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Abstract—Streaming computations are by nature long-
running. They run in highly dynamic distributed environments
where many stream operators may leave or fail at the same
time. Most of them are stateful, in which stream operators need
to store and maintain large-sized state in memory, resulting in
expensive time and space costs to recover them. The state-of-
the-art stream processing systems offer failure recovery mainly
through three approaches: replication recovery, checkpointing
recovery, and DStream-based lineage recovery, which are either
slow, resource-expensive or fail to handle many simultaneous
failures.

We present FP4S, a novel fragment-based parallel state recov-
ery mechanism that can handle many simultaneous failures for a
large number of concurrently running stream applications. The
novelty of FP4S is that we organize all the application’s operators
into a distributed hash table (DHT) based consistent ring to
associate each operator with a unique set of neighbors. Then we
divide each operator’s in-memory state into many fragments and
periodically save them in each node’s neighbors, ensuring that
different sets of available fragments can reconstruct lost state in
parallel. This approach makes this failure recovery mechanism
extremely scalable, and allows it to tolerate many simultaneous
operator failures. We apply FP4S on Apache Storm and evaluate
it using large-scale real-world experiments, which demonstrate
its scalability, efficiency, and fast failure recovery features. When
compared to the state-of-the-art solutions (Apache Storm), FP4S
reduces 37.8% latency of state recovery and saves more than half
of the hardware costs. It can scale to many simultaneous failures
and successfully recover the states when up to 66.6% of states
fail or get lost.

I. INTRODUCTION

Stream processing technology has become a critical building

block of many real-time applications, such as making business

decisions from marketing streams, identifying spam campaigns

from social network streams, predicting tornados and storms

from radar streams, and analyzing genomes in different labs

and countries to track the sources of a potential epidemic.

Over the last decade, a boom of stream processing systems

has been developed including Storm [8], Trident [10], Spark

Streaming [20], Borealis [23], TimeStream [48], S4 [44], etc.

A driving need is that today many stream applications need

to store and update the large-sized application state along with

their processing, and process live data streams in a timely

fashion from massive and distributed data sets. This poses

a significant challenge to the failure recovery mechanism of
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Figure 1: Contrast of stateless stream processing and stateful

stream processing.

state-of-the-art stream processing systems. This is because (1)

stream operators are by nature long-running in which failures

and stragglers are inevitable and very difficult to predict; (2)

a large number of stream applications may run concurrently

on the same platform, and many distributed operators may

fail simultaneously; and (3) large distributed states must be

restored efficiently after node failures.

A stream is an unbounded sequence of tuples (e.g., online

social network’s microblog streams) generated continuously in

time. A stream processing system creates a logical topology

of stream processing operators, connected in a directed acyclic

graph (DAG), processes the tuples of a stream as they flow

through the DAG, and outputs the results in a short time.

DAGs can be implemented via many patterns, such as the par-

tition/aggregate pattern which scales out by partitioning tasks

into many sub-tasks (e.g., Dryad [36]), sequential/dependent

pattern in which streams are processed sequentially and sub-

sequent streams depend on the results of previous ones (e.g.,

Storm [8]), and hybrid pattern with sequential/dependent and

partition/aggregate (e.g., Spark Streaming [20], Naiad [42]).

Figure 1 shows the contrast of stateless stream processing vs

stateful stream processing. Input records are shown as black

bars. A stateless operator transforms each input record one at

a time and outputs each result based solely on that last record

(white bar). A stateful operator maintains the value of state

for some of the records processed so far (in local memory or

remote storage) and updates it with each new input, such that

the output (the bar with the pattern) reflects results that take

into account both historical records and the new input. State

recovery is the process of recovering application states when

one or many operators fail or lose their states.

Application developers are facing significant challenges in

handling many simultaneous failures for a large number of
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concurrently running stream applications.

