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Abstract
Modern stream processing applications need to store and up-

date state along with their processing, and process live data

streams in a timely fashion frommassive and geo-distributed

data sets. Since they run in a dynamic distributed environ-

ment and their workloads may change in unexpected ways,

multiple stream operators can fail at the same time, causing

severe state loss. However, the state-of-the-art stream pro-

cessing systems are mainly designed for low-latency intra-

datacenter settings and do not scale well for running stream

applications that contain large distributed states, suffering a

significantly centralized bottleneck and high latency to re-

cover state. They offer failure recovery mainly through three

approaches: replication recovery, checkpointing recovery,

and DStream-based lineage recovery, which are either slow,

resource-expensive or fail to handle multiple simultaneous

failures.

We present SR3, a customizable state recovery framework

that provides fast and scalable state recovery mechanisms

for protecting large distributed states in stream processing

systems. SR3 offers three recovery mechanisms — the star-

structured recovery, the line-structured recovery, and the

tree-structured recovery — to cater to the needs of differ-

ent stream processing computation models, state sizes, and

network settings. Our design adopts a decentralized architec-

ture that partitions and replicates states by using consistent

ring overlays that leverage distributed hash tables (DHTs).

We show that this approach can significantly improve the

scalability and flexibility of state recovery.
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We realize the SR3 design on a prototype integrated with

the widely adopted Apache Storm framework. Large-scale

experiments using real-world datasets demonstrate SR3’s

scalability, fast recovery, and flexibility properties.
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1 Introduction
Stream processing is proposed and popularized as a “technol-

ogy like Hadoop but can give you results faster” [1], which

lets users query a continuous data stream and get results

shortly after receiving the data. Stream processing technol-

ogy has become a critical building block of many applica-

tions,such as identifying spam campaigns from social net-

work streams [2], making business decisions from marketing

streams [3], and predicting tornados and storms from radar

streams [4].

While in the early days most stream operators were used

for simple computations which are stateless, such as filter,
sort, today’s stream operators are capable of powering more

complex computations and evaluating more complex logic

which are stateful, such as mapWithState. This requires to-
day’s stream processing systems to offer "state handling" —
i.e., operators that can remember past input and use it to

influence the processing of upcoming input.

However, stream processing applications may be highly

dynamic due to factors such as variable data rates, network

congestions, and application-specific data source character-

istics. Stream processing applications are also often subject

to instabilities and failures, where multiple streaming opera-

tors may fail at the same time, resulting in severe state loss

that may break or hinder the progress of stream application

workflows.
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Figure 1. Real-world examples of stateful stream processing.

In this paper, we explore customizable state recovery

mechanisms for protecting large distributed states in stream

processing systems, in order to cater the needs of different

stream processing applications that have different stream

processing computation models, state sizes, and network

environments.

Figure 1 shows real-world examples of stateful stream pro-

cessing. When we are shopping at e-commerce websites, our

user activities (e.g., clicks, likes, buys, reviews) are going to be
continuously logged by these sites. On the backend, many

stateful stream applications are concurrently running on top

of these user activity streams to create insights and make

business decisions. For example, Figure 1 top is a “micro-
promotion” application, which analyzes the live page views

of its products, groupby-aggregates them, and then sorts
them to find the top-k products with the most clicks to ap-

ply a discount. Here the “state” is the stored knowledge

base of key-value pairs consisting of product names and cor-

responding clicks. Figure 1 middle is a “product-bundling”
application, which extracts users’ buys, creates graphs of

vertices and edges to get an idea of what products are usually

purchased together, then makes online recommendations

such as “you like this, you may also like that”. Here the “state”
is the stored knowledge base of connected graphs consisting

of product names and bundlings. Figure 1 bottom is a “click
fraud-detection” application, which identifies ad clicks as

fraudulent by deploying a space-efficient probabilistic data

structure like a Bloom filter [5] to memorize the IP addresses

or the cookies of previous clicks, and comparing them to the

new coming click stream to detect duplicate clicks in a short

time. Here the “state” is the stored knowledge base in the

Bloom filter.

However, we are facing significant challenges in managing

these large distributed states in stream processing systems.

• Challenge 1: how to recover from simultaneous failures
of multiple stream operators for a large number of con-
currently running applications? Streaming computa-

tions are, by nature, long-running. Their workloads,

as well as the runtime environment, may change in

unpredictable ways. A stream computation is usually

represented as a logical directed acyclic graph (DAG),

where vertices denote operators and edges denote data

dependencies between them. This means that if one

operator fails and loses state, the dependent operators

may also fail and lose their states. Multiple failures

may frequently happen due to node fails, buffer IO er-

ror, or drive unfound. For example, in power outages, a

non-negligible percentage (0.5%-1%) of nodes does not

come back to life even after power is restored [6]. Mul-

tiple failures can also be easily affected by the location

of devices (i.e., in different geo-distributed datacenters)

and the type of cloud services [7]. What makes it par-

ticularly challenging is that many stream processing

applications run concurrently on the same platform

and consume the same data source. We need to be able

to recover lost state for large numbers of concurrently

running applications on the same platform.

• Challenge 2: how to customize the failure recovery mech-
anism for different types of stream processing applica-
tions? For example, Spark Streaming based systems [8,

9, 10, 11] treat streaming computations as a series of

batch computations, whereas Storm based systems [12,

13, 14] treat streaming computations as a dataflow

graph in which vertices asynchronously process in-

coming records. The state size for batch applications is

usually large, whereas the state size for stream appli-

cations are usually small. Therefore, different stateful

stream processing applications need different state re-

covery mechanisms that best meet their needs.

Since 2005, there has been a boom of stream processing

systems, including Storm [12], Trident [13], Spark Stream-

ing [15], Borealis [16], TimeStream [17], and S4 [18]. How-

ever, there is a lack of fast and scalable failure recovery

mechanisms for protecting the large distributed states for

these systems. The reasons are as follows: (1) they mostly

inherit MapReduce’s “single master/many workers” archi-

tecture, where the central master is responsible for all sched-

uling activities. As such, they do not scale well to a large

number of concurrently running applications due to the

inherent centralization bottleneck; (2) these systems offer

failure recovery mainly through three approaches: replica-

tion recovery [19, 20], checkpointing recovery [8, 9, 12, 13,

17] and DStream-based lineage recovery [10, 11], which are

either slow, resource-expensive or fail to handle multiple
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simultaneous failures. Replication recovery adds high hard-

ware cost because multiple copies must concurrently run on

distinct nodes for failover. In distributed streaming, check-

pointing recovery is known to be prohibitively expensive,

leading users in many domains to disable this feature [21,

22, 23, 24, 25]. The third approach, DStream-based lineage

recovery, is slow when the lineage graph is long (i.e., the

streaming involves long sequences of operators) and falls

short in handling multiple simultaneously failures; and (3)

these systems are limited to a fixed computation model, e.g.,

asynchronous stream processing like Storm [12], synchro-

nous mini-batch processing like Spark [15], and they do not

have customizable state recovery mechanisms.

We make the following contributions in this paper. First,

we showhow existing techniques can lead to slow or resource-

expensive state recovery that is not scalable and identify the

causes (Sec. 2) of their shortcomings.

Second, we propose SR3, a customizable State Recovery

framework that provides fast and scalable failure recovery

mechanisms for protecting large distributed states in stream

processing systems (Sec. 3). SR3 does not rely on a central

master for recovering the state. The failure recovery pro-

cess is deployed on a DHT-based peer-to-peer (P2P) overlay,

scales to the size of the lost state, offers a significant re-

duction in failure recovery time and can tolerate multiple

simultaneous node failures.

Third, SR3 provides three different failure recovery mech-

anisms (Sec. 3). An important novel aspect of SR3 is that it

can host multiple distributed streams and offer each applica-

tion the recovery mechanism that best fits its requirements.

The goal is to cater to the needs of different stateful stream

applications (e.g., different stream processing computation

models, quality of service requirements, state sizes, and net-

work environments).

Fourth, we present the integration of SR3 onto the Apache

Storm framework and demonstrate its portability to other

stream processing systems (Sec. 4). The source code of SR3

will be made publicly available.

Finally, we make a comprehensive evaluation of the scala-

bility, fast recovery and flexibility of SR3 on a large cluster

using real-world stream processing applications’ datasets

(Sec. 5).

2 Related Work
Distributed stream processing systems need to support state-

ful processing and recover quickly from failures to resume

the normal processing. Table 1 summarizes the stateful stream

processing systems and their state-of-the-art state recovery

solutions.

2.1 State Management in Stream Processing
Systems

Existing state management solutions can be divided into

three representative categories: in-memory, remote storage,
in-memory+on-disk.

Category 1: in-memory. Many industrial stream processing

systems either do not support state (Heron [14], S4 [18], the

early version of Storm [12]), or they rely on in-memory data

structures such as hash tables and hash table variants to

store state. For example, Muppet [26] and Trident [13] store

state via hash tables. Spark Streaming [15] enables state

computation via Resilient Distributed Datasets (RDDs) [31],

the core data abstraction from Spark that distributes read-

only multiset data items. These techniques rely on a central

master for state management that results in a centralized

bottleneck and, therefore, may be difficult to scale to large

states.

Category 2: remote storage. Some systems such as Mill-

wheel [27] and Dataflow [28] choose to separate state from

the application logic. They have the state centralized in a

remote storage [22, 32, 33] (e.g., a database management sys-

tem, HDFS or GFS) shared among applications, periodically

checkpointing it for fault tolerance. Using external storage

can scale well to large distributed states, but it significantly

increases latency in the critical path of stream processing. For

example, Kafka can handle 100k–500kmessages/sec per node

at in-memory speed, however, the throughput of queries for

remote key-value storage is often close to 1-5k requests per

second — two orders of magnitude slower [29, 34].

Category 3: in-memory+on-disk. A few other systems such

as Kafka [29], Samza [30, 34], Spark Streaming [15], Flink [8,

9] try to overcome this issue by using a combination of “soft

state” stored in in-memory data structure along with “hard

state” persisted in some on-disk data stores (e.g., RocksDB [35],

LevelDB [36]). However, they sacrifice programming model

transparency by requiring programmers to declare and main-

tain state using built-in data structures (e.g., Spark’s RDDs [31],

Muppet’s slates [26]). The on-disk data store (e.g., Kafka [29],

Samza [34], Dataflow [28]) incurs large I/O overhead due to

well-known high write amplification [37]. Finally, scaling

to large distributed states and recovering from failures in

such systems is quite expensive, because when a single node

fails, the in-memory state and on-disk state for all dependent

nodes must be reset to the last checkpoint, and computation

must resume from that point, resulting in significant time

and space overhead.

2.2 Failure Recovery in Stream Processing Systems
Existing stream processing systems offer failure recovery

mainly through the use of three approaches: replication recov-
ery, checkpointing recovery, and DStream-based lineage recov-
ery, which are either not scalable, slow, resource-expensive

or incapable to handle multiple failures.

In the replication-based recovery approach, the system

maintains a completely separate set of hot failover nodes,

which processes the same stream in parallel with the pri-

mary set of nodes. The input records are sent to both. When

there is a failure or multiple failures in the primary nodes,

the system automatically switches over to the secondary
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Table 1. Overview of state management and state recovery solutions in stream processing systems.

System Data Struc-
ture

State Management State Recovery
Approach

Scale
to large
state

Handle
Multiple
Failures

State Re-
covery
Policy

State Recovery
Traits

Muppet [26] Slates [26] In-memory Checkpointing × × Static Slow

Trident [13] Hashtable In-memory Checkpointing × × Static Slow

Millwheel [27] Hashtable Remote storage Checkpointing × × Slow

Dataflow [28] Hashtable Remote storage Checkpointing × × Static Slow

Kafka [29] Hashtable In-memory+on-disk Checkpointing × × Static Slow

Samza [30] Hashtable In-memory+on-disk Checkpointing × × Static Slow

Flink [8] Hashtable In-memory+on-disk Checkpointing × × Static Slow

Flux [19] Hashtable In-memory+on-disk Replication × ✓ Static High cost

Borealis [20] Hashtable In-memory+on-disk Replication × ✓ Static High cost

Spark Stream-

ing [15]

RDDs [31] In-memory+on-disk DStream-based

lineage recovery

× ✓ Static Slow for long

lineages

SR3 Hashtable In-memory DHT-based paral-

lel recovery

✓ ✓ Dynamic Fast, low cost

set of nodes and the system can continue processing with

very little or no disruption. The replication recovery has

been used in systems such as Flux [19] and Borealis [20].

The failover is fast and it can handle multiple failures. How-

ever, the replication recovery scheme doubles the hardware

requirement.

In checkpoint-based recovery, all nodes periodically check-

point their states to remote storage such as HDFS or GFS.

Each node in the stream pipeline has an in-memory buffer

to retains a backup of the data that it has forwarded to the

downstream nodes since the last checkpoint. The system

also maintains standby nodes. When a primary node fails, a

standby node retrieves the latest checkpoint from the per-

sistent storage, and its upstream node essentially replays

the backup records serially to this failover node to recreate

the lost state. The checkpointing recovery has been used in

systems such as TimeStream [17], Trident [13], Drizzle [38],

Flink [8, 9] and Multilevel Checkpointing [39]. It avoids the

2× hardware cost. For example, Flink [8, 9] can retrieve the

checkpointed external state from remote database without

the secondary set of nodes. However, the failover is slower

than the replication recovery because it has to retrieve the

checkpointed state from the remote storage and replay the

buffered data on the last state to recompute the new state.

To achieve both fast recovery and small hardware over-

head, the DStream-based lineage recovery was proposed.

This approach has been used in Apache Spark-based sys-

tems [10, 11]. Its key abstraction is the Discretized Stream
(DStream, for short), a continuous stream of Spark RDDs [31].

The most recent state is stored in each node’s memory - us-

ing RDDs - together with the lineage graph, that is, the graph

of deterministic operators used to build RDDs. When nodes

fail in the system, instead of preparing a standby node for

failover, DStream re-runs the lost tasks in parallel on other re-

liable nodes in the cluster using the lineage graph. However,

the entire recovery processing is linear, that is, the lost tasks

need to be executed strictly in line with the original lineage

graph. As such, it may not work well for multiple failures

because the recovery process is executed strictly in line with

the original lineage graph. As such, the recovery process

may be slow and incur multiple uploads of checkpointed

state, incurring substantial network traffic in geo-distributed

setting.

2.3 Preliminary Work
Our previous work [40] introduced FP4S, a fragment-based

parallel state recovery mechanism that can handle many

simultaneous failures for stateful stream applications. The

key idea is to use erasure coding. For example, (32, 16)-Reed-

Solomon (RS) code [41] divides a data object into 16 blocks

and transforms these blocks into 32 coded blocks, guaran-

teeing that any 16 out of the 32 coded blocks are sufficient

to reconstruct the original data object. Each stateful oper-

ator’s state is divided into m fragments and then encoded

into n blocks and checkpointed to n nodes in the leaf set in

parallel (𝑛 > 𝑚), which guarantees that the original state

can be reconstructed from any m blocks and it can tolerate

a maximum of (𝑛 −𝑚) failures at a time.

Nonetheless, our preliminary work exhibits major limi-

tations including: (1) Expensive hardware cost. Since it

leverages erasure codes to fulfill state save and recovery, it

will generate redundant states and cause additional storage

space to save state fragments. For example, when using 16

raw fragments and 10 coded fragments to recover a 128MB

state, a total of 208 MB (62.5% increment) is required in

memory or disk to complete the state saving and recovery

process. This causes a lot waste of resources and may be

inefficient in systems with limited hardware resources. (2)

High latency. Even though FP4S can tolerate many simul-

taneous failures by leveraging erasure codes, it incurs extra
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computation overhead in generating coded fragments and

computing state from fragments. The extra computational

overheadmay cause a long delay when recovering large sized

state. For example, to recover a 128MB state from erasure

codes, FP4S incurs extra overhead in the erasure code com-

putation, which takes an additional 10s in recovering 128MB

state. Therefore, the entire latency for saving and recovering

128MB state in FP4S will take around 90s (80s+10s). The time

quickly increases with the increment of state size. (3) No
customization. FP4S provides a single recovery mechanism

for all stream applications. However, stream applications are

quite diverse. They may have different QoS requirements,

state sizes, computation models, or run in different network

environments. Therefore, a single recovery mechanism may

not work for handling all scenarios. For example, in diverse

network environments, the availability of network resources

varies dynamically depending on which stream application

workflows are active at a given moment. therefore, the tech-

nique introduced in FP4S is not appropriate for supporting

diverse stream workflows. In contrast, SR3 provides three

different failure recovery mechanisms to cater the needs of

different stateful stream applications.

3 Design
In this section, we define the problem (Sec. 3.1) and dis-

cuss the background of DHT-based consistent ring overlay

(Sec. 3.2). We then introduce the SR3 framework, which in-

cludes the system overview (Sec. 3.3), the star-structured

recovery mechanism (Sec. 3.4), the line-structured recovery

mechanism (Sec. 3.5), the tree-structured recovery mecha-

nism (Sec. 3.6), and how SR3 determines which mechanism

to use (Sec. 3.7).

3.1 Problem Statement
We follow a generic stream query model [10, 21, 42, 43, 44].

A stream processing application’s query is a directed acyclic

graph (DAG) that specifies the dataflow, denoted as Q = (V,
E). DAGs can be implemented via many execution models,

such as the partition/aggregate model which scales out by

partitioning tasks into many sub-tasks (e.g., Dryad [45]), the

sequential/dependent model in which streams are processed

sequentially and subsequent streams depend on the results

of previous ones (e.g., Storm [12]), and the hybrid model with

sequential/dependent and partition/aggregate components

(e.g., Spark Streaming [15], Naiad [21]).

A vertex v ∈ V corresponds to a stream operator 𝑓𝑣 that

consumes input streams i from its predecessor (upstream)

vertices and produces output streams o to its successor (down-
stream) vertices (o = 𝑓𝑣(i)). Each edge e ∈ E represents a data

flow between two vertices. The stream operator 𝑓𝑣 can be

stateless or stateful. A stateless operator consumes one input

record at a time and outputs each result based solely on that

last input record. A stateful operator maintains state that

captures characteristics of some of the records processed so

far and updates it with each new input, such that the output

takes into account both historical records and the new input.

Stateless operators are easy to recover because, by definition,

input records are handled independently, and upon failure

we can simply start a new operator instance. In contrast,

stateful operators are much more difficult to recover.

The problem is: how to achieve a scalable and fast failure
recovery framework that protects large distributed states for
concurrently running applications deploying diverse execution
models? These applications run concurrently on a shared

distributed environment. Their operators are stateful. The ap-

plications comprise several DAGs, deploy diverse execution

models, and vary on their requirements of CPU, memory,

and network bandwidth.

3.2 Background
For maintaining and recovering state, our solution leverages

peer-to-peer (P2P) overlay networks, more specifically, the

Distributed Hashtable (DHT)-based consistent ring overlay

with routing. The primary purpose of the P2P model (e.g.,

Pastry [46], Chord [47]) is to enable all nodes to work col-

laboratively to deliver a specific service. In such model, all

nodes have similar roles, both serving and requesting ser-

vices. For example, in BitTorrent [48], if someone downloads

some file, the file is downloaded to her computer in bits

and parts that come from many other computers in the sys-

tem that already have that file. At the same time, the file

is also sent (uploaded) from her computer to others who

ask for it. Similarly to BitTorrent, where many machines

work collaboratively to download and upload files, our so-

lution enables all distributed nodes to work collaboratively

to achieve state management, relieving the task scheduler

(often implemented as a centralized service) from handling

state. For this purpose, we leverage the following three data

structures from DHT-based consistent ring overlays:

• Routing table: The routing table consists of node char-

acteristics (IP address, Node Id) organized in rows by

the length of common prefixes in the representation of

a Node Id. When routing a message to nodeId, a node
forwards it to the node in its routing table with the

longest prefix in common with nodeId. State are asso-
ciated with keys and nodes are responsible for a range

of keys. In a system where 𝑁 nodes store state, it is

guaranteed that queries can be routed to the appropri-

ate nodeId within 𝑂 (𝑙𝑜𝑔𝑁 ) hops. We use the routing

table for locating state and in the line-structured re-

covery mechanism (Section 3.5).

• Leaf set: The leaf set for a node is a fixed number of

nodes that have the numerically closest nodeIds to

that node. This assists nodes in routing messages and

in rebuilding routing tables when nodes fail. We use
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Figure 2. The overview of SR3 design.

the leaf set for the star-structured recovery mechanism

(Section 3.4).

• Multicast: Any node in the overlay can create a com-

munication group; other nodes can join the group and

then multicast message to all members of the group.

Multicast messages are disseminated through a mul-

ticast tree. We use multicast for constructing in the

tree-structured recovery (Section 3.6).

3.3 The SR3 Overview
Figure 2 shows the overview of the SR3 system. It consists

of several layers as follows.

Layer 1: DHT-based overlay. In our system, we intro-

duce a new abstract concept called “node” to facilitate state

management. Each stream operator is associated with a node.

The association is unrelated to where operators execute; op-

erators at the same vertex may be associated with different

nodes. Each node is randomly assigned a globally unique

identifier known as the “nodeId” in a large circular node

ID space (e.g., 0-2
128

). We organize these nodes into a P2P

overlay network. The overlay is self-organizing and self-

repairing.

Layer 2: State partitioning and replication.The node’s
state is stored in an in-memory hashtable data structure. Pe-

riodically, we divide each node’s state into m shards, each of

which is then replicated to n replicas and distributed to peer

nodes. The peer nodes are preferably chosen as to enable

high bandwidth communication. The parameters of m and

n are determined by the adopted recovery mechanism (we

offer three alternatives) and application characteristics. Our

design ensures that when a failure happens, different sets
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Figure 3. The star-structured recovery process.

of available shards can reconstruct failed state in parallel,

thereby reducing the failure recovery time while tolerating

multiple simultaneous node failures.

Layer 3: State recovery.Applications differ in state sizes,
execution models and QoS requirements such as latency and

throughput. Some applications, such as simulations that can

adjust to data errors, can tolerate lower accuracy in exchange

for efficiency in accessing state and quick recovery other

tasks, such as state visualization for application debugging,

cannot.We design three state recoverymechanisms to satisfy

the needs from different applications. SR3 tracks user-defined

requirements (e.g., latency sensitivity) and the application’s

characteristics (e.g., size of the state) to select the most ap-

propriate mechanism (see Sec. 3.4, Sec. 3.5 and Sec. 3.6 for

more details).

Layer 4: SR3API. SR3 is currently integrated into Apache
Storm [12]. We provide a high-level API that exposes to users

configuration parameters and enables SR3’s portability to

other stream processing systems.

3.4 The Star-structured Recovery Mechanism
Figure 3 shows a straightforward implementation of star-

structured recovery mechanism. Each node has a routing

table and a leaf set. In this example, the state of node 𝑁5 is

divided into 3 shards and each shard has two replicas. They

are distributed to the leaf set to ensure that the original state

can be reconstructed from 3 shards of the 9 shards, where

each shard among these 3 shards is the one from the its 3

replicated shards. As shown in Figure 3, the nine shards 𝑠0,0,

𝑠0,1, ..., 𝑠2,2 are stored in 𝑁0, 𝑁1, ..., 𝑁5 respectively. When

𝑁5 fails, 𝑁0, 𝑁1, and 𝑁2 upload 𝑠0,0, 𝑠1,0, and 𝑠2,0 to 𝑁6 to

recompute the state of 𝑁5.

The benefits are: (1) the recovery process is fast. Different

nodes from non-overlapping leaf set nodes can work in par-

allel to recompute the lost state, which is much faster than

retrieving the state from the remote storage (e.g., HDFS). (2)
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Figure 4. The line-structured recovery process.

We achieve data locality because the leaf set contains nodes

that are geographically close to the original node (e.g., within

the same rack in the same site) that have abundant upload

bandwidth.

3.5 The Line-structured Recovery Mechanism
The star-structured recovery works fine when the state is

small. However, when the state is large, the replacing node

needs to do all the downloading and reconstructing work,

suffering a centralized bottleneck that increases the recovery

latency, whichwe aim to avoid.We design the line-structured

state recovery to fix this issue, where shards are transmitted

and combined through a line covering the replacing node and

all providing nodes. As shown in Figure 4, the nine shards

𝑠0,0, 𝑠0,1, ..., 𝑠2,2 are stored in 𝑁0, 𝑁1, ..., 𝑁5 respectively. When

𝑁5 fails, 𝑁3 uploads 𝑠2,0 to 𝑁0. 𝑁0 merges 𝑠2,0 with 𝑠1,0, recon-

structs it, and then uploads the result to 𝑁1. 𝑁1 merges the

result with 𝑠0,0, reconstructs it, and uploads the final result to

𝑁6 to replace of 𝑁5. The benefit is that, the downloading and

computing load are well balanced among all involved nodes

which helps recover large state. However, it can only recover

one node at a time. When recovering multiple node failures,

it may incur multiple times of network traffic and recovery

time. Besides, the line-structured recovery disregards the

bandwidth asymmetry in cloud environment.

3.6 The Tree-structured Recovery Mechanism
We design a shard-based parallel recovery mechanism to

tolerate multiple node failures, where shards are transmitted

and combined through a spanning tree covering the replacing

node and all providing nodes. This spanning tree is built on

top of a scalable application-level multicast infrastructure,

called Scribe [49]. The key idea is to divide the state into

many shards (e.g., based on key ranges), and use different sets

of available replicas of shards scattered across leaf set nodes

to reconstruct unavailable shards in parallel. By doing this, all
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Figure 5. The tree-structured recovery process for single

failure.

nodes storing available shards can work as providing nodes

and each of them only needs to participate in the recovery

of some unavailable shards. This means a providing node

only needs to upload some of the shards it stores. Thus, the

amount of data a providing node uploads is reduced in a way

that respects bandwidth asymmetry. The downloading and

computing load are well balanced among all involved nodes

without any centralized bottleneck.

Figure 5 shows the recovery process from a single failure in

the tree-structured mechanism. 𝑁7 is the replacing node for

recovering the state when 𝑁5 fails. We can see that the state

is divided into 3 shards, 𝑠0, 𝑠1 and 𝑠2. Each shard is further

divided into 3 sub-shards and the replication factor is two.

So for one shard, it has 6 sub-shards in total. For example,

𝑠2,0,1 denotes the second replica of the first sub-shard in 𝑠2,

and 𝑠2,1,0 denotes the second replica of the second sub-shard

in 𝑠2. In the tree-structured recovery process, the providing

node only needs to upload 3 out of the 6 total sub-shards to

reconstruct each shard. Here each shard refers to the shard

of different partitions (different colors in Figure 5).

Figure 6 shows the recovery process from two failures

in the tree-structured mechanism, where 𝑁6 and 𝑁7 are the

replacing nodes for recovering the state when 𝑁4 and 𝑁5

fail. Similarly, the state is divided into 3 shards, and each

shard is divided into 3 sub-shards and the replication factor

is two. The recovery from multiple failures is similar with

the recovery from a single failure, that is, the providing node

only uploads 3 sub-shards to construct each shard. The differ-

ence is that every reconstructing node needs to reconstruct

multiple shards and sends them to multiple replacing nodes.

3.7 Mechanism Selection
Which mechanism to use? Determining the optimal state

recovery mechanism is difficult since it needs to consider

various factors and application specifics. Thus, we rely on a

heuristic approach that adapts mechanism based on (1) state
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Figure 6. The tree-structured recovery process for two fail-

ures.

sizes, (2) application QoS requirements, (3) network envi-

ronments (e.g., bandwidth bottleneck), and (4) computation

models (e.g., synchronous micro-batch processing model or

asynchronous stream processing model). SR3 focuses on fast

recovery (tens of second scale) for large distributed states

in concurrently running applications rather than real-time

recovery.

Figure 7 shows how we determine which mechanism to

use. In the case of stateless operator failures, it will simply re-

sume the whole execution pipeline since there is no overhead

for recovering states. In the case of stateful operator failures,

SR3’s state recovery mechanisms may not always outper-

form the traditional checkpointing recovery if the state size

is too small or if the application can tolerate the checkpoint-

ing overhead of writing state to the remote storage. Thus,

we use SR3 only with stateful operators for (1) applications

that have strict QoS requirements for low recovery latency

and (2) high probability of simultaneous failures that will

involve large distributed states, such as many concurrent

failures of Twitter trends due to servers’ failures after power

outages.

This information about application’s QoS requirements

and state size is typically available as part of the job submis-

sion information. If the state size is small, we choose star

recovery in priority. On the other hand, if the state size is

large, we further consider if the execution is constrained by

the network bottleneck. In the case of abundant bandwidth,

we choose line-structured recovery in priority by adjusting

the recovery path length to handle different sizes of state

and latency requirements. In the case of limited bandwidth,

we further consider application’s QoS requirements. If it is

latency insensitive, we still choose line-structured recovery

in priority. Otherwise, we choose tree-structured recovery

in priority by dynamically tuning the runtime parameters
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Figure 7. Determining which state recovery mechanism.

such like tree fun-out, depth, number of replicas, or number

of nodes. Therefore, it can cater for different runtime re-

quirement and handle different sizes of state and concurrent

failures that occur simulteneously.

4 Implementation
We implement the SR3 system on top of Apache Strom [50]

(v.2.0.0) and Pastry [51] (v.2.1) software stacks. Instead of

implementing another distributed system core, we leverage

Storm’s excellent runtime system (e.g., basic API, code in-

terpreter, objects exchange layer) and Pastry’s DHT routing

substrate and event transport layer. Although some of the

implementation details may be related to certain specifics

of Storm, the overall architecture and designs of SR3 can

fit into many other stream processing systems (e.g., Tri-

dent [13], Spark Streaming [15], Kafka [29], Samza [30],

Flink [8], Wukong+S [52]). For example, Trident [13] can

avoid to write state to in-memory store or remote storage

such as Cassandra [53] by directly writing state into SR3 via

its APIs. The APIs of SR3 can be easily cooperated into many

other platforms so that they can replace the original state

failure handler by SR3.

In Storm [12], stream processing applications are deployed

and executed as topologies. The topologies contain the busi-

ness logics. These logics are formed as a DAG and imple-

mented by spouts and bolts. Spouts are the data sources of

the stream, which accept input data from raw data sources

like Twitter Streaming API [54], Apache Kafka queue [29],

etc. Bolts are the logical processing units. Spouts pass data

to bolts and bolts process and produce a new output stream.

IRichBolt is the common interface for implementing bolts.

We made three major modifications: (1) SR3 interacts with

the IRichBolt interface in Storm [12]. If SR3 is enabled, SR3
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Table 2. SR3 APIs.

List<>StateSplit(Sting state, Integer numberofShards, Integer
numberofReplicas)
This function is invoked to partition the state into shards and create repli-

cas. The inputs are the original state, number of shards, and number of

replicas for each shard. The output is a list of replicas that contain various

parts of the original state.

Boolean[] Save(List<>shard, DHTNetwork overlay)
This function is invoked to save shard into the overlay. It creates many

concurrent threads to save the replicas of shards.

Boolean StarDefine(String appName, Integer starFanout)
This function defines the star-structure recovery. Users can define the star

fan-out.

Boolean LineDefine(String appName, Integer lengthofPath)
This function defines the line-structured recovery. Users can define the

length of recovery path.

Boolean TreeDefine(String appName, Integer fanout, Integer
branchDepth)
This function defines the tree-structured recovery. Users can define the

tree fan-out and the branch depth.

Integer Selection(String appName, String requirement, Long state-
Size, Long networkBW)
This function is invoked to select a specific mechanism for recovering state.

The inputs are the application’s name, runtime QoS requirements, the size

of state, and the available bandwidth. The output indicates which mecha-

nism is selected.

List<Shards>Recover(String stateName, DHTNetwork overlay,
Mechanism structure)
This function is invoked when a state recovery request is issued.

Table 3. Real-world application’s dataset.

Application Dataset Size

Bargain Index Google Finance [55] >1TB

Word Count Wikimedia Dumps [56] 9GB

Traffic Monitoring Dublin Bus Traces [57] 4GB

periodically saves state into the DHT-based ring overlay for

all stateful operators (bolts). The recovery mechanisms and

aggregated state size are configurable in order to satisfy dif-

ferent real-world stream applications’ requirements; (2) we

implemented the star-structured mechanism and the line-

structured recovery mechanism on top of Pastry’s overlay,

and implemented the tree-structured mechanism on top of

Scribe’s topic-based publish/subscribe trees. We added sev-

eral new data structures: a list of operations for managing

shards (i.e., replicate, merge, and save), a list for tracking
the locations of each shard and routing shards, and a list for

recording the dependency path between nodes; and (3) we

implemented state version control by adding timestamps and

sequence numbers to the messages, thereby avoiding state

inconsistency during the state saving and recovery process.

The SR3 prototype will be publicly available at GitHub.

It adds 1800 lines of Java across 17 files. We provide high-

level interfaces exposed to users for configuring parameters.

Table 2 shows the details of SR3 APIs.

5 Evaluation
We evaluate SR3 on emulation testbed in a distributed net-

work environment. We explore its performance for a variety

of real-world stream processing applications. Our evaluation

answers the following questions:

• Does SR3 improve the state save and recovery perfor-

mance when deploying different stream applications

with various sizes of states?

• Does SR3 support flexible state recovery in handling

various sizes of states with different network environ-

ments?

• Does SR3 scale with the number of concurrently run-

ning stream applications?

• What is the runtime overhead of SR3?

5.1 Setup
Evaluation deployment. Emulation experiments are con-

ducted on a testbed of 50 virtual machines (VMs) running

Linux 3.10.0, all connected via Gigabit Ethernet. Each vir-

tual machine has 4 cores and 8GB of RAM, and 60GB disk.

Specifically, to evaluate SR3’s scalability, we use one JVM

to emulate an SR3 node and emulate up to totally 5,000 SR3

nodes in our testbed. Linux VMs are equipped with LANs

with high bandwidth diversity set by traffic control.

Baseline. We used Apache Storm [12] as the stream pro-

cessing engine baseline. We use Apache Storm 2.0.0 [50]

configured with 10 TaskManagers, each with 4 slots (maxi-

mum parallelism per operator = 36). We use Pastry 2.1 [51]

with leaf set size of 24 and transport buffer size of 32MB.

Benchmark and applications. To demonstrate general-

ity across diverse computations and streaming operators, we

evaluate SR3 in state recovery with the real-world stream

applications (see Table 3). These stream applications contain

various streaming operators: stateless streaming transforma-

tions (e.g., map, filter), stateful operators (e.g., incremental
join), and various window operators (e.g., sliding window,

tumbling window and session window). We deploy these

benchmarks to generate real-world application in Apache

Storm to generate different sizes of state and various topolo-

gies.

We compare SR3 with a state-of-the-art failure recovery

solution: the checkpointing recovery approach commonly

used in TimeStream [17], Storm [12], and Trident [13]. We

choose the checkpointing recovery approach as the base-

line approach because of two reasons: (1) the replication

recovery already costs 2× hardware, and (2) the DStream-

based lineage recovery approach is not generalized for users.

Because DStream-based lineage recovery sacrifices program-

ming model transparency by forcing programmers to man-

age state using RDDs [31].

Metrics. We focus on the performance metrics such as

latency of state save and recovery. The latency measurement

is separated by the state save and recovery. The latency is
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Figure 8. Performance evaluation of SR3 in terms of the time of state save and recovery in checkpointing, star-structured

recovery, line-structured recovery, and tree-structured recovery.
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Figure 9. Performance evaluation of SR3 in terms of the state recovery time in star-, line-, and tree-structured recovery.

evaluated by deploying different size of state shards and

various size of states of stream application. To evaluate the

scalability of SR3, we measure how much state shards are

distributed in each node with deploying different stream

applications. To the runtime overhead of SR3, we focus on

the CPU and memory utilizations during the state recovery.

5.2 SR3 vs Checkpointing Recovery
We compare the state recovery time of SR3 with Storm by

varying the size of state with no bandwidth constraint. As Fig-

ure 8a shows, SR3 generally achieves 35.5% ∼ 65% less state

recovery time compared to Storm. More specifically, when a

state is relatively small (<32MB), the star-structured recovery

mechanism achieves the fastest recovery. Line-structured

recovery and tree-structured recovery take a little longer

due to the introduction of redundant calculations in their

state recovery paths. When the state grows larger than a

threshold (e.g., 64MB), line-structured recovery leads to the

longest recovery time due to the longest lineage path. On the

contrary, since tree-structured recovery has many paths for

recovering at the same time in parallel, the time is reduced.

Figure 8b shows the state recovery time comparison of

SR3 with Storm under bandwidth constraint. Note that the

upload bandwidth is limited to 100Mb/s per server. Results

show that SR3 generally achieves 29.8% ∼ 42.5% less state re-

covery time compared to Storm. More specifically, when the

state is relatively large (> 64MB), due to the constraint of the

upload bandwidth, the star-structured recovery has a cen-

tralized bottleneck because all traffic flows to a single node,

which leads to the slowest state recovery. On the contrary,

the line-structured recovery and tree-structured recovery

avoid this bottleneck, and thus are much faster. However,

when the state becomes extremely large, the tree-structured

recovery performs the best because it has many paths to re-

cover state at the same time in parallel. This gives us insight

that we should decide which mechanism to use based on the

application characteristics, the network environment, and

the size of state.
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(b) The state recovery time with failures

in the SR3 line-structured recovery.
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Figure 10. State recovery time with different number of failures.
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Figure 11. Performance evaluation of SR3 in terms of load balance and scalability.

Figure 8c shows the state saving time comparison of SR3

with Storm. The state saving cost includes the time cost for

dividing the state into shards, replicating each state, and then

writing the shards into leaf set nodes. We write them into

the leaf set nodes serially to enable a fair comparison with

the checkpointing recovery. We can see that for a small state

(<64MB), it takes more time for SR3 to save the state, while

for large state (>64MB), it takes less time for SR3 to save

the state. This is because, for small state, the overhead of

partitioning and replication is not negligible compared to the

total time. However, in the case of large state, many nodes

in the leaf set take part in the partitioning and replication

that balance the workload.

Figure 9a shows the state recovery time by varying star

fan-out bit in SR3 star-structured recovery. Results show

that the state recovery time does not change much as the

star fan-out changes. This is because the depth of the star

structure always equals to one and thus the latency is only

related to the state size and the transmission speed. However,

in extreme cases, e.g., very large state size, increasing fan-

out will share the pressure on bandwidth and significantly

reduce latency.

Figure 9b shows the state recovery time by varying the

path length in the SR3 line-structured recovery. Results show

that the state recovery time increases as the path length

increases. This is because the longer the path, themore stages

of the computation required, and the higher the latency.

However, when the state is too large to be finished within

one or two stages, we need a longer path that has many

stages to distribute the computation.

Figure 9c shows the state recovery time by varying the

branch length in SR3 tree-structured recovery. Similar to

Figure 9b, given the same state size, the state recovery time

increases as the branch length increases. This is because

the longer the branch, the more stages of the computation

required, and the higher the latency.

Figure 9d shows the state recovery time by varying the

tree fan-out in SR3 tree-structured recovery. Note that the

tree fan-out n determines the fan-out of each node with

2
𝑛
. Given the same state size, when the tree has larger fan-

out bit, the depth of the tree will be less and the recovery

involves fewer layers, which introduces lower latency for

recovering the original state. In addition, larger fan-out trees

can tolerate more concurrent node failures or shard loss.
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Figure 12. The CPU, memory, and network overhead of SR3.

Therefore, we should choose different tree structures for

different applications based on their latency requirements

and fault tolerance requirements.

Failure tolerance is evaluated with methods that use hu-

man intervention. Multiple simultaneous failures can be eas-

ily affected by the location of devices (i.e., in different geo-

distributed datacenters) and the type of cloud services [7].

To cause simultaneous failures, we deliberately remove some

shards of application’s state in some nodes to evaluate how

fast SR3 can recover the state. Figure 10a, 10b, and 10c show

the average recovery time for different number of simultane-

ous failures in the star-, line-, and tree-structured recovery

with 64MB state, where the replication factors are 2 and 3. In

these figures, their two curves show that the recovery time

slightly increase with increasing number of shards failures.

This is because, when a shard fails, they can quickly retrieve

the relevant shards from other nodes which store replicas

and rebuild the failed shard. Note that the recovery time with

large replication factor (i.e., 3) is lightly less than the small

replication factor (i.e., 2). This is because, when one shard

fails, a larger replication factor can facilitate retrieval of re-

lated shards from other nodes that store the replicated shard.

In this way, a larger replication factor can reduce the re-

trieval time of failed shards. Moreover, in the tree-structured

mechanism, when a shard fails, it can quickly retrieve the

relevant shards from its leaf set and rebuild the failed shard,

and the tree architecture can evenly distribute the recovery

overhead for recovering multiple simultaneous failures.

5.3 Load Balance
SR3 has attractive load balance property because it distributes

state across all nodes in the overlay, which is especially ben-

eficial when deploying a large number of concurrent applica-

tions. We use benchmarks in Table 3 to generate real-world

application’s state and topology. We evaluate SR3’s load bal-

ance by deploying 500 stream processing applications and

1,000 stream processing applications on 5,000 Pastry nodes,

respectively.We use amix of benchmark applications’ topolo-

gies (in Table 3) to replicate 500 to 1000 concurrently running

applications. The replication factor is set to be two. The state

for each application is 32 MB, and the size for each shard

is 512KB. As shown in Figure 11a, each node has around 25

shards (red dash line) when deploying 500 applications. As

shown in Figure 11b, each node has around 40 shards (red

dash line) when deploying 1,000 applications. This is because

the P2P model of SR3’s star- line-, and tree-structured recov-

ery ensures that all peers can participate in the state saving

process and the state recovery process.

Figure 11c shows the normal probability of the number of

shards stored per node. Results show that when deploying

500 applications, around 95% nodes store less than 50 shards

(25MB), and around 95% nodes store less than 100 shards

(50MB) when deploying 1,000 applications. This demon-

strates that the large volume of states from concurrently

running applications are almost evenly distributed in the

overlay with no centralized bottleneck. This demonstrates

that SR3 achieves good load balance when recovering state

for large numbers of concurrently running applications.

5.4 Overhead Analysis
We evaluate SR3 runtime overhead and compare them with

Storm’s checkpointing approach.

CPU overhead. Figure 12a shows the per-node CPU run-

time overhead comparison of SR3’s three state recovery

mechanisms with Storm’s checkpointing approach. The CPU

overhead of SR3 is around 26.8% ∼ 44.3% less than the check-

pointing recovery. This is because SR3 evenly distributes the

recovery load across many peer nodes which reduces the

per-node overhead, while the checkpointing recovery only

relies on one or several centralized nodes for recovery.

Memory overhead. Figure 12b shows the per-node mem-

ory runtime overhead comparison of SR3’s three state recov-

ery mechanisms with Storm’s checkpointing approach. The

memory overhead of SR3 is around 30.9% ∼ 35.6% less than

the checkpointing recovery. This is because checkpointing

recovery involves a coordination service such as Zookeeper

that needs to continuously maintain connections with all

other nodes while SR3 avoids it.
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Network overhead. Figure 12c shows the additional net-
work traffic imposed by SR3 with varying the number of

nodes without managing any state (showing purely the main-

tenance overhead). Results show that the number of bytes

sent per node increase only linearly, with an exponential

increase in the number of nodes. This is because most net-

work traffics are ping-pong messages used for maintaining

the overlay and routing (e.g., initialization and keep alive).

So in most cases, each node pings to a limited set of nodes

in the leaf set.

6 Conclusion
In this paper we have described and evaluated SR3, a state

recovery framework that provides fast and scalable failure

recovery mechanisms for protecting large distributed states

in stream processing systems. Unlike existing failure recov-

ery approaches in modern stream processing systems, which

rely on the central master to perform replication recovery,

checkpointing recovery, or DStream-based lineage recovery,

SR3 introduces a distributed state recovery framework by

leveraging DHT-based consistent ring overlay and routings.

SR3 provides three different mechanisms to cater the needs

for different stream applications that have diverse computa-

tion models and sizes of state.

An interesting question for future work is how to recov-

ery from stragglers. Stragglers are slow nodes. Stragglers

are inevitable in large clusters. The root causes for strag-

glers can be disk failures, CPU contention, memory pressure,

network congestion, or other internal factors such as un-

fair input partitioning. Left unchecked, stragglers will cause

serious problems such as state inconsistency. We plan to

explore speculation approach to address this challenge, in

which speculative backup copies of slow tasks could be run

in DHT’s leaf set nodes.

We will release SR3 as open source, together with all code

and data used to produce the results in this paper.
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