
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

DART: A Scalable and Adaptive Edge Stream
Processing Engine

Pinchao Liu, Florida International University;
Dilma Da Silva, Texas A&M University; Liting Hu, Virginia Tech

https://www.usenix.org/conference/atc21/presentation/liu

DART: A Scalable and Adaptive Edge Stream Processing Engine

Pinchao Liu

Florida International University

Dilma Da Silva

Texas A&M University

Liting Hu∗

Virginia Tech

Abstract

Many Internet of Things (IoT) applications are time-critical

and dynamically changing. However, traditional data process-

ing systems (e.g., stream processing systems, cloud-based IoT

data processing systems, wide-area data analytics systems)

are not well-suited for these IoT applications. These systems

often do not scale well with a large number of concurrently

running IoT applications, do not support low-latency process-

ing under limited computing resources, and do not adapt to

the level of heterogeneity and dynamicity commonly present

at edge environments. This suggests a need for a new edge

stream processing system that advances the stream process-

ing paradigm to achieve efficiency and flexibility under the

constraints presented by edge computing architectures.

We present DART, a scalable and adaptive edge stream

processing engine that enables fast processing of a large num-

ber of concurrent running IoT applications’ queries in dy-

namic edge environments. The novelty of our work is the

introduction of a dynamic dataflow abstraction by leverag-

ing distributed hash table (DHT) based peer-to-peer (P2P)

overlay networks, which can automatically place, chain, and

scale stream operators to reduce query latency, adapt to edge

dynamics, and recover from failures.

We show analytically and empirically that DART outper-

forms Storm and EdgeWise on query latency and significantly

improves scalability and adaptability when processing a large

number of real-world IoT stream applications’ queries. DART

significantly reduces application deployment setup times, be-

coming the first streaming engine to support DevOps for IoT

applications on edge platforms.

1 Introduction

Internet-of-Things (IoT) applications such as self-driving cars,

interactive gaming, and event monitoring have a tremendous

potential to improve our lives. These applications generate a

large influx of sensor data at massive scales (millions of sen-

sors, hundreds of thousands of events per second [20,26]). Un-

der many time-critical scenarios, these massive data streams

must be processed in a very short time to derive actionable in-

telligence. However, many IoT applications [22,23] adopt the

server-client architecture, where the front-end sensors send

time-series observations of the physical or human system

*Liting is affiliated with Virginia Tech, but was at Florida International

University during this work.

Radar
Lidar Lidar

Engine

sensors

Cameras

GPS

TPMSV2X

V2I

V2IV2I

V2V

Edge Stream
Processing Engine

Direct Acyclic Graph

Low-latency
results

Source

Sink

Operator

Dataflow

Edge Sensors Cloud

Figure 1: Edge stream processing use case.

to the back-end cloud for analysis. Such a long-distance of

processing makes it not appropriate or time-critical IoT appli-

cation because: (1) the high latency may cause the results to

be obsolete; and (2) the network infrastructure cannot afford

the massive data streams.

A new trend to address this issue is edge stream process-

ing. To put it simply, edge stream processing applies the

stream processing paradigm to the edge computing archi-

tecture [37, 50]. Instead of relying on the cloud to process

sensor data, the edge stream processing system relies on dis-

tributed edge compute nodes (Gateways, edge routers, and

powerful sensors) which are near the data sources to process

data and trigger actuators. The execution pipeline is as fol-

lows. Sensors (e.g., self-driving car sensors, smart wearables)

generate data streams continuously. They are then consumed

by the edge stream processing engine, which creates a logical

topology of stream processing operators connected into a Di-

rected Acyclic Graph (DAG), processes the tuples of streams

as they flow through the DAG from sources to sinks, and out-

puts the results in a very short time. Each source node is an

IoT sensor. Each inner node runs an operator or operators that

can perform user-defined computation on data, ranging from

simple computation such as map, reduce, join, filter

to complex computation such as ML-based classification al-

gorithms. Each sink node is an IoT actuator or a message

queue to the cloud.

Figure 1 illustrates a use case scenario [10] that benefits

from an edge stream processing engine. In future Intelligent

Transportation Systems such as the efforts currently funded

USENIX Association 2021 USENIX Annual Technical Conference 239

by the US Department of Transportation [27], cars are inter-

connected and equipped with wide-area network access. Even

at low levels of autonomy, each car will generate at least 3

Gbit/s of sensor data [25]. On the back-end, many IoT stream

applications will run concurrently, consuming these live data

streams to quickly derive insights and make decisions. Ex-

amples of such applications include peer-to-peer services for

traffic control and car-sharing safety and surveillance systems.

Note that many of these services cannot be completed on on-

board computers within a single car, requiring the cooperation

of many computers, edge routers, and gateways with sensors

and actuators as sources and sinks. They will involve a large

number of cars and components from the road infrastructure.

However, as IoT systems grow in number and complex-

ity, we face significant challenges in building edge stream

processing engines that can meet their needs.

The first challenge is: how to scale to numerous concur-

rently running IoT stream applications? Due to the expo-

nential growth of new IoT users, the number of concurrently

running IoT stream applications will be significantly large

and change dynamically. However, modern stream processing

engines such as Storm [7], Flink [32], and Heron [44] and

wide-area data analytic systems [39–41, 43, 53, 55, 62, 65, 66]

mostly inherit a centralized architecture, in which the mono-

lithic master is responsible for all scheduling activities. They

use a first-come, first-serve method, making deployment times

accumulate and leading to long-tail latencies. As such, this

centralized architecture easily becomes scalability and perfor-

mance bottlenecks.

The second challenge is: how to adapt to the edge dynam-

ics and recover from failures to ensure system reliability?

IoT stream applications run in a highly dynamic environment

with load spikes and unpredictable occurrences of events.

Existing studies on the adaptability in stream processing sys-

tems [34, 36, 38, 42, 64] mainly focus on the cloud environ-

ment, where the primary sources of dynamics come from

workload variability, failures, and stragglers. In this case, a so-

lution typically allocates additional computational resources

or re-distributes the workload of the bottleneck execution

across multiple nodes within a data center. However, the edge

environment imposes additional difficulties: (1) edge nodes

leave or fail unexpectedly (e.g., due to signal attenuation, in-

terference, and wireless channel contention); and (2) accord-

ingly, stream operators fail more frequently. Unfortunately,

unlike the cloud servers, edge nodes have limited computing

resources: few-core processors, little memory, and little per-

manent storage [37, 59] and they have no backpressure. As

such, the previous adaptability techniques by re-allocating

resources or buffering data at data sources cannot be applied

in edge stream processing systems.

We present DART, a scalable and adaptive edge stream pro-

cessing engine to address the challenges listed above. The key

innovation is that DART re-architects the stream processing

system runtime design. In sharp contrast to existing stream

processing systems, there is no monolithic master. Instead,

DART involves all peer nodes to participate in operator place-

ment, dataflow path planning, and operator scaling, thereby

revolutionarily improving scalability and adaptivity.

We make the following contributions in this paper.

First, we study the software architecture of existing stream

processing systems and discuss their limitations in the edge

setting. To our best knowledge, we are the first to observe the

lack of scalability and adaptivity in stream processing systems

for handling a large number of IoT applications (Sec. 2).

Second, we design a novel dynamic dataflow abstraction

to automatically place, chain and parallelize stream operators

using the distributed hash table (DHT) based peer-to-peer

(P2P) overlay networks. The main advantage of a DHT is that

it avoids the original monolithic master. All peer nodes jointly

make operator-mapping decisions. Nodes can be added or

removed with minimal work around re-distributing keys. This

design allows our system to scale to extremely large numbers

of nodes. To our best knowledge, we are the first to explore

DHTs to pursue extreme scalability in edge stream processing

(Sec. 3).

Third, using DHTs, we decompose the stream processing

system architecture from 1:n to m:n, which removes the cen-

tralized master and ensures that each edge zone can have an

independent master for handling applications and operating

autonomously without any centralized state (Sec. 4). As a

result of our distributed management, DART improves overall

query latencies for concurrently executing applications and

significantly reduces application deployment times. To the

best of our knowledge, we offer the first stream processing

engine to make it feasible to operate IoT applications in a

DevOps fashion.

Finally, We demonstrate DART’s scalability and latency

gains over Apache Storm [7] and EdgeWise [1] on IoT stream

benchmarks (Sec. 5).

2 Background

2.1 Stream Processing Programming Model

Data engineers define an IoT stream application as a directed

acyclic graph (DAG) that consists of operators (see Figure 1).

Operators run user-defined functions such as map, reduce,

join, filter, and ML algorithms. Data tuples flow through

operators along the DAG (topology). In our case, DART sup-

ports both stateful batch processing by using windows as

well as continuously event-based stateless processing. The

application’s query latency is defined as the elapsed time

since the source operator receives the timestamp signaling the

completion of the current window to when the sink operator

externalizes the window results.

We consider typical edge environments. The edge compute

nodes consist of sensors, routers, and sometimes gateways.

They are connected by different connections such as WiFi,

240 2021 USENIX Annual Technical Conference USENIX Association

User Code

Operator

src

sink

src

map

Physical execution plan

Job scheduler

Task/Instance

Phase 2:

Operator

Placement

Central Data

Warehouse

Edge

Node

Edge

Node

Edge
Node

Edge

Node

Phase 3:
Compute

and
Shuffle

sink

src

src

Input Info & Config

WAN/LAN

Phase 1:

Query Parsing
and

Optimization

Logical execution plan

map filter

filter

map

map

join

join filter

filter

Figure 2: IoT stream applications execution pipeline.

Zigbee, BlueTooth, or LAN with diverse inbound and out-

bound bandwidths and latency. They have fewer resources

compared to the cloud servers, but more resources than em-

bedded sensor networks, and thus can afford reasonably com-

plex operations (e.g., SenML parsers, Kalman filters, linear

regressions). As shown in Figure 2, the execution pipeline for

processing an IoT stream application has a few key phases:

• Phase 1: Query parsing and optimization. When an

IoT stream application is submitted by a user, its user

code containing transformations and actions is first

parsed into a logical execution plan represented using a

DAG, where the vertices correspond to stream operators

and the edges refer to data flows between operators.

• Phase 2: Operator placement. Afterward, the DAG is

converted into a physical execution plan, which consists

of several execution stages. Each stage can be further bro-

ken down into multiple execution instances (tasks) that

run in parallel, as determined by the stage’s level of par-

allelism. This requires the system to place all operators’

instances on distributed edge nodes that can minimize

the query latency and maximize the throughput.

• Phase 3: Compute and shuffle. Operator instances in-

dependently compute their local shard of data and shuffle

the intermediate results from one stage to the next stage.

This requires the system to adapt to the workload varia-

tions, bandwidth variations, node joins and leaves, and

failures and stragglers.

2.2 Stream Processing System Architecture

As shown in Figure 3, existing studies [37, 39–41, 43, 50, 53,

55, 62, 65, 66] mostly rely on a master-slave architecture, in

which a “single” monolithic master is administering many

applications (if any). The responsibilities include accepting

new applications, parsing each application’s DAG into stages,

determining the number of parallel execution instances (tasks)

under each stage, mapping these instances onto edge nodes,

and tracking their progress.

This centralized architecture may run well for handling a

small number of applications in the cloud. However, when

it comes to IoT systems in the edge environment, new IoT

users join and exit more frequently and launch a large number

of IoT applications running at the same time, which makes

the architecture easily become a scalability bottleneck and

jeopardize the application’s performance. This is because

of (1) high deployment latency. These systems use a first-

come, first-served approach to deploy applications, which

causes applications to wait in a long queue and thus leads to

long query latencies; and (2) lack of flexibility for dataflow

path planning. They limit themselves to a fixed execution

model and lack the flexibility to design different dataflow

paths for different applications to adapt to the edge dynamics.

The limitation of the centralized architecture has been

identified before in data processing frameworks such as

YARN [63], Sparrow [51], Apollo [30]. They use two masters

for task scheduling (one is the main master and one is the

backup master). However, they remain fundamentally cen-

tralized [30, 51, 63] and restrict themselves to handle a small

number of applications only.

3 Design

This section introduces DART’s dynamic dataflow abstraction

and shows how to scale up and down operators and perform

failure recovery on top of this abstraction.

3.1 Overview

The DART system aims to achieve the following goals:

• Low latency. It achieves low latency for IoT queries.

• Scalability. It can process a large number of concur-

rently running applications at the same time.

• Adaptivity. It can adapt to the edge dynamics and re-

cover from failures.

As shown in Figure 4, DART consists of three layers: the

DHT-based consistent ring overlay, the dynamic dataflow

abstraction, and the scaling and failure recovery mechanisms.

Layer 1: DHT-based consistent ring overlay. All dis-

tributed edge "nodes" (e.g., routers, gateways, or powerful

sensors) are self-organized into a DHT-based overlay, which

has been commonly used Bitcoin [48] and BitTorrent [35].

USENIX Association 2021 USENIX Annual Technical Conference 241

Edge Physical

Network

Global

scheduler

Map instances to nodes

Set each stage’s parallelism

Parse applications into DAGs

A
p

p
 1

A
p

p
 2

A
p

p
 3

A
p

p
 N

… …

Application

arrives

Application

departures

Figure 3: The global scheduler.

Scale up/down operators, e.g., O1's scaling factor

= 3, O2's scaling factor = 2.

Re-plan dataflows, e.g., plan 1 and plan 2 are

different plans for the same application.

Src

Src

O’1O’1 O’2O’2

O1 O2

Src

Src

SinkO1 O2

Src

Src

Sink O2O2O1O1 SinkSink

Encode operator’s state for failover. For stateful

applications, application state must be protected.

Src1

Sink

Leaf set

nodes

Leaf set

nodes

O1

O3

O2

O4

Src2

Src1

Src2 O1

O2

O3
O4

Sink

O(logN) hops

Layer 3:Layer 2:

Layer 1:

DHT-based

Overlay

Application

DAGs

Edge Physical

Network

AA

BB

CC

DD

Plan 1

CC

DD

BB

Plan 2

AA

A

B

C

D

Plan 1

C

D

B

Plan 2

A

O1 O2

Src

Src

Sink

O1.1

O1.2

O1.3

O2.1

O2.2

Src

Src

SinkO1 O2

Src

Src

Sink

O1.1

O1.2

O1.3

O2.1

O2.2

Src

Src

Sink

Figure 4: Dynamic dataflow graph abstraction for operator placement.

Each node is randomly assigned a unique “NodeId" in a large

circular NodeId space. NodeIds are used to identify the nodes

and route stream data. No matter where the data is generated,

it is guaranteed that the data can be routed to any destination

node within O(logN) hops. To do that, each node needs to

maintain two data structures: a routing table and a leaf set.

The routing table is used for building dynamic dataflows. The

leaf set is used for scaling and failure recovery.

Layer 2: Dynamic dataflow abstraction. Built upon the

overlay, we introduce a novel dynamic dataflow abstraction.

The key innovation is to leverage DHT-based routing proto-

cols to approximate the optimal routes between source nodes

and sink nodes, which can automatically place and chain op-

erators to form a dataflow graph for each application.

Layer 3: Scaling and failure recovery mechanisms. Ev-

ery node has a leaf set that contains physically “closest" nodes

to this node. The leaf set provides the elasticity for (1) scaling

up and down operators to adapt to the workload variations;

(2) re-planning dataflows to adapt to the network variations.

As stream data moves along the dataflow graph, the system

makes dynamic decisions about the downstream node to send

streams to, which increases network path diversity and be-

comes more resilient to changes in network conditions; and

(3) replicating operators to handle failures and stragglers. If

any node fails or becomes a straggler, the system can auto-

matically switch over to a replica.

3.2 Dynamic Dataflow Abstraction

In the P2P model (e.g., Pastry [57], Chord [61]), each node is

equal to the other nodes, and they have the same rights and

duties. The primary purpose of the P2P model is to enable

all nodes to work collaboratively to deliver a specific service.

For example, in BitTorrent [35], if someone downloads some

file, the file is downloaded to her computer in bits and parts

that come from many other computers in the system that

already have that file. At the same time, the file is also sent

(uploaded) from her computer to others who ask for it. Similar

to BitTorrent in which many machines work collaboratively

to undertake the duties of downloading and uploading files,

we enable all distributed edge nodes to work collaboratively

to undertake the duties of the original monolithic master’s.

Figure 5 shows the process of building the dynamic

dataflow graph for an IoT stream application. First, we or-

ganize distributed edge nodes into a P2P overlay network,

which is similar to the BitTorrent nodes that use the Kademila

DHT [46] for “trackerless” torrents. Each node is randomly

assigned a unique identifier known as the “NodeId” in a large

circular node ID space (e.g., 0∼ 2128). Second, given a stream

application, we map the source operators to the sensors that

generate the data streams. We map the sink operators to IoT

actuators or message queues to the Cloud service. Third, ev-

ery source node sends a JOIN message towards a key, where

the key is the hash of the sink node’s NodeId. Because all

source nodes belonging to the same application have the same

key, their messages will be routed to a rendezvous point—the

sink node(s). Then we keep a record of the nodes that these

messages pass through during routings and link them together

to form the dataflow graph for this application.

To achieve low latency, the overlay guarantees that the

stream data can be routed from source nodes to sink nodes

within O(logN) hops, thus ensuring the query latency upper

bound. To achieve locality, the dynamic dataflow graph covers

a set of nodes from sources to sinks. The first hop is always

242 2021 USENIX Annual Technical Conference USENIX Association

Node Id D45A35

(Prefix D45A3)

D45A55

75A342

D4A8A1

A45A21

3B2312

C42A31

Leaf set

nodes

JOIN(D45A3C) D4A8A1

D45342

D45A35

… …

D45342

321B21

7BAC85

587A62

… …

D45A55

AE1B78

56AC57

957A59

… …

D49842

CE1B21

658C12

5AEC31

… …

Leaf Set

D45A31

D45A3A

D45A3C

D45A36

… …

Node Id D45342

(Prefix D45)

Node Id D4A8A1

(Prefix D4)Node Id 75A342

Routing Table

1564A6

JOIN(D45A36)

D56971

D46BC2

Routing Table

Routing TableRouting Table

Figure 5: The process of building dynamic dataflow graph.

the node closer to the data source (data locality). Each node

in the path has many leaf set nodes, which provides enough

heterogeneous candidate nodes with different capacities and

increases network path diversity. For example, if there are

more operators than nodes, extra operators can map onto leaf

set nodes. For that purpose, each node maintains two data

structures: a routing table and a leaf set.

• Routing table: it consists of node characteristics orga-

nized in rows by the length of the common prefix. The

routing works based on prefix-based matching. Every

node knows m other nodes in the ring and the distance

of the nodes it knows increases exponentially. It jumps

closer and closer to the destination, like a greedy algo-

rithm, within ⌈log2b N⌉ hops. We add extra entries in

the routing table to incorporate proximity metrics (e.g.,

hop count, RTT, cross-site link congestion level) in the

routing process so as to handle the bandwidth variations.

• Leaf set: it contains a fixed number of nodes whose

NodeIds are “physically" closest to that node, which

assists in rebuilding routing tables and reconstructing

the operator’s state when any node fails.

As shown in Figure 5, node 75A342 and node 1564A6 are

two source nodes and node D45A3C is the sink node. The

source nodes route JOIN messages towards the sink node, and

their messages are routed to a rendezvous point (s) — the sink

node(s). We choose the forwarder nodes along routing paths

based on RTT and node capacity. Afterward, we keep a record

of the nodes that their messages pass through during routings

(e.g., node D4A8A1, node D45342, node D45A55, node D45A35,

node D45A3C), and reversely link them together to build the

dataflow graph.

The key to efficiency comes from several factors. First,

the application’s instances can be instantly placed without

the intervention of any centralized master, which benefits the

time-critical deadline-based IoT application’s queries. Sec-

ond, because keys are different, the paths and the rendezvous

nodes of all application’s dataflow graphs will also be dif-

ferent, distributing operators evenly over the overlay, which

significantly improves the scalability. Third, the DHT-based

leaf set increases elasticity for handling failures and adapting

to the bandwidth and workload variations.

3.3 Elastic Scaling Mechanism

After an application’s operators are mapped onto the nodes

along this application’s dataflow graph, how to auto-scale

them to adapt to the edge dynamics? We need to consider

various factors. Scaling up/down is to increase/decrease the

parallelism (#instances) of the operator within a node. Scaling

out is to instantiate new instances on another node by re-

distributing the data streams across extra network links. In

general, scaling up/down incurs smaller overhead. However,

scaling out can solve the bandwidth bottleneck by increasing

network path diversity, while scaling up/down may not.

We design a heuristic approach that adapts execution based

on various factors. If there are computational bottlenecks, we

scale up the problematic operators. The intuition is that when

data queuing increases, automatically adding more instances

to the system will avoid the bottleneck. We leverage the Se-

cant root-finding method [29] to automatically calculate the

optimal instance number based on the current system’s health

value. The policy is pluggable. Let f (x) represent the health

score based on the input rate and the queue size (0 < f (x)< 1,

with 1 being the highest score). Let xn and xn−1 be the number

of instances during phases pn and pn−1. Then the number of

instances required for the next phase pn+1 such that f ∼= 1

can be given by:

xn+1 = xn +(1− f (xn))×
xn − xn−1

f (xn)− f (xn−1)
(1)

For bandwidth bottlenecks, we further consider whether the

operator is stateless or stateful. In the case of stateless opera-

tors, we simply scale out operators across nodes. For stateful

operators, we migrate the operator with its state to a new node

in the leaf set that increases the network path diversity. Intu-

itively, when the original path only achieves low throughput,

an operator may achieve higher throughput by sending the

data over another network path.

3.4 Failure Recovery Mechanism

Since the overlay is self-organizing and self-repairing, the

dataflow graph for each IoT application can be automatically

recovered by restarting the failed operator on another node.

Here, the challenge is, how to resume the processing without

losing intermediate data (i.e., operator state)? Examples of

operator states include keeping some aggregation or summary

USENIX Association 2021 USENIX Annual Technical Conference 243

of the received tuples in memory or keeping a state machine

for detecting patterns for fraudulent financial transactions

in memory. A general approach is checkpointing [7, 8, 54,

64], which periodically checkpoints all operators’ states to a

persistent storage system (e.g., HDFS) and the failover node

retrieves the checkpointed state upon failures. This approach,

however, is slow because it must transfer state over the edge

networks that typically have very limited bandwidth.

We design a parallel recovery approach by leveraging the

robustness of the P2P overlay and our previous experience

in stateful stream processing [45]. Periodically, the larger-

than-memory state is divided, replicated, and checkpointed to

each node’s leaf set nodes by using erasure codes [56]. Once

any failure happens, the backup node takes over and retrieves

state fragments from a subset of leaf set nodes to recompute

state and resume processing. By doing that, we do not need

a central master. The failure recovery process is fast because

many nodes can leverage the dataflow graph to recompute the

lost state in parallel upon failures. The replica number, the

checkpointing frequency, the number of encoded blocks and

the number of raw blocks are tunable parameters. They are

determined based on state size, running environment and the

application’s service-level agreements (SLAs.)

4 Implementation

Instead of implementing another distributed system core, we

implement DART on top of Apache Flume [3] (v.1.9.0) and

Pastry [16] (v.2.1) software stacks. Flume is a distributed ser-

vice for collecting and aggregating large amounts of streaming

event data, which is widely used with Kafka [4] and the Spark

ecosystem. Pastry is an overlay network and routing network

for the implementation of a distributed hash table (DHT) sim-

ilar to Chord [61], which is widely used in applications such

as Bitcoin [48], BitTorrent [35], and FAROO [15]. We lever-

age Flume’s excellent runtime system (e.g., basic API, code

interpreter, transportation layer) and Pastry’s routing substrate

and event transport layer to implement the DART system.

We made three major modifications to Flume and Pastry:

(1) we implemented the dynamic dataflow abstraction for op-

erator placement and path planning algorithm, which includes

a list of operations to track the DHT routing paths for chaining

operators and a list of operations to capture the performance

metrics of nodes for placing operators; (2) we implemented

the scaling mechanism and the failure recovery mechanism

by introducing queuing-related metrics (queue length, input

rate, and output rate), buffering operator’s in-memory state,

encoding and replicating state to leaf set nodes; and (3) we

implemented the distributed schedulers by using Scribe [33]

topic-based trees on top of Pastry.

Figure 6 shows the high-level architecture of the DART

system. The system has two components: a set of distributed

schedulers that span geographical zones and a set of workers.

Unlike traditional stream processing systems that manually

Zone Scheduler

Worker

Worker

Worker

Worker

Worker

Zone Scheduler

Direct Acyclic

Graphs
Stages

IoT

Stream

Applications

Direct Acyclic

Graphs
Stages

Zone Scheduler

IoT Stream

Applications
Direct Acyclic

Graphs
Stages

User Codes

User Codes

User Codes

Zone 1's

Scheduler

Zone 2's

Scheduler

Zone n's

Scheduler

Application 1's dynamic

dataflow graph

Application 2's dynamic

dataflow graph

Application 3's dynamic

dataflow graph

IoT Stream

Application’s

User Code

Gossip

Pastry DHT-based

overlay

IoT Stream

Applications

Instances

Instances

Instances

Instances

Instances

Figure 6: The DART system architecture.

assign nodes as “master" or “workers", DART dynamically

assigns nodes as “schedulers" or “workers". For the first step,

when any new IoT stream application is launched, it looks for

a nearby scheduler by using the gossip protocol [31], which

is a procedure of P2P communication that is based on the

way that epidemics spread. If it successfully finds a sched-

uler within log(N) hops, the application registers itself to this

scheduler. Otherwise, it votes any random nearby node to be

the scheduler and registers itself to that scheduler. For the

second step, the scheduler processes this application’s queries

by parsing the application’s user code into a DAG and divid-

ing this DAG into stages. Then the scheduler automatically

parallelizes, chains operators, and places the instances on

edge nodes using the proposed dynamic dataflow abstraction.

These nodes are then set as this application’s workers. The

system automatically scales up and out operators, re-plans,

and replicates operators to adapt to the edge dynamics and re-

cover from failures by using the proposed scaling mechanism

and failure recovery mechanism.

The key to efficiency comes from several factors. First, all

nodes in the system are equal peers with the same rights and

duties. Each node may act as one application’s worker, another

application’s worker, a zone’s scheduler, or any combination

of the above, resulting in all load being evenly distributed.

Second, the scheduler is no longer any central bottleneck.

Third, the system automatically creates more schedulers for

application intensive zones and fewer ones for sparse zones,

thus scaling to extremely large numbers of nodes and applica-

tions.

244 2021 USENIX Annual Technical Conference USENIX Association

5 Evaluation

We evaluate DART on a real hardware testbed (using Rasp-

berry Pis) and emulation testbed in a distributed network

environment. We explore its performance for real-world IoT

stream applications. Our evaluation answers these questions:

• Does DART improve latency when processing a large

number of IoT stream applications?

• Does DART scale with the number of concurrently run-

ning IoT stream applications?

• Does DART improve adaptivity in the presence of work-

load changes, transient failures and mobility?

• What is the runtime overhead of DART?

5.1 Setup

Real hardware. Real hardware experiments use an inter-

mediate class computing device representative of IoT edge de-

vices. Specifically, we use 10 Raspberry Pi 4 Model B devices

for hosting source operators, each of which has a 1.5GHz

64-bit quad-core ARMv8 CPU with 4GB of RAM and runs

Linux raspberrypi 4.19.57. Raspberry Pis are equipped with

Gigabit Ethernet Dual-band Wi-Fi. We use 100 Linux virtual

machines (VMs) to represent the gateways and routers for

hosting internal and sink operators, each of which has a quad-

core processor and 1GB of RAM (equivalent to Cisco’s IoT

gateway [11]). These VMs are connected through a local-area

network. In order to make our experiments closer to real edge

network scenarios, we used the TC tool [17] to control link

bandwidth differences.

Emulation deployment. Emulation experiments are con-

ducted on a testbed of 100 VMs running Linux 3.10.0, all con-

nected via Gigabit Ethernet. Each VM has 4 cores and 8GB

of RAM, and 60GB disk. Specifically, to evaluate DART’s

scalability, we use one JVM to emulate one logical edge node

and can emulate up to 10,000 edge nodes in our testbed.

Baseline. We used Storm and EdgeWise [37] as the edge

stream processing engine baseline. Apache Storm version is

2.0.0 [7] and EdgeWise [37] is downloaded from GitHub [14].

Both of them are configured with 10 TaskManagers, each

with 4 slots (maximum parallelism per operator = 36). We run

Nimbus and ZooKeeper [9] on the VMs and run supervisors

on the Raspberry Pis. We use Pastry 2.1 [57] configured with

leaf set size of 24, max open sockets of 5000 and transport

buffer size of 6 MB.

Benchmark and applications. We deploy a large number

of applications (topologies) simultaneously to demonstrate

the scalability of our system. The applications in the mixed set

are chosen from a full-stack standard IoT stream processing

benchmark [60]. We also implement four IoT stream process-

ing applications that use real-world datasets [12, 13, 24, 47].

They employ various techniques such as predictive analysis,

model training, data preprocessing, and statistical summa-

rization. Their operators run functions such as transform,

filter, flatmap, aggregate, duplicate, and hash. For

example, we implement the DEBS 2015 application [13] to

process spatio-temporal data streams and calculate real-time

indicators of the most frequent routes and most profitable

areas in New York City. The sensor data consists of taxi trip

reports that include start and drop-off points, corresponding

timestamps, and payment information. Data are reported at

the end of the trip. Although the prediction tasks available in

this application do not require real-time responses, it captures

the data dissemination and query patterns of more complex

upcoming transportation engines. An application that inte-

grates additional data sources – bus, subway, car-for-hire (e.g.,

Uber), ride-sharing, traffic, and weather conditions – would

exhibit the same structural topology and query rates that we

use in our experiments while offering decision-making sup-

port in the scale of seconds. We implement the Urban sensing

application [12] to aggregate pollution, dust, light, sound, tem-

perature, and humidity data across seven cities to understand

urban environmental changes in real-time. Since a practi-

cal deployment of environmental sensing can easily extend

to thousands of such sensors per city, a temporal scaling of

1000× the native input rate can be used to simulate a larger

deployment of 90,000 sensors.

Metrics. We focus on the performance metrics of query

latency. Query latency is measured by sampling 5% of the

tuples, assigning each tuple a unique ID and comparing times-

tamps at source and the same sink. To evaluate the scalability

of DART, we measure how operators are distributed over

nodes and how distributed schedulers are distributed over

zones. To evaluate the adaptivity of DART, we cause bottle-

necks by intentionally adding resource contention and we

intentionally disable nodes through human intervention.

5.2 Query Latency

We measure the query latencies for running real-world IoT

stream applications on the Raspberry Pis and VMs across a

wide range of input rates.

Figure 7a and Figure 7b show the latency comparison

of DART vs EdgeWise for (a) DAG queue waiting time

and (b) DAG deployment time for an increasing number of

concurrently running applications. We choose applications

from a pool that contains dataflow topologies (DAGs)

including ExclamationTopology, JoinBoltExample,

LambdaTopology, Prefix, SingleJoinExample,

SlidingTupleTsTopology, SlidingWindowTopology

and WordCountTopology. EdgeWise is built on top of

Storm. Both of them rely on a centralized master (Nimbus)

to deploy the application’s DAGs, and then process them

one by one on a first-come, first-served basis. Therefore,

we can see that EdgeWise’s DAG queue waiting time

and deployment time increase linearly as the number of

applications increases. As such, the centralized master

will easily become a scalability bottleneck. In contrast,

USENIX Association 2021 USENIX Annual Technical Conference 245

100 200 300 400 500 600 700 800 9001000
0

500

1000

1500

2000

2500

3000
D

A
G

 q
u
e
u
e
 w

a
it
in

g
 t
im

e
 (

s
)

Number of applications

 EdgeWise

 DART

(a) DAG queue waiting time comparison

of DART vs EdgeWise.

100 200 300 400 500 600 700 800 9001000
0

1000

2000

3000

4000

D
A

G
 d

e
p
lo

y
m

e
n
t
ti
m

e
 (

s
)

Number of applications

 EdgeWise

 DART

(b) DAG deployment time comparison

of DART vs EdgeWise.

10 20 40 80 160 320 6401280
0

15

30

45

60
 5s window

 10s window

 30s window

 60s window

Number of applications

L
a

te
n

c
y
 (

m
s
)

(c) Query processing time.

Figure 7: The latency comparison of DART vs EDGEWISE for (a) DAG queue waiting time, (b) DAG deployment time, and (c)

query processing time by increasing the number of concurrently running applications.

20 40 60 80 100 120 140 160
0

10

20

30

40

50

L
a
te

n
c
y
 (

m
s
)

Events/s (*103)

 Storm

 EdgeWise

 DART

(a) Calculating the frequent route in the

taxi application.

20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

L
a
te

n
c
y
 (

m
s
)

Events/s (*103)

 Storm

 EdgeWise

 DART

(b) Calculating the most profit area in

the taxi application.

20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

L
a
te

n
c
y
 (

m
s
)

Events/s (*103)

 Storm

 EdgeWise

 DART

(c) Visualizing environmental changes

in the urban sensing application.

Figure 8: The latency comparison of DART vs Storm vs EdgeWise for (a) frequent route application, (b) profitable area application,

and (c) urban sensing application.

DART avoids this scalability bottleneck because DART’s

decentralized architecture does not rely on any centralized

master to analyze the DAGs and deploy DAGs.

Figure 7c shows the query latency of DART for an increas-

ing number of concurrently running applications. Results

show that DART scales well with a large number of concur-

rently running applications. First, DART’s distributed sched-

ulers can process these applications’ queries independently,

thus precluding them from queuing on a single central sched-

uler which results in large queuing delay. This is similar to

the idea that supermarkets add cashiers to reduce the waiting

queues when there are many people in supermarkets. Sec-

ond, DART’s P2P model ensures that every available node

in the system can participate in the process of operator map-

ping, auto-scaling, and failure recovery, which could avoid

the central bottleneck, balance the workload, and speed up

the process.

The performance comparison results for running the fre-

quent route application, the profitable areas application, and

the urban sensing application are shown in Figure 8. In gen-

eral, DART, Storm and EdgeWise [37] have similar perfor-

mance when the system is under-utilized (with low input).

When the system is averagely utilized (with relatively high

input), DART achieves around 16.7% ∼ 52.7% less query la-

tency compared to Storm. DART achieves 9.8 % ∼ 45.6% less

query latency compared to EdgeWise. This is because DART

limits the number of hops between the source operators to sink

operators within log(N) hops by using the DHT-based consis-

tent ring overlay, and DART can dynamically scale operators

when input rate changes. DART has better performance in

the urban sensing application because this application needs

to split data into different channels and aggregate data from

these channels, which results in a lot of I/Os and data transfers

that can benefit from DART’s dynamic dataflow abstraction.

We expect further latency improvement under a limited band-

width environment since DART selects the path with less

traffic for the data flow by using the path planning algorithm.

5.3 Scalability Analysis

We now show scalability: DART decomposes the traditional

centralized architecture of stream processing engines into

a new decentralized architecture for operator mapping and

query scheduling, which dramatically improves the scalability

246 2021 USENIX Annual Technical Conference USENIX Association

0 2000 4000 6000 8000 10000
0

2

4

6

8

10
 250 Apps

 500 Apps

 750 Apps

 1000 Apps

#
 O

p
e

ra
to

rs
 m

a
p

p
e

d
 p

e
r

n
o

d
e

Node Id in sequence

(a) The distribution of DART’s operators

over different edge nodes.

0 5 10 15 20
Number of operators mapped per node

0.0001
0.001

0.01

0.1

0.5

0.9

0.99

0.999
0.9999

N
o

rm
a

l
p

e
rc

e
n

ti
le

s

250 Apps
500 Apps
750 Apps
1000 Apps

(b) Normal probability plot of the num-

ber of operators mapped per node.

2000

4000

6000

8000

100000
4

8

12

16

20

0

1

2

3

4

N
u
m

b
e
r o

f h
o
p
s

 Schedulers for 250 Apps

 Schedulers for 500 Apps

 Schedulers for 750 Apps

 Schedulers for 1000 Apps

Zon
e

Id
 in

 s
eq

ue
nc

e

Node Id in sequence

(c) The distribution of DART’s sched-

ulers over different zones.

Figure 9: Scalability study of DART for the distribution of operators and schedulers over edge nodes.

2 4 8 16 32
2000

4000

6000

8000

10000
 Overlay recovery

 Overlay and dataflow recovery

Number of fault operators

F
a

ilu
re

 r
e

c
o

v
e

ry
 t
im

e
 (

m
s
)

Figure 10: Overlay and dataflow recovery time.

for the system to scale with a large number of concurrently

running applications, application’s operators, and zones.

Figure 9a shows the mappings of DART’s operators on

edge nodes for 250, 500, 750, and 1,000 concurrently running

applications, respectively. These applications run a mix of

topologies with different numbers of operators (an average

value of 10). Figure 9b shows the normal probability plot of

the number of operators per node. Results show that when

deploying 250 and 500 applications, around 96.52% nodes

host less than 3 operators; and when deploying 750 and 1000

applications, around 99.84% nodes host less than 4 operators.

From Figure 9a and Figure 9b, we can see that these appli-

cations’ operators are evenly distributed on all edge nodes.

This is because DART essentially leverages the DHT rout-

ing to map operators on edge nodes. Since the application’s

dataflow topologies are different, their routing paths and the

rendezvous points will also be different, resulting in operators

well balanced across all edge nodes.

Figure 9c shows the mappings of DART’s distributed sched-

ulers on edge nodes and zones for 250, 500, 750 and 1,000

concurrently running applications, and the average number of

hops for these applications to look for a scheduler. For DART,

it adds a scheduler for every new 50 applications. Accord-

ing to the P2P’s gossip protocol, each application looks for a

scheduler in the zone within ⌈log2b N⌉ hops, where b = 4. If

there is no scheduler in the zone or the number of applications

in the zone exceeds a certain threshold, a peer node (usually

with powerful computing resources) will be elected as a new

scheduler. Results show that as the number of concurrently

running applications increases, the number of schedulers over

zones increases accordingly. All schedulers are evenly dis-

tributed over different zones. Most of the schedulers can be

searched within 4 hops.

The above results demonstrate DART’s load balance and

scalability properties: (1) by using DHT-based consist ring

overlay, the IoT stream application’s workloads are well dis-

tributed over all edge nodes; and (2) DART can scale well with

the number of zones and concurrently running applications.

5.4 Failure Recovery Analysis

We next show fault tolerance: in the case of stateless IoT appli-

cations, DART simply resumes the whole execution pipeline

since there is no need for recovering state. In the case of state-

ful IoT applications, distributed states in operators are contin-

uously checkpointed to the leaf set nodes in parallel and are

reconstructed upon failures. We show that even when many

nodes fail or leave the system, DART can achieve a relatively

stable time to recover the overlay and dataflow topology.

Figure 10 shows the overlay recovery time and the dataflow

topology recovery time for an increasing number of simulta-

neous operator failures. To cause simultaneous failures, we

deliberately remove some working nodes from the overlay

and evaluate the time for DART to recover. The time cost

includes recomputing the routing table entries, re-planning

the dataflow path, synchronizing operators, and resuming the

computation. Results show that DART achieves a stable recov-

ery time for an increasing number of simultaneous failures.

This is because, in DART, each failed node can be quickly

detected and recovered by its neighbors through heartbeat

messages without having to talk to a central coordinator, so

many simultaneous failures can be repaired in parallel.

USENIX Association 2021 USENIX Annual Technical Conference 247

0 30 60 90 120 150 180
0

1

2

3

4

5

6

 RemoveDuplicates

 TopK

 WordCount

Elaspsed time (s)

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s

(a) Process of scaling up.

0 30 60 90 120 150 180
0

10

20

30

40

50

 RemoveDuplicates

 TopK

 WordCount

Elaspsed time (s)

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
(b) Process of scaling up and

scaling out.

0 30 60 90 120 150 180
0.0

0.2

0.4

0.6

0.8

1.0

 RemoveDuplicate

 TopK

 WordCount

Elaspsed time (s)

H
e

a
lt
h

 s
c
o

re

(c) Health score changes corre-

sponding to Figure 11a.

0 30 60 90 120 150 180
0.0

0.2

0.4

0.6

0.8

1.0

 RemoveDuplicate

 TopK

 WordCount

Elaspsed time (s)

H
e

a
lt
h

 s
c
o

re

(d) Health score changes corre-

sponding to Figure 11b.

Figure 11: Adaptivity study of DART for the scaling up and the scaling out.

5.5 Elastic Scaling Analysis

Although scaling is a subject that has been studied for a long

time, our innovation is that we use the DHT leaf set to select

the best candidate nodes for scaling up or scaling out. There-

fore, our approach does not need a central master to control,

which is fully distributed. If many operators have bottlenecks

at the same time, the system can adjust them all together. The

periodical maintenance and update of the leaf set ensure that

the leaf set nodes are good candidates, which are close to the

bottleneck operator with abundant bandwidth, so there is no

need for us to search for the appropriate nodes globally.

The auto-scaling process takes the system snapshot col-

lected every 30 seconds for statistical analysis. We de-

ploy three 4-stage topologies (RemoveDuplicates, TopK,

WordCount). Figure 11a shows the process of scaling up only.

The process starts from the moment of detecting the bottle-

neck to the moment that the system is stabilized. Figure 11b

shows the process of scaling up and then scaling out. For this

experiment, we put pressure on the system by gradually in-

creasing the number of instances (tasks) (10 every 30 s) until

a bandwidth bottleneck occurs (at 60 s for the blue line and

the black line, and at 90 s for the red line). This bottleneck can

only be resolved by scaling up. Results show that the system

is stabilized by migrating the instance to another node.

Figure 11c shows how the health score changes correspond-

ing to Figure 11a. Figure 11d shows how the health score

changes corresponding to Figure 11b. Note that if the goal

of pursuing a higher health score conflicts with the goal of

improving throughput, we need to strike a balance between

health score and system throughput by adjusting the health

score function, i.e., aiming at a lower score.

5.6 Overhead Analysis

We evaluate the DART’s runtime overhead in terms of the

power usage and the CPU overhead. We run the same DEBS

2015 application [13] in Sec. 5.2 to calculate real-time indi-

cators of most frequent routes in New York City with source

rate at 100K events/s.

0 100 200 300 400 500 600
3.5

4

4.5

5

5.5

6

P
o
w

e
r

u
s
a
g
e
 (

W
)

Time (s)

 Storm Supervisor DART

(a) Power overhead

0 100 200 300 400 500 600
0

2

4

6

8

10

C
P

U
 u

s
a
g
e
 (

%
)

Time (s)

 Storm Supervisor Storm Nimbus DART

(b) CPU overhead

Figure 12: Overhead comparison of DART vs Storm.

Power usage. Most IoT devices rely on batteries or energy

harvesters. Given that their energy budget is limited, we want

to ensure that the performance gains achieved come with an

acceptable cost in terms of power consumption. To evaluate

DART’s power usage, we use the MakerHawk USB Power

Meter Tester [18] to measure the power usage of the Rasp-

berry Pi 4. When plugged into a wall socket, the idle power

usage is 3.35 Watt. Figure 12a shows the comparison of the

averaged single device per-node power usage of DART node

with Storm’s supervisor when running the DEBS 2015 appli-

cation. Results show that DART has less power usage with an

average value of 5.24 Watt compared to Storm with an aver-

age value of 5.41 Watt, demonstrating that DART efficiently

uses energy resources.

CPU overhead. Figure 12b shows the comparison of the

CPU overhead of DART with Storm. Results show that DART

uses more CPU than Storm Nimbus and Storm supervisor.

DART continuously monitors the health status of all oper-

ators to make auto-scaling decisions to adapt to workload

variations and bandwidth variations in the edge environment,

while Storm ignores it. This CPU overhead is an acceptable

trade-off for maintaining performance and could be further

reduced with a larger auto-scaling interval.

248 2021 USENIX Annual Technical Conference USENIX Association

6 Related Work

Existing studies can be divided into four categories: cluster-

based stream processing systems, cloud-based IoT data pro-

cessing systems, edge-based data processing systems, and

wide-area data analytics systems.

Category 1: Cluster-based stream processing systems. Over

the last decade, a bloom of industry stream processing sys-

tems has been developed including Flink [2], Samza [5],

Spark [6], Storm [7], Millwheel [28], Heron [44], S4 [49].

These systems, however, are designed for low-latency intra-

datacenter settings that have powerful computing resources

and stable high-bandwidth connectivity, making them unsuit-

able for edge stream processing. Moreover, they mostly inherit

MapReduce’s “single master/many workers” architecture that

relies on a monolithic scheduler for scheduling all tasks and

handling failures and stragglers, suffering significant short-

comings due to the centralized bottleneck. SBONs [52] lever-

ages distributed hash table (DHTs) for service placement.

However, it does not support DAG parsing, task scheduling,

data shuffling and elastic scaling, which are required for mod-

ern stream processing engines.

Category 2: Cloud-based IoT data processing systems. In

such a model, most of the data is sent to the cloud for analysis.

Today many computationally-intensive IoT applications [22,

23] leverage this model because cloud environments can offer

unlimited computational resources. Such solutions, however,

cannot be applied to time-critical IoT stream applications

because: (1) they cause long delays and strain the backhaul

network bandwidth; and (2) offloading sensitive data to third-

party cloud providers may cause privacy issues.

Category 3: Edge-based data processing systems. In such

a model, data processing is performed at the edge without

connectivity to a cloud backend [19, 21, 58]. This requires

installing a hub device at the edge to collect data from other

IoT devices and perform data processing. These solutions,

however, are limited by the computational capabilities of the

hub service and cannot support distributed data-parallel pro-

cessing across many devices and thus have limited throughput.

It may also introduce a single point of failure once the hub

device fails.

Category 4: Wide-area data analytics systems. Many

Apache Spark-based systems (e.g., Flutter [39], Iridium [53],

JetStream [55], SAGE [62], and many others [40, 41, 43, 65,

66]) are proposed for enabling geo-distributed stream pro-

cessing in wide-area networks. They optimize the execution

by intelligently assigning individual tasks to the best data-

centers (e.g., more data locality) or moving data sets to the

best datacenters (e.g., more bandwidth). However, they make

certain assumptions based on some theoretical models which

do not always hold in practice. For example, Flutter [39],

Tetrium [40], Iridium [53], Clarinet [65], and Geode [66]

formulate the task scheduling problem as a ILP problem. Pix-

ida [43] formulates the task scheduling problem as a Min

k-Cut problem. They assume that the workload, the inter-DC

transfer time, and the WAN bandwidth are known beforehand

and do not change, which is rarely the case in practice. More-

over, these systems also suffer significant shortcomings due

to the centralized bottleneck.

To our best knowledge, Edgent [1], EdgeWise [37], and

Frontier [50] are the only other stream processing engines

tailored for the edge. They all point out the criticality of edge

stream processing, but no effective solutions were proposed

towards scalable and adaptive edge stream processing. Ed-

gent [1] is designed for data processing at individual IoT

devices rather than full-fledged distributed stream process-

ing. EdgeWise [37] develops a congestion-aware scheduler to

reduce backpressure, but it can not scale well due to the cen-

tralized bottleneck. Frontier [50] develops replicated dataflow

graphs for fault-tolerance, but it ignores the edge dynamics

and heterogeneity.

7 Conclusion

Existing stream processing engines were designed for the

cloud environments and may behave poorly in the edge con-

text. In this paper, we present DART, a scalable and adaptive

edge stream processing engine that enables fast stream pro-

cessing for a large number of concurrent running IoT appli-

cations in the dynamic edge environment. DART leverages

DHT-based P2P overlay networks to create a decentralized

architecture and design a dynamic dataflow abstraction to au-

tomatically place, chain, scale, and recover stream operators,

which significantly improves performance, scalability, and

adaptivity for handling large IoT stream applications.

An interesting question for future work is how to optimize

data shuffling services for edge stream processing engines

like DART. Common operators such as union and join may

require intermediate data to be transmitted over edge networks

since their inputs are generated at different locations. Each

shard of the shuffle data has to go through a long path of data

serialization, disk I/O, edge networks, and data deserialization.

Shuffle, if planned poorly, may delay the query processing.

We plan to explore a customizable shuffle library that can

customize the data shuffling path (e.g., ring shuffle, hierarchi-

cal tree shuffle, butterfly wrap shuffle) at runtime to optimize

shuffling. We will release DART as open source, together with

the data used to produce the results in this paper1.

8 Acknowledgment

We would like to thank the anonymous reviewers and our shep-

herd, Dr. Amy Lynn Murphy, for their insightful suggestions

and comments that improved this paper. This work is sup-

ported by the National Science Foundation (NSF-CAREER-

1943071, NSF-SPX-1919126, NSF-SPX-1919181).

1https://github.com/fiu-elves/DART

USENIX Association 2021 USENIX Annual Technical Conference 249

References

[1] Apache Edgent - A Community for Accelerating Ana-

lytics at the Edge. https://edgent.apache.org/.

[2] Apache Flink. https://flink.apache.org/.

[3] Apache Flume. http://flume.apache.org/.

[4] Apache Kafka. https://kafka.apache.org/.

[5] Apache Samza. http://samza.apache.org/.

[6] Apache Spark. https://spark.apache.org/.

[7] Apache Storm. http://storm.apache.org/.

[8] Apache Trident. http://storm.apache.org/

releases/current/Trident-tutorial.html.

[9] Apache ZooKeeper. https://zookeeper.apache.

org/.

[10] AVA: Automated Vehicles for All.

https://www.transportation.gov/

policy-initiatives/automated-vehicles/

10-texas-am-engineering-experiment-station.

[11] Cisco Kinetic Edge & Fog Processing Module

(EFM). https://www.cisco.com/c/dam/en/us/

solutions/collateral/internet-of-things/

kinetic-datasheet-efm.pdf.

[12] Data Canvas: Sense Your City.

https://grayarea.org/initiative/

data-canvas-sense-your-city/.

[13] DEBS 2015 Grand Challenge: Taxi trips. https://

debs.org/grand-challenges/2015/.

[14] EdgeWise source code. https://github.com/

XinweiFu/EdgeWise-ATC-19.

[15] FAROO - Peer-to-peer Web Search: History. http:

//faroo.com/.

[16] FreePastry. https://www.freepastry.org/.

[17] Linux Traffic Control. https://tldp.org/HOWTO/

Traffic-Control-HOWTO/index.html.

[18] MakerHawk USB Power Meter Tester. https://www.

makerhawk.com/products/.

[19] Microsoft Azure IoT Edge. https://azure.

microsoft.com/en-us/services/iot-edge.

[20] A new reality for oil & gas. https://www.cisco.com/

c/dam/en_us/solutions/industries/energy/

docs/OilGasDigitalTransformationWhitePaper.

pdf, 2017.

[21] Amazon AWS Greengrass. https://aws.amazon.

com/greengrass, 2017.

[22] Google Nest Cam. https://nest.com/cameras,

2017.

[23] Netatmo. https://www.netatmo.com, 2017.

[24] Soil Moisture Profiles and Temperature Data from

SoilSCAPE Sites. https://daac.ornl.gov/LAND_

VAL/guides/SoilSCAPE.html, 2017.

[25] Autonomous cars will generate more than 300 tb

of data per year. https://www.tuxera.com/blog/

autonomous-cars-300-tb-of-data-per-year/,

2019.

[26] HORTONWORKS: iot and predictive big data ana-

lytics for oil and gas. https://hortonworks.com/

solutions/oil-gas/, 2019.

[27] The ITS JPO’s New Strategic Plan 2020-2025. https:

//www.its.dot.gov/stratplan2020/index.htm,

2020.

[28] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava

Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,

Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-

wheel: Fault-tolerant stream processing at internet scale.

Proc. VLDB Endow., 6(11):1033–1044, August 2013.

[29] Mordecai Avriel. Nonlinear programming: analysis and

methods. Courier Corporation, 2003.

[30] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-

gren Zhou, Zhengping Qian, Ming Wu, and Lidong

Zhou. Apollo: Scalable and Coordinated Scheduling

for Cloud-scale Computing. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and

Implementation, OSDI’14, pages 285–300, Berkeley,

CA, USA, 2014. USENIX Association.

[31] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and

Devavrat Shah. Randomized gossip algorithms.

IEEE/ACM Trans. Netw., 14(SI):2508–2530, June 2006.

[32] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,

Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache

Flink: Stream and Batch Processing in a Single Engine.

IEEE Data Eng. Bull., 38(4):28–38, 2015.

[33] M. Castro, P. Druschel, A. . Kermarrec, and A. I. T.

Rowstron. Scribe: a large-scale and decentralized

application-level multicast infrastructure. IEEE Jour-

nal on Selected Areas in Communications, 20(8):1489–

1499, Oct 2002.

250 2021 USENIX Annual Technical Conference USENIX Association

https://edgent.apache.org/
https://flink.apache.org/
http://flume.apache.org/
https://kafka.apache.org/
http://samza.apache.org/
https://spark.apache.org/
http://storm.apache.org/
http://storm.apache.org/releases/current/Trident-tutorial.html
http://storm.apache.org/releases/current/Trident-tutorial.html
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://www.transportation.gov/policy-initiatives/automated-vehicles/10-texas-am-engineering-experiment-station
https://www.transportation.gov/policy-initiatives/automated-vehicles/10-texas-am-engineering-experiment-station
https://www.transportation.gov/policy-initiatives/automated-vehicles/10-texas-am-engineering-experiment-station
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://grayarea.org/initiative/data-canvas-sense-your-city/
https://grayarea.org/initiative/data-canvas-sense-your-city/
https://debs.org/grand-challenges/2015/
https://debs.org/grand-challenges/2015/
https://github.com/XinweiFu/EdgeWise-ATC-19
https://github.com/XinweiFu/EdgeWise-ATC-19
http://faroo.com/
http://faroo.com/
https://www.freepastry.org/
https://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
https://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
https://www.makerhawk.com/products/
https://www.makerhawk.com/products/
https://azure.microsoft.com/en-us/services/iot-edge
https://azure.microsoft.com/en-us/services/iot-edge
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://aws.amazon.com/greengrass
https://aws.amazon.com/greengrass
https://nest.com/cameras
https://www.netatmo.com
https://daac.ornl.gov/LAND_VAL/guides/SoilSCAPE.html
https://daac.ornl.gov/LAND_VAL/guides/SoilSCAPE.html
https://www.tuxera.com/blog/autonomous-cars-300-tb-of-data-per-year/
https://www.tuxera.com/blog/autonomous-cars-300-tb-of-data-per-year/
https://hortonworks.com/solutions/oil-gas/
https://hortonworks.com/solutions/oil-gas/
https://www.its.dot.gov/stratplan2020/index.htm
https://www.its.dot.gov/stratplan2020/index.htm

[34] Raul Castro Fernandez, Matteo Migliavacca, Evangelia

Kalyvianaki, and Peter Pietzuch. Integrating scale out

and fault tolerance in stream processing using operator

state management. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’13, pages 725–736, New York, NY,

USA, 2013. ACM.

[35] Federico Concone, Alessandra De Paola, Giuseppe Lo

Re, and Marco Morana. Twitter analysis for real-time

malware discovery. In AEIT International Annual Con-

ference, 2017, pages 1–6. IEEE, 2017.

[36] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram

Rao, and Karthik Ramasamy. Dhalion: Self-regulating

stream processing in heron. Proc. VLDB Endow.,

10(12):1825–1836, aug 2017.

[37] Xinwei Fu, Talha Ghaffar, James C. Davis, and Dongy-

oon Lee. Edgewise: A better stream processing engine

for the edge. In 2019 USENIX Annual Technical Confer-

ence (USENIX ATC 19), Renton, WA, 2019. USENIX

Association.

[38] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta

Patino-Martinez, Claudio Soriente, and Patrick Val-

duriez. StreamCloud: An Elastic and Scalable Data

Streaming System. IEEE Trans. Parallel Distrib. Syst.,

23(12):2351–2365, dec 2012.

[39] Z Hu, B Li, and J Luo. Flutter: Scheduling tasks closer

to data across geo-distributed datacenters. In IEEE

INFOCOM 2016 - The 35th Annual IEEE International

Conference on Computer Communications, pages 1–9,

apr 2016.

[40] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana

Golubchik, Minlan Yu, and Mingyang Zhang. Wide-

area analytics with multiple resources. In Proceedings of

the Thirteenth EuroSys Conference, EuroSys ’18, pages

12:1—-12:16, New York, NY, USA, 2018. ACM.

[41] Chien-Chun Hung, Leana Golubchik, and Minlan Yu.

Scheduling Jobs Across Geo-distributed Datacenters.

In Proceedings of the Sixth ACM Symposium on Cloud

Computing, SoCC ’15, pages 111–124, New York, NY,

USA, 2015. ACM.

[42] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann,

Desislava Dimitrova, Matthew Forshaw, and Timothy

Roscoe. Three steps is all you need: fast, accurate,

automatic scaling decisions for distributed streaming

dataflows. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages

783–798, Carlsbad, CA, 2018. USENIX Association.

[43] Konstantinos Kloudas, Margarida Mamede, Nuno

Preguiça, and Rodrigo Rodrigues. Pixida: Optimizing

data parallel jobs in wide-area data analytics. Proc.

VLDB Endow., 9(2):72–83, oct 2015.

[44] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas

Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-

nesh M Patel, Karthik Ramasamy, and Siddarth Taneja.

Twitter Heron: Stream Processing at Scale. In Pro-

ceedings of the 2015 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’15, pages

239–250, New York, NY, USA, 2015. ACM.

[45] Pinchao Liu, Hailu Xu, Dilma Da Silva, Qingyang Wang,

Sarker Tanzir Ahmed, and Liting Hu. Fp4s: Fragment-

based parallel state recovery for stateful stream appli-

cations. In 2020 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS). IEEE, 2020.

[46] Petar Maymounkov and David Mazieres. Kademlia: A

peer-to-peer information system based on the xor met-

ric. In International Workshop on Peer-to-Peer Systems,

pages 53–65. Springer, 2002.

[47] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-

Moreira, and L. Damas. Predicting taxi passenger de-

mand using streaming data. IEEE Transactions on Intel-

ligent Transportation Systems, 14(3):1393–1402, Sep.

2013.

[48] Satoshi Nakamoto. Bitcoin : A Peer-to-Peer Electronic

Cash System. Technical report, 2008.

[49] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and

Anand Kesari. S4: Distributed Stream Computing Plat-

form. In Proceedings of the 2010 IEEE International

Conference on Data Mining Workshops, ICDMW ’10,

pages 170–177, Washington, DC, USA, 2010. IEEE

Computer Society.

[50] Dan O’Keeffe, Theodoros Salonidis, and Peter Pietzuch.

Frontier: resilient edge processing for the internet of

things. Proceedings of the VLDB Endowment, 11:1178–

1191, 2018.

[51] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and

Ion Stoica. Sparrow: Distributed, Low Latency Schedul-

ing. In Proceedings of the Twenty-Fourth ACM Sympo-

sium on Operating Systems Principles, SOSP ’13, pages

69–84, New York, NY, USA, 2013. ACM.

[52] Peter Pietzuch, Jeffrey Shneidman, Jonathan Ledlie,

Matt Welsh, Margo Seltzer, and Mema Roussopou-

los. Evaluating dht-based service placement for stream-

based overlays. In International Workshop on Peer-to-

Peer Systems, pages 275–286. Springer, 2005.

USENIX Association 2021 USENIX Annual Technical Conference 251

[53] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,

Srikanth Kandula, Aditya Akella, Paramvir Bahl, and

Ion Stoica. Low latency geo-distributed data analytics.

In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication, SIGCOMM

’15, pages 421–434, New York, NY, USA, 2015. ACM.

[54] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu,

Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan Yu, and

Zheng Zhang. TimeStream: Reliable Stream Compu-

tation in the Cloud. In Proceedings of the 8th ACM

European Conference on Computer Systems, EuroSys

’13, pages 1–14, New York, NY, USA, 2013. ACM.

[55] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S

Pai, and Michael J Freedman. Aggregation and degrada-

tion in jetstream: Streaming analytics in the wide area.

In Proceedings of the 11th USENIX Conference on Net-

worked Systems Design and Implementation, NSDI’14,

pages 275–288, Berkeley, CA, USA, 2014. USENIX

Association.

[56] Irving S Reed and Gustave Solomon. Polynomial codes

over certain finite fields. Journal of the society for in-

dustrial and applied mathematics, 8(2):300–304, 1960.

[57] Antony I T Rowstron and Peter Druschel. Pastry: Scal-

able, Decentralized Object Location, and Routing for

Large-Scale Peer-to-Peer Systems. In Proceedings of

the IFIP/ACM International Conference on Distributed

Systems Platforms Heidelberg, Middleware’01, pages

329–350, London, UK, UK, 2001. Springer-Verlag.

[58] Zhitao Shen, Vikram Kumaran, Michael J Franklin,

Sailesh Krishnamurthy, and Amit Bhat. CSA : Stream-

ing Engine for Internet of Things. Bulletin of the Techni-

cal Committee on Data Engineering, 38(4):39–50, 2015.

[59] W Shi, J Cao, Q Zhang, Y Li, and L Xu. Edge com-

puting: Vision and challenges. IEEE Internet of Things

Journal, 3(5):637–646, oct 2016.

[60] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan.

Riotbench: An iot benchmark for distributed stream pro-

cessing systems. Concurrency and Computation: Prac-

tice and Experience, 29(21):e4257, 2017.

[61] Ion Stoica, Robert Morris, David Karger, M Frans

Kaashoek, and Hari Balakrishnan. Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications.

In Proceedings of the 2001 Conference on Applications,

Technologies, Architectures, and Protocols for Computer

Communications, SIGCOMM ’01, pages 149–160, New

York, NY, USA, 2001. ACM.

[62] R Tudoran, G Antoniu, and L Bouge. SAGE: Geo-

Distributed Streaming Data Analysis in Clouds. In 2013

IEEE International Symposium on Parallel Distributed

Processing, Workshops and Phd Forum, pages 2278–

2281, may 2013.

[63] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-

glas, Sharad Agarwal, Mahadev Konar, Robert Evans,

Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-

jay Radia, Benjamin Reed, and Eric Baldeschwieler.

Apache Hadoop YARN: Yet Another Resource Nego-

tiator. In Proceedings of the 4th Annual Symposium

on Cloud Computing, SOCC ’13, pages 5:1——–5:16,

New York, NY, USA, 2013. ACM.

[64] Shivaram Venkataraman, Aurojit Panda, Kay Ouster-

hout, Michael Armbrust, Ali Ghodsi, Michael J Franklin,

Benjamin Recht, and Ion Stoica. Drizzle: Fast and

Adaptable Stream Processing at Scale. In Proceedings

of the 26th Symposium on Operating Systems Principles,

SOSP ’17, pages 374–389, New York, NY, USA, 2017.

ACM.

[65] Raajay Viswanathan, Ganesh Ananthanarayanan, and

Aditya Akella. CLARINET: Wan-aware optimization

for analytics queries. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16), pages 435–450, Savannah, GA, 2016. USENIX As-

sociation.

[66] Ashish Vulimiri, Carlo Curino, P Brighten Godfrey,

Thomas Jungblut, Jitu Padhye, and George Varghese.

Global Analytics in the Face of Bandwidth and Regula-

tory Constraints. In Proceedings of the 12th USENIX

Conference on Networked Systems Design and Im-

plementation, NSDI’15, pages 323–336, Berkeley, CA,

USA, 2015. USENIX Association.

252 2021 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Stream Processing Programming Model
	Stream Processing System Architecture

	Design
	Overview
	Dynamic Dataflow Abstraction
	Elastic Scaling Mechanism
	Failure Recovery Mechanism

	Implementation
	Evaluation
	Setup
	Query Latency
	Scalability Analysis
	Failure Recovery Analysis
	Elastic Scaling Analysis
	Overhead Analysis

	Related Work
	Conclusion
	Acknowledgment