The first challenge is “how to scale recovery with the size of
the state, the number of simultaneous failures and the number
of concurrently running stream applications on a shared
platform?” Existing studies [2, 5, 6, 8, 10, 20, 26, 39, 40, 44]

mostly inherit MapReduce’s “single master/many workers”

architecture, where the central master is responsible for all

scheduling activities. As such, they are limited to a fixed

computation model, e.g., asynchronous stream processing like

Storm [8], synchronous mini-batch processing like Spark[7],

etc. Note that the recovery operation is a critical consumer of

time and space. It must quickly recover all failure operators’

lost states on failover nodes (if any) without blocking the

normal processing of stream applications. As a result, it is

difficult (or even impossible) for the centralized master to man-

age state recovery of a large number of concurrently running

applications due to the inherent centralized bottlenecks.

The second challenge is “how can we handle many simulta-
neous failures while achieving fast recovery and imposing low
hardware cost?” State-of-the-art stream processing systems

offer failure recovery mainly through three approaches: repli-

cation recovery [28, 52], checkpointing recovery [8, 10, 48]

and DStream-based lineage recovery [1, 29, 53, 58], which

are either slow, resource-expensive or fail to handle many

simultaneous failures. Replication recovery adds significant

hardware cost because multiple copies must concurrently

run on distinct nodes for failover. Checkpointing recovery

is known to be prohibitively expensive, and users in many

domains disable it as a result [27, 34, 42, 46, 47]. DStream-

based lineage recovery is slow when the lineage graph is long

and falls short in handling multiple simultaneously failures.

We present FP4S, a novel fragment-based parallel state

recovery mechanism to address the challenges listed above:

to efficiently handle many simultaneous failures for a large

number of concurrently running stream applications in a fast,

scalable, and lightweight manner.

FP4S operates as follows: (1) we first organize all the appli-

cation’s operators into a distributed hash table (DHT) based

consistent ring [51] to provide each operator with a unique

set of neighbors; (2) afterward, we divide each operator’s in-

memory state into many fragments using erasure codes [49].

Erasure codes operate by converting a data object into a larger

set of code blocks such that any sufficiently large subset of the

generated code blocks can be used to reconstruct the original

data object; and (3) finally, we periodically checkpoint each

node’s state in its neighbors, ensuring that different sets of

available fragments can be used to reconstruct failed state in

parallel. By doing that, this failure recovery mechanism is

extremely scalable to the size of the lost state, significantly

reduces the failure recovery time and can tolerate many

simultaneous operator failures.

We apply FP4S on Apache Storm and evaluate it using

large-scale experiments with real-world datasets. Experimental

results demonstrate the scalability, efficiency, and fast failure

recovery of FP4S. When compared to the state-of-the-art

solutions (Apache Storm [8]), FP4S reduces in 37.8% the

state recovery latency and reduces more than half of the

hardware costs. It can scale to many simultaneous failures

and successfully recover the states when up to 66.6% of

states fail or get lost.

Contributions. We make the following technical contribu-

tions:

• We propose a decentralized architecture using a DHT-

based consistent ring and erasure codes to recover the dis-

tributed states for numerous concurrently running stream

applications. To the best of our knowledge, FP4S is the

first work to use a fully decentralized architecture for state

recovery (Sec. III).

• We implement the FP4S prototype on the state-of-the-

art stream processing system Storm and demonstrate

its portability to many other stream processing sys-

tems. The source code of FP4S is publicly available at

https://github.com/fiu-elves/FP4S. (Sec. III).

• We make a comprehensive evaluation of the scalability,

fast recovery and robustness of FP4S on a large cluster

using real-world stream application’s datasets (Sec. IV).

Roadmap. The remainder of this paper is organized as

follows. Section II discusses the related work. Section III

describes the FP4S design and implementation. Sections IV

shows the experimental setup and performance evaluation. We

conclude with some directions for future work in Section V.

II. RELATED WORK

Designing a state recovery mechanism for stateful stream

processing systems is non-trivial, and existing failure recovery

techniques for stream processing do not achieve the necessary

scalability and efficiency. We first summarize existing stateful

stream processing systems and then examine why their failure

recovery techniques are either slow, resource-expensive or fail

to handle multiple failures. Then we propose our solution.

