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Abstract—With the advancement of ever-growing online
services, distributed Big Data storage i.e. Hadoop, Dryad
gained much more attention than ever and the fundamental
requirements like fault tolerance and data availability become
the concern for these platforms. Data replication policies in
Big Data applications are shifting towards dynamic approaches
based on the popularity of files. Formulation of dynamic
replication factor paved the way of solving the issues generated
by existing data contention in hotspots and ensuring timely
data availability. But from the empirical observations, it can
be deduced that popularity of files is temporal rather than
perpetual in nature and, after a certain period, content’s
popularity ceases most of the time which introduces the I/O
bottleneck of updating replication in the disk. To handle
such temporal skewed popularity of contents, we propose a
dynamic data replication toolset using the power of in-memory
processing by integrating MemCached server into Hadoop for
getting improved performance. We compare the proposed algo-
rithm with the traditional infrastructure and vanilla memory
algorithm, as the evidence from the experimental results, the
proposed design performs better i.e throughput and execution
period.
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I. INTRODUCTION

With the advent of cloud computation and development of

infrastructure as a utility, we witness the emergence of Big

Data industries based on data-intensive services i.e. Social

Networking, Online Services especially over the last decade

imposing computational, data and network traffic on the

host servers. From the traditional centered file system, the

industry moved towards the distributed scalable file system

utilizing MapReduce framework i.e. HDFS [1], GFS [2],

Dyrad [3] to cope up with the need of processing millions

of user requests every second. Data replication mechanism

has facilitated the way of fault tolerance and data availability

in the distributed systems. Hadoop [4] is one of the state-

of-the-art open source platforms to handle large scale data-

intensive applications. Even though HDFS provides scalable

and efficient data processing along with fault-tolerance [5],

data access and data movement overheads due to high

disk I/O are primary bottlenecks of its current architectural

design [6], [7].

Data replication is a widely used mechanism in the

distributed systems to reduce the overall bandwidth con-

sumption, response time and increase data availability. With

the advancement and development of various technologies,

new data replication and replica management approaches,

both static and dynamic, have been proposed to achieve

adaptiveness and better performance [8].

Data replication and placement in Hadoop are uniform

where the load balancing and the data locality for optimiza-

tion are mostly handled by the applications. Trace driven log

data analysis and experiments of different popular websites

such as Yahoo! and Microsoft’s Bing depict the existence

of skewed popularity of different data and hotspots in clus-

ters [9], [10]. Consequently, keeping the uniform replication

for every file without considering their popularity leads to

performance overhead incurring data contention in the nodes

denoted as hotspots where the popular data file resides.

These drawbacks of HDFS architecture have lead to different

dynamic approaches for the replication management. Based

on the predictive analysis while keeping redundancy of data

storage, dynamic adjustment of replication and replacement

has been adapted, and improved algorithms have been intro-

duced to effectively alleviate hotspots and data contention in

the existing design [10], [11], [12], [13], [14]. User access

histories analysis, probabilistic prediction of data utilization

have been included to effectively figure out the Hot and Cold

blocks triggering the replication management [15], [16],

[17]. Improvement in data availability has been achieved

with replication of popular data in more locations than the

default one. Replica placement also has been considered in

these dynamic approaches [18].

In fact, memory access I/O bandwidth is much higher

than that of disk access bandwidth while processing user

requests in the clusters. Conventional way of HDFS supports

saving and loading each block from the disk resulting in

I/O overhead incurring significant performance issues. More-

over, existing HDFS design cannot take the full advantage

of the high-performance networks efficiently due to the high

latency disk access. Combining in-memory I/O processing,

HDFS can potentially overcome the issues.

On the other hand, in-memory storage systems allow

applications to cache the results of the queries across the

cluster nodes resulting in improved performance in SQL

online query processing [19]. So this introduces the pos-
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Figure 1. MemCached server integration with HDFS to dynamically
replicate popular blocks.

sibility of adapting in-memory processing power in the

existing design of distributed Big Data storage systems, and

motivating to explore the answers of following questions:

• To improve I/O performance, can we leverage in-

memory processing and caching concepts in the tra-

ditional HDFS?

• How much overall performance improvement can be

achieved with dynamic replication factor for Hot blocks

while keeping the existing default replication for Cold

blocks?

• Can data contention be alleviated or reduced for DataN-

odes of HDFS by using distributed in-memory process-

ing?

MemCached [20] is a cost-efficient, high-performance dis-

tributed memory caching system to reduce the disk I/O ac-

cess. It is designed as an in-memory key-value store to speed

up the data access in the dynamic real-time applications.

Leveraging MemCached, popular Social Networking site

Facebook obtained improved performance while providing

almost real time communication for millions of users [21].

Integration of MemCached servers in the existing design

can either be co-located with the DataNodes or on the

separate nodes in the cluster. Placing MemCached servers in

a separate location other than the DataNodes will result in

reduction of contention. Utilizing MemCached as the main

replication block for popular Hot blocks, to reduce the load

of reading blocks from HDFS and quickly access to the data,

can improve overall performance while maintaining the de-

fault replication for fault-tolerance. Overheads of adding and

deleting replicas in hard disks consume more computational

power and each time the popular file is accessed, it needs to

be read from disk according to traditional model. Whereas

using MemCached caching capabilities, popular temporal

data can be loaded in memory for the faster access and

updated based on the timely access to add more replicas

when required or deleted when they lose the popularity.

The data popularity can be modulated by implementing

an efficient dynamic replication algorithm for MemCached.

This is more effective and efficient than the conventional

approaches of changing the replication factor frequently in

HDFS, as it significantly mitigates the disk I/O bottleneck

and increasing instant data availability. So in a nutshell,

integration of MemCached sever along with HDFS, can be

exploited to answer all the above mentioned questions and

guarantee high I/O throughput, performance gain for specific

Hot blocks and finally reduced data contention in hotspots.

Figure 1 shows the basic ideas to integrate these components

together to fulfill the expected requirements. The different

steps involved in accomplishing the proposed design can be

outlined as

1) Configuration of MemCached server on separate nodes

in cluster with HDFS for the further experiments.

2) Implementation of effective and dynamic data replica-

tion algorithms using MemCached as a caching layer.

3) Evaluation of the proposed system’s performance to

compare with existing system.

II. RELATED WORK

HDFS (Hadoop Distributed File System) gained popular-

ity for its high performance and reliability but the default

replication management system in HDFS is not sufficient to

handle the congestion that arises from a high density of user

requests. Especially the adaptability of data popularity needs

to be handled with a time-based dynamic replication policy

for improving the system performance. As a result, adaptive

replica management model is needed to ensure improved

performance along with fault tolerance and studied from

various perspectives.

We divide the related work into three categories: replica

allocation and management based systems, skewed popular-

ity based systems, and caching based systems.

A. Replica Allocation and Management Based Systems

Data locality is an important factor to improve the data

availability in time. To reach better data locality an algo-

rithm DARE (Distributed Adaptive Data Replication) [12]

is proposed where probabilistic sampling and competitive

aging algorithm is used in each node to produce solutions

of replica allocation and replica placement. Comparing to

DARE, the system we propose, that leverages the memory’s

higher I/O speed to obtain a better replica allocation and

placement result.

CDRM (Cost-Effective Dynamic Replication Manage-

ment Scheme) [8] is another model that can calculate and

maintain a minimal number of replica for a given availability

requirement. It can adapt to the changes of environment

in terms of data node failure and workload changes and

maintains a rational number of replica. However, to use

CDRM model, it lacks an uniform algorithm to deal with
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replica number and locality. To use the model we present, it

is able to dynamically and uniformly adjust replica locations.

An offline replica allocation algorithm named MORM

(Multi-objective Optimized Replication Management) [22]

was proposed which looks for near optimal solutions by

balancing different optimization factors. However, it only

based on existing DFS design to balance the trade-offs. The

system we propose, not only consider to optimize the replica,

but also add memory component to optimize the overall

performance.

B. Skewed Popularity Based Systems

ERMS (Elastic Replication Management System) [23] is

an active storage model for HDFS. It dynamically increases

the number of hot files and reduces the number of cold

files by tracking real time data type. The work is based on

probability or constant data type but we use real time data

popularity in Hot/Cold block detection mechanism.

Predictive analysis is another approach to dynamically

replicate the data file where the utilization of each data can

be predicted by probability theory. Then using this utilization

information, popular files can be replicated and non-popular

files can be deleted. This process improves the availability

of data files compared to the default scheme [11].

HDFS-DRM [15] devised a design to solve the hot issues

in HDFS based on cloud storage where it makes use of

dynamic adjustment mechanism and deletes duplicate node

selection mechanism. However, the optimization is in the

disk storage level, the disk I/O bandwidth will finally be-

come the bottleneck for the overall application performance.

C. Caching Based Systems

In order to reduce I/O bottlenecks of HDFS, MEM-

HDFS [19] was demonstrated using MemCached as a

caching system. The main focus is to provide intelligent

caching and HDFS data blocks replication with consider-

ation of different deployment strategies for the local and

remote MemCached servers. MEM-HDFS implementation

resulted in increased throughput and reduced job generation

time.

HDFS native cache system, Centralized Cache, which is

an explicit caching mechanism that allows users to specify

paths to be cached by HDFS. The NameNode will commu-

nicate with DataNodes that have the desired blocks on disk,

and instruct them to cache the blocks in off-heap caches [24].

In MEM-HDFS or Centralized Cache, they make use

of only caching concept while in the system we merge

caching and popularity concept together. After detecting the

Hot blocks we cache them in MemCached that gives more

flexibility in reducing data contention.

III. ARCHITECTURE DESIGN

Although different studies have been conducted to im-

prove the dynamic replication management, there exist dif-

ferent trade-off among the various design choices. Therefore,

we propose a toolset integrating MemCached as a caching

layer to handle data popularity for dynamic replication

management with new proposed algorithm.

A. Data Generation

BigDataBench [25] is used as a benchmark for the work

and generated synthetic text data using its big data genera-

tion tools named BDGS (Big Data Generator Suite). BDGS

module generates data in three steps:

• Application-specific and real-world data selection.

• Generation models construction, parameters and con-

figuration derivation from data.

• Provide extensive workload testing.

After data generation, we integrate multiple workloads in

BigDataBench to process the data set. The Wikipedia entries

are used as the dataset and are processed to two different

workloads Word Count and grep. Different sizes of data

files are generated as input into HDFS.

B. Dynamic Model to Copy Hot Blocks to MemCached

HDFS plays the role as data saving layer, it is usually

shared by multiple upper level applications. That means it

will be hard to expect all these applications using the consis-

tent way to access data from HDFS. Using the predefined

Vanilla model will not be able to cater to variety access

patterns to the data.

To more effectively use the limited space in memory, we

propose the WLRU-MRU collaborative dynamic replace-

ment algorithm. Its main idea is that each accessed data

block will have a higher possibility to be accessed again

soon that will have a much higher weight in the priority

queue.

Algorithm 1 shows the procedure of how to move the

data block in Hot queue and Cold queue in MemCached

by combining LRU and MRU algorithm to collaboratively

do the replacement. LRU makes up for the deficiency of

the LRU by introducing the concept of two checks. MRU

replacement policy as the most recently used data block

will be evicted, when a block of data is missing. The time

prediction of MRU is higher than LRU. As for subsequent

call for the Hot blocks get the data from MemCached server,

read I/O performance will be improved as the fact is that

memory I/O is much more faster than disk I/O.

C. Caching with MemCached

The proposed design leverages a caching mechanism

which can improve the system performance and perform task

based on time sequence. Since MemCached is a key-value

in-memory storage, it is customized to store the detected

Hot data blocks over a certain period of time. All DataNodes

will be configured with local MemCached which will ensure

data locality. When specific block becomes Hot, for the first

time we will have to set the contents in MemCached as key-

value pair. For all the subsequent calls, it will be read from
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Algorithm 1: Dynamic collaborative replacement algo-

rithm
Input: Label M, Label N

1 if (M==0) //datablock is not in MemCached. then
2 if (N==0) //tag hit is 0 then
3 LRU; //call LRU

4 Replace(bottom); //replace the data at bottom

5 MoveDown(other data); //other data move down

in turn

6 if (N==1) //tag hit is 1 then
7 MRU;

8 //call MRU

9 Replace(top); //replace the data at top

10 MoveUp(other data); //other data move up in

turn

11 if (M==1) //datablock is in MemCached. then
12 if (N==0) //tag hit is 0 then
13 MRU; //call MRU

14 minHeap.put(<hitData.id, hitData.weight++>);

15 MoveUp(other data); //other data move up in

turn

16 if (N==1) //tag hit is 1 then
17 LRU; //call LRU

18 maxHeap.put(<hitData.id, hitData.weight++>);

19 MoveDown(other data); //other data move down

in turn

MemCached rather than DataNode till the blocks remain

Hot.

Advantages of MemCached over other approaches are

that it can handle high memory load for it’s distributed

characteristics, responds quickly and finally provides accu-

rate expiration times. Since the main focus is replication

depending on time, MemCached has the advantages over

other in-memory key-value storage and it perfectly suits in

the design choice.

D. Evaluation Metrics

To compare the performance of the proposed model, we

need the benchmark performance which was gathered from

the initial log analysis of Hadoop without any modification

and the one with vanilla MