can also be eliminated.

4.5 Sensitivity Studies

In this section, we explore how the performance of FastResponse

is sensitive to some important parameters, such as the number

of tokens that are used to throttle non-critical requests, and the

request issue rate of critical I/Os.

The number of tokens. Fig. 19(a) shows the impact of tokens

on the response time of readrandom in FastResponse when it co-

runs with TeraSort. The tokens are used to limit the maximum

number of non-critical requests that are received by the ULL SSD

device in a period of time. We find that the average and 99th per-

centile response times of readrandom increase significantly when

the number of tokens increases. Since a larger number of tokens

implies that more non-critical requests can enter the device layer

of the ULL SSD in a given time interval, the critical requests often

suffer severe I/O interference due to resource contention, resulting

in higher average and tail latencies.

Request issue rate. Fig. 19(b) shows how the request issue rate

affects the average and 99th percentile response times of readran-

dom in FastResponse when it co-runs with TeraSort. When the

request issue rate increases, the average response time of readran-

dom decreases while the tail response time keeps stable roughly.

Since TeraSort leads to moderate bandwidth consumption on the

ULL SSD and only generates burst I/Os sometimes, it has a little

impact on most critical I/Os. When the request issue rate of read-

random increases, we find that the average response time even

shows a small decline. This trend may be somewhat confusing

but explainable. The reason is that the proportion of critical I/O

requests that may be interfered by the burst I/Os of TeraSort is

even reduced when the request issue rate of readrandom becomes

larger. As the number of burst I/Os is not changed in a given time

interval and most critical I/O requests still can be served with low

latency, the response time on average is reduced. However, if a

throughput-oriented application incurs continuous high pressure
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Table 2: A comparison on cross-layer I/O optimizations

Approaches
Latency reduction on I/O paths Apply to

Filesystem
Block Process commercial
Layer scheduling SSD

Split [15] � � � �

RCP [13] � � � �

FastTrack [14] � � � �

Flashshare [11] � � � �

FastResponse � � � �

on the ULL SSD and maintains a large queue depth, the response

time of critical I/O requests would undoubtedly increase with the

growth of request issue rate.

5 RELATEDWORK

There have been many studies on the performance isolation of

co-running workloads in a single I/O layer. At the file system layer,

CCFS [32] and ijournaling [33] enable fine-grained transaction com-

mit to reduce the latency of compound transactions. At the block

layer, many I/O schedulers [16, 23, 34] are proposed to dispatch

I/O requests according to their priority (weights). WRR [35] pro-

vides differentiated I/O services by optimizing the NVMe driver.

For the I/O completion, a number of proposals exploit polling based

strategies [11, 36–40] to reduce context switches. Although these

proposals provide sufficient performance isolation for a certain

layer in the I/O stack, the latency of I/O requests to ULL SSDs can

be substantially affected by the interference in multiple layers, as

aforementioned in Section 2.2.

Existing solutions resolving cross-layer I/O interference either

need customized hardware or still incur relatively high latency on

ULL SSD since they do not reduce the latency incurred in at least

one layer of the I/O stack, as shown in Table 2. Split-level I/O sched-

uling [15] provides a set of I/O handlers for an I/O scheduler at

three I/O layers: system call, page cache, and block layer. However,

hooking system calls usually extends the I/O path, and thus results

in higher latency. RCP [13] solves the problem of I/O-priority in-

version between foreground tasks and background tasks based on

a priority inheritance protocol. It is not designed for reducing the

latency of multiple co-running foreground programs. For exam-

ple, it does not provide efficient compound transaction execution,

which incurs high latency [32, 33]. FastTrack [14] solves the same

problem in the page cache and device layers by preempting the

background task. However, these proposals are designed for tra-

ditional SSDs, and are not applicable for ULL SSDs to meet low

latency requirements.

Flashshare [11] is themost relevant work to this paper. It punches

through the I/O stack to pass attributes of applications from the

OS kernel to the SSD firmware. Since Flashshare does not con-

sider the impact of process scheduling and compound transactions

on latency-sensitive I/O requests, it cannot achieve complete per-

formance improvement for mixed workloads. More importantly,

Flashshare is based on a special SSD and have to modify the SSD

firmware, impeding its adoption. In contrast, FastResponse is a soft-

ware approach, and thus is applicable to most commercial ULL SSDs.

To the best of our knowledge, FastResponse is the first cross-layer

solution for commercial ULL SSDs.

6 CONCLUSION

In this paper, we propose FastResponse, a holistic approach to re-

duce the response time of latency-sensitive workloads when they

co-run with throughput-oriented workloads. We propose several

schemes to mitigate I/O interference. First, we propose a new jour-

naling scheme to reduce the long latency of committing compound

transactions. Second, we optimize the block layer to throttle large

requests of throughput-oriented workloads, and thus guarantee

the QoS of latency-sensitive workloads. Finally, we modify Linux

kernel’s CFS process scheduler to assign high priority to latency-

sensitive workloads, and thus shorten the waiting time of process

scheduling. Experimental results show that FastResponse can re-

duce the average and the 99.9th response time of latency-sensitive

workloads by 18-70% and 58-80%, respectively, while still maintain-

ing similar throughput for co-located throughput-oriented work-

loads.
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