A. Stateful Stream Processing Systems

Many industrial stream processing systems either do not

support state (Heron [39], S4 [44], early version of Storm [8]),

or rely on in-memory data structures such as hash tables and

hash table variants to store state. For example, Muppet [40]

and Trident [10] (an extension of Storm) store state via hash

tables. Spark Streaming [20] enables state computation via

RDDs [57] which are inherent hashmaps. Some other systems

such as Millwheel [25], and Dataflow [26] choose to separate

state from the application logic and have state centralized in

a remote storage [24, 27, 30] (e.g., a database management

system, HDFS or GFS) shared among applications, along

with periodically checkpointing state for fault tolerance. A

few other systems such as Kafka [5], Samza [6, 45], Spark

Streaming [20], and Flink [1, 29] use a combination of “soft

state” stored in in-memory data structures along with “hard

state” persisted in on-disk data store (e.g., RocksDB [18],

LevelDB [14]).

Scaling to large distributed states and recovering from

failures in such systems is quite expensive, because when a
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single node fails, the distributed states for all dependent nodes

must be reset to the last checkpoint, and computation must

resume from that point, costing a lot of extra time and space

to accomplish recovery. Moreover, these systems rely on a

single master for handling failures and stragglers, exhibiting

significant overhead from centralization bottlenecks.

B. Failure Recovery in Stream Processing Systems

Existing stream processing systems offer failure recovery

mainly through the use of three approaches: replication re-

covery, checkpointing recovery, and DStream-based lineage

recovery.

Replication recovery. In the process of replication recovery,

as shown in Figure 2, there is a completely separate set of hot

failover nodes, which processes the same stream in parallel

with the primary set of nodes. The input records are sent to

both. When there is a failure or multiple failures in the primary

nodes, the system automatically switches over to the secondary

set of nodes and the system can continue processing with

very little or no disruption. The replication recovery has been

widely used in systems such as Flux [52] and Borealis [28].

The failover is fast, and it can handle multiple concurrent

failures. However, the replication recovery costs twice the

hardware.

Checkpointing recovery. In the process of checkpointing

recovery, as shown in Figure 3, each of the nodes in the

pipeline has a buffer in memory, which retains a backup of

the records that it has forwarded to the downstream nodes

since the last checkpoint. All nodes periodically checkpoint

their states to a remote storage such as HDFS or GFS.

A standby set of nodes is maintained in the system. The

checkpointing recovery has been widely used in systems such

as TimeStream [48], Trident [10], Drizzle [56] and Multi-

level Checkpointing from LLNL [41]. Drizzle [56] introduced

group scheduling and pre-scheduling to avoid the centralized

scheduling bottleneck. However, it used batch processing

model and focus on scheduling tasks for one application while

FP4S uses a record-at-a-time processing model and focus on

many concurrently running jobs.

DStream-based lineage recovery. To achieve both fast

recovery and small hardware overhead, the DStream-based

lineage recovery was proposed, as shown in Figure 4, which

is used in systems such as Apache Spark based systems [1,

29, 53, 58]. The most recent state is stored in each node’s

memory using a data structure called Resilient Distributed

Dataset (RDD) [57], together with the lineage graph, that

is, the graph of deterministic operators used to build RDDs.

The entire recovery processing is linear, that is, the lost tasks

need to be executed or computed strictly in line with the

original lineage graph on other nodes. As such, the recovery

process may be slow when the lineage graph is long and

incur multiple data uploads through the network, consuming

a critical resource in geo-distributed network settings.

To our best knowledge, the very few research projects that

are broadly relevant to state management solutions are [4,

15, 35, 55], which either point out the criticality of making

state explicit [35, 55] or develop mechanisms for reprocessing

state [4, 15], but propose no effective solutions for fast state

recovery for concurrently running stream applications.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe the basic workflow of FP4S,

introduce each component, show how stream applications’

distributed states are recovered by the FP4S-enabled stream

processing system, and explain the performance, scalability

and flexibility benefits of using FP4S.

A. Overview

The FP4S aims to achieve the following goals:

• Resource efficient. Avoid the replication hardware over-

head.

• Fast recovery. Avoid the slow recovery of retrieving state

from disk and replaying the data input that hurts the

service quality of stream applications.

• Resilient to multiple failures. The mechanism needs to

handle multiple simultaneous failures due to the much

higher node dynamics in large clusters.

As show in Figure 5, the FP4S system consists of three

layers: The DHT-based consistent ring overlay, the fragmented
parallel state recovery mechanism, and the high-level FP4S
interfaces that are exposed to the stream processing systems

(e.g., Storm [8], Spark Streaming [20], Heron [39]) for imple-

menting the state recovery for stream applications.

• Layer 1: DHT-based ring overlay. Each data center

server is installed with one or many in-situ stream op-

erators, also called “nodes” in this study. We organize
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Figure 5: FP4S system design.

these potentially hundreds of thousands of nodes into a

distributed hash table (DHT) based ring overlay (e.g.,

Pastry [51], Chord [54]) which is commonly used in

Bitcoin [43], BitTorrent [32], and FAROO [12]. This

overlay is self-organizing and self-repairing. To do that,

each node needs to maintain two data structures: a routing

table and a leaf set, in which the routing table is used for

looking for the state (within log(N) hops) and the leaf

set nodes are used for recovering the application state if

one or more nodes fail.

• Layer 2: fragmented parallel state recovery. Periodi-

cally, the state in each node’s memory is divided into m
identically-sized blocks, which are encoded into n blocks,

where n > m. The n blocks of the state are replicated to n
nodes from the original node’s leaf set nodes in parallel,

guaranteeing that the original state can be reconstructed

from any m blocks.

• Layer 3: high-level interfaces to stream processing
systems. The high-level FP4S programming API (Ta-

ble I) is exposed to the state-of-the-art stream processing

systems and programmers for implementing the parallel

state recovery policies for concurrently running stream

applications, e.g., Storm [8], Spark [20], and Flink [1].

B. DHT-based Ring Overlay

FP4S leverages DHT-based consistent overlay [51, 54] to

support parallel recovery of distributed states for a large num-

ber of concurrently running stream applications. In this DHT-

based consistent ring overlay (e.g., Pastry [51], Chord [54]),

each node is equal to the other nodes, and they have the

same rights and duties. The primary purpose of this model

is to enable all nodes to work collaboratively to deliver a

specific service. For example, in BitTorrent [32], if someone

downloads some file, the file is downloaded to her computer

in parts that come from many other computers in the system

that already have that file. At the same time, the file is also

sent (uploaded) from her computer to others that ask for it.

Similar to BitTorrent in which many machines work col-

laboratively to undertake the task of downloading files and

uploading files, we enable distributed stream operators to work

collaboratively to undertake the original centralized master’s

failure recovery task. First, each stream operator maintains

an in-memory buffer to store the application state. Instead of

storing states at a remote storage, these distributed stream op-

erators store the states for each other. Second, these distributed

stream operators (nodes) are self-organized into a DHT-based

overlay. Each node is randomly assigned a unique NodeId in

a large circular NodeId space. NodeIds are used to identify

the nodes and route stream data. It is guaranteed that any data

can be routed to a node whose NodeId is numerically closest

to the destination node within O(logN) hops. To do that, each

node maintains two data structures: a routing table and a leaf

set.

1) Routing table: The routing table consists of physical

node characteristics (NodeId, IP) organized in rows by the

length of common prefix. When routing a message, each node
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Figure 6: The routing process is cooperatively fulfilled by the

routing table and the leaf set.

forwards it to the node in the routing table with the longest

prefix in common with the destination NodeId. Figure 6

shows this routing process of Pastry’s DHT [51]. At each

routing step, given a key, Pastry routes messages to the node

whose NodeId is numerically closest to the key. The node

first checks if the key falls in the range of the NodeIds’ leaf

set. If so, the message is directly forwarded to that node. If

not, the message is forwarded to another node in the routing

table whose NodeId shares a common prefix with the key

by at least one more digit (see Figure 6 first, second, and

third hops). In some cases, there is no appropriate entry in the

routing table or the associated node is not reachable. Then the

message is forwarded to a node whose prefix is the same as

the local node, but numerically closer.

2) Leaf set: The leaf set contains a fixed number of

nodes whose NodeIds are numerically closest to each node,

which assists in rebuilding routing tables and reconstructing

application’s state when any operator fails (see Sec. III-C, next,

for more details).

C. Fragmented Parallel State Recovery

The parallel recovery mechanism of FP4S leverages the key

idea from erasure codes. Erasure codes operate by converting

a data object into a larger set of code blocks such that any

sufficiently large subset of the generated code blocks can

be used to reconstruct the original data object. For example,

(32, 16)-Reed-Solomon (RS) code [49] divides a data object

into 16 blocks and transforms these blocks into 32 coded

blocks, guaranteeing that any 16 out of the 32 coded blocks

are sufficient to reconstruct the original data object. Erasure

codes have been widely used in massive storage systems (e.g.,

OceanStore [38]), Bar codes (e.g., QR Code [37]), data trans-

mission technologies (e.g., DSL [33]) and space transmission

technologies (e.g., Galileo Probe). Figure 7 shows the steps of

the erasure-code-based parallel recovery algorithm.

Built upon Sec. III-B’s DHT-based ring overlay, each node

maintains a routing table and a leaf set. Periodically, the state

in each node’s memory is encoded into n identically-sized

fragments, which include m raw data fragments and k parity

fragments, where k >= 1,n = m+ k. Then these n fragments

......
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Figure 7: The fragment-based parallel state recovery process.

of the state are replicated to n nodes in the original node’s

leaf set in parallel. The error correction mechanism of the

erasure codes guarantees that any m out of the n fragments

are sufficient to correctly recompute, even though when some

fragments are not available in the leaf set (denoted as e), to

reconstruct the original state. Thus, as long as n–e >= m, the

original state is safe to be accurately recomputed from the

node’s leaf set nodes.

• Step 1: encode state. For each node, FP4S converts its

current version of state in a sliding window into n frag-

ments (configurable parameter) according to RSCodes

algorithm [49]. These n fragments include m raw data

fragments and k parity fragments. The amount of m and

k are configurable.

• Step 2: save state. Each node sends these n fragments

to any n of its leaf set nodes. We ensure that the size

of the leaf set is larger than n. We assign the NodeIds
to reflect the physical proximity in order to ensure that

the leaf set nodes are also geographical closest nodes that

have abundant bandwidth.

• Step 3: retrieve state. Once any failure happens, the

retrieve routine is triggered. A request to obtain the lost

state’s fragments will be sent out. To recompute the lost

state, FP4S only requires m amount of n total fragments.

These fragments are stored at the leaf set nodes that are

quite easy to access.

• Step 4: recompute state. Finally, the state recompute

routine is triggered, which reconstructs the lost state using

erasure codes [49]. After that, the recovered state will be

used as input for the downstream operators and we can

resume the normal stream processing.

The benefits are the following: (1) it allows for tolerating

a maximum of (n−m) simultaneous failures; (2) the recovery

process is fast. For multiple failures, different nodes from non-

overlapping leaf set nodes can work in parallel to recompute

the lost state, which is faster than DStream’s line-structured

recovery that executes strictly in line with the original lineage

graph; and (3) we achieve data locality because the leaf set

contains nodes that are geographically close to the original

nodes (e.g., in the same rack or in the same site) that have
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abundant upload bandwidth.

D. FP4S API

FP4S is platform-agnostic and can be easily integrated

with stream processing platforms such as Storm [8], Spark

Streaming [20], Flink [1], Timely Dataflow [48], Heron [39],

etc. In our design, using FP4S is essentially a configuration

option. Depending on the usage scenario (e.g., stateful or

stateless, latency requirement, reliability requirement), users

can choose to configure whether and when they want FP4S

support. Table I shows the FP4S API.

Table I: FP4S API

List <Fragment>Encode(int rawDataNumber, int pari-
tyNumber, State inputState)

The function is invoked to encode a state into many frag-
ments. The fragment number is decided by the inputs of
rawDataNumber and parityNumber. The output is a list
of encoded fragments with the length of rawDataNumber +
parityNumber.

Boolean[] Save(List<>fragment, DHTNetwork dhtNet-
work, int numberOfThreads)

The function is invoked to save state into the DHT’s overlay. It
generates multiple threads to concurrently save the fragments.
The inputs are the fragments, the DHT overlay information
and the number of threads. The output is a Boolean array that
indicates the status of each fragment.

List<Fragment>Retrieve(String stateName, DHTNet-
work dhtNetwork, int numberOfThreads)

The function is invoked when a state recovery request is issued.

String Recompute(List<>fragments)

The function is invoked to recover the state. It loops through
all the retrieved fragments. If the number of fragments is equal
or larger than the number of raw fragments, the function will
perform further computation to recompute the retrieved fragments
into the original state.

E. Instrumentation requirements

Here we describe the instrumentation requirements FP4S

imposes and discuss the issues we encountered when integrat-

ing it with the Apache Storm processing engine.

In Apache Storm [8], stream processing applications are

deployed and executed as topologies. The topologies contain

the business logics. These logics are formed as a DAG

(directed acyclic graph) and implemented by spouts and bolts.

Spouts are the data sources of the stream, which accept input

data from raw data sources like Twitter Streaming API [21],

Apache Kafka queue [5], etc. Bolts are the logical processing

units. Spouts pass data to bolts and bolts process and produce

a new output stream. IRichBolt is the common interface

for implementing bolts.

FP4S interacts with the IRichBolt interface in Storm [8].

If FP4S is enabled, FP4S periodically saves the states into the

DHT-based ring overlay for all stateful operators (bolts). For

record-at-a-time systems like Storm, saving every operator’s

state may incur a lot of overhead. Instead, we aggregate the

Table II: Real-world application’s dataset.

Application Dataset Size

Trending Topics Twitter Streaming API [21] >1TB

Bargain Index Google Finance [13] >1TB

Word Count
Project Gutenberg [17] 8GB

Wikimedia Dumps [22] 9GB

Traffic Monitoring Dublin Bus Traces [11] 4GB

states for all the operators except for sources (spouts) and

sinks. The aggregated state size is configurable in order to

satisfy different real-world stream applications’ requirements.

After the size reaches a certain threshold, the Encode func-

tion encodes the states into fragments and the Save function

puts these fragments into the DHT-based overlay. If any node

fails, the leaf set nodes call the routines to Retrieve and

Recompute states on failover nodes. Any qualified available

subset of fragments will be sufficient to recover the lost states

by the Recompute function.

IV. EVALUATION

We integrate FP4S with Apache Storm and evaluate it using

large scale real-world experiments, demonstrating its scalabil-

ity, efficiency, and fast failure recovery. Experimental evalua-

tions answer the following questions:

• How does the FP4S-enabled Storm system scale with

the size of state, the number of concurrently running

applications and the number of simultaneously failed

operators?

• How does the efficiency of the fragment-based parallel

state recovery algorithm change with different parame-

ters, e.g., the number of the raw fragments (m) and the

number of the coded fragments (n), and how does FP4S

balance the workload?

• What are the performance and functionality benefits of

FP4S compared to the state-of-the-art solutions?

• What is the overhead and the instrumentation used by

FP4S?

A. Setup

We run all FP4S experiments on up to 4 machines, each

with 16 Intel Xeon Gold 6130@2.10GHz cores and 256GB of

RAM, running GNU/Linux 3.10.0. On top of these machines,

we boot up 50 virtual machines to host 650 stream operators

in total, each with 4 cores and 8GB of memory, running Linux

Ubuntu 4.4.0. We use Apache Storm 2.0.0 [9] configured with

10 TaskManagers, each with 4 slots (maximum parallelism per

operator = 36). We use Pastry 2.1 [16] configured with leafset

size of 24, max open sockets of 5000 and transport buffer size

of 6MB.

To demonstrate generality across diverse computations and

streaming operators. We deploy Yahoo streaming bench-

marks [31] and real-world stream applications to FP4S (see

Table II).
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Figure 8: Performance comparison FP4S performance vs checkpointing strategy for different input states size and applications

number.

These stream applications contain various representative

streaming operators: stateless streaming transformations (e.g.,

map, filter), stateful operators (e.g., incremental
join), and various window operators (e.g., sliding win-

dow, tumbling window and session window). We com-

pare FP4S with a state-of-the-art failure recovery solution:

the checkpointing recovery approach commonly used in

TimeStream [48], Storm [8], and Trident [10]. We were not

able to compare with Drizzle [56] because its source code is

not publicly available. We choose the checkpointing recovery

approach as the baseline approach because the replication

recovery already costs twice the hardware and the DStream-

based lineage recovery approach is not generalized because

it sacrifices programming model transparency by forcing

programmers to declare and maintain state using Spark’s

RDDs [57].

The base value of raw fragments (m) and the coded

fragments (n) are derived from production systems such as

Pond [50] and Sia [19], which set m = 16, n = 16 and m = 10,

n = 20 respectively. To fully evaluate the FP4S performance,

we vary the values of m, n and the input state size.

B. FP4S vs Checkpointing Recovery

We compare the failure recovery time of FP4S with the

checkpointing recovery by varying the size of the state and

the number of concurrently running stream applications.

The FP4S fragmented parallel recovery process consists of

two steps: saving the state to leaf set nodes in the DHT-based

overlay, and recomputing the state if any failure happens.

Similarly, the checkpointing recovery process also consists

of two steps: checkpointing the state to the HBase [4] or

HDFS [3], and retrieving the state from HBase or HDFS if

failure happens. Note that, for both approaches, the first step

can run asynchronously with the second step so the first step

may not impact the failure recovery time if they are executed

in a pipeline.

Failure recovery time. Figure 8a shows the failure recovery

time comparison of FP4S vs Storm’s checkpointing recovery.

In this experiment, we focus on a single stream application

that has only one operator failure and we vary the state

size. As Figure 8a shows, FP4S achieves 40.3% to 87.1%

less failure recovery time compared to Storm’s checkpointing

recovery. The improvement gap increases as the size of the

state increases. The rationale behind the result lies in that FP4S

fragmented parallel recovery involves many nodes to help re-

compute the state in parallel which significantly reduces the

failure recovery time. Instead, the checkpointing recovery only

relies on a single node to retrieve the state which is constrained

by the HBase I/O rate and the network bandwidth.

State saving cost. Figure 8b shows the state saving cost

comparison of FP4S vs Storm’s checkpointing recovery. The

FP4S state saving cost includes the time cost for dividing the

state into fragments, encoding each state, and then writing

the encoded fragments into leaf set nodes. We write them

into the leaf set nodes serially to enable a fair comparison

with the checkpointing recovery. As Figure 8b shows, the state

saving cost of FP4S is less than the state saving cost of the

checkpointing recovery especially for large state because it

runs in parallel with the operators execution.

Scale with the number of applications. Figure 8c shows

the total failure recovery time for FP4S and Storm’s check-

pointing recovery when there are a large number of con-

currently running stream applications on the platform. We

set the failure rate of stream operators to be 1% according

to Zorro [47]. As Figure 8c shows, compared to Storm’s

checkpointing recovery that has linearly increasing state re-

covery time, FP4S can handle many simultaneous failures with

relatively stable state recovery time. This is because FP4S

leverages the DHT consistent ring overlay to distribute the

total failure recovery load across all participating nodes and

thus simultaneously failing operators’ states can be recovered

in parallel, which significantly improves the scalability.

C. Fragmented Parallel Recovery Algorithm

Several important factors affect the recovery performance,

including the number of the raw fragments m in a state, the
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Figure 10: The load balance evaluation of FP4S for a collection of concurrently running stream applications.

number of the parity fragments k in a state, the number of

unavailable blocks e in a state and the amount of leaf nodes.

Number of the raw fragments (m). We evaluate the impact

of the number of the raw fragments m in a state on the recovery

performance by varying m from 11 to 20, where k is set to

be 10. Figure 9a plots the performance of state recomputing

time when recovering from single failure by varying m. We

can observe that the state recomputing time increases as the

number of raw fragments m increases. The reason lies in that

the recovery time of FP4S is mainly determined by mB/(m+
k−1), where B is the amount of data that any providing peer

uploads. mB/(m+ k − 1) increases with the increases of m
when the values of k and B are given. Thus, the performance

of FP4S is more sensitive to m when k is smaller.

Number of the parity fragments (k). We evaluate the

impact of the number of the parity fragments k in a state

on recovery performance by varying k from 11 to 20, where

m is set to be 10. Figure 9b plots the performance of state

recomputing time when recovering from single failure by

varying k. We can observe that FP4S achieves better recovery

performance when k is increasing from 11 to 20. The reason

is that the recovery time of FP4S is mainly determined by

by mB/(m+ k− 1), where B is the amount of data that any

providing peer uploads. mB/(m+ k − 1) decreases with the

increases of k when the values of m and B are given.
Number of unavailable blocks (e). We evaluate the impact

of the number of unavailable blocks e on recovery performance

by varying e from 1 to 20. We can see from Figure 9c that the

total failure recovery time of FP4S increases linearly with the

increase of e. This is due to the current star-like structure of

the FP4S prototype, in which the performance bottleneck of

FP4S is mainly the upload speeds of providing peers. Thus,

the recovery performance of FP4S is inversely proportional to

the amount of data a providing peer uploads. In the future,

we plan to enable fragments to be transmitted and combined

through a spanning tree covering the replacing node and all

providing nodes to mitigate this performance bottleneck.

D. Load Balance
FP4S has an attractive load balance feature because it

assigns each operator a non-overlapping set of leaf set nodes,

which distributes the total load of state saving and recovery

all over the overlay. We evaluate the load balance of FP4S by

running 500 stream applications on the platform of 50 virtual

servers that have 5000 DHT nodes. Each application has 512

MB state and we have 780GB states in total that need to be

saved in the above 5000 nodes.
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Figure 10a plots the heatmap of the state size on each DHT

node. Figure 10b shows the normal probability plot for the

size of stored state per node. We can observe that over 90%

(20%+43%+29.6%) of nodes store state with less than 260

MB (see the blue zone in Figure 10a), while less than 7.5%

nodes store state over 260 MB, demonstrating its attractive

load balance and scalability features.

E. Overhead Analysis

We evaluate FP4S runtime overhead, particularly those

pertaining to its saving and recovery execution, and compare

them with the checkpointing recovery approach. The FP4S

saving and recovery require additional CPU to compute the

fragments and additional memory for maintaining intermediate

results. Figure 11 presents these costs, explained next.

CPU overhead. Figure 11a shows the per-node CPU run-

time overhead comparison of FP4S vs checkpointing recov-

ery. The CPU runtime overhead of FP4S is less than the

checkpointing recovery. This is because fragment calculations

account for only a small fraction (<10%) of the entire save

and restore execution.

Memory overhead. Figure 11b shows the per-node memory

run-time overhead comparison of FP4S vs checkpointing re-

covery. The memory overhead of FP4S is less than the check-

pointing recovery. This is because the checkpointing recovery

involves a centralized daemon process such as Zookeeper for

coordination. Instead, FP4S nodes are independent, which does

not require the centralized daemon process to maintain these

relationships.
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Figure 11: The overhead analysis of the FP4S-enabled Storm

at runtime.

V. CONCLUSION

In this paper we have described and evaluated FP4S, a novel

fragment-based parallel state recovery mechanism that can

handle many simultaneous failures for stateful stream appli-

cations. Unlike existing failure recovery approaches based on

replication or checkpointing which are either slow, resource-

expensive or fail to handle many simultaneous failures, FP4S

leverages DHTs and erasure codes to divide each operator’s

in-memory state into many fragments and periodically save

them in each node’s leaf set nodes in a DHT ring, ensuring that

different sets of available fragments can reconstruct failed state

in parallel. By doing that, this failure recovery mechanism is

scalable to the size of the lost state, which significantly reduces

the failure recovery time and can tolerate many simultaneous

operator failures.

FP4S is framework-agnostic and broadly applicable to a

range of streaming systems. We have implemented FP4S atop

the state-of-the-art stream processing engine Apache Storm,

and demonstrated its scalability, efficiency, and fast failure

recovery features that incur negligible instrumentation over-

heads. Note that dividing data blocks, encoding raw fragments,

uploading encoded fragments, and reconstructing states are

non-overlapping operations, so many interesting questions for

future work arise: such as how to pipeline them to speed
up the recovery process? How to adjust the ratio of m and
n to tradeoff the reduced upload data and the increased
computation complexity? How to provide a theoretic model
to estimate network I/O cost and computation complexity?
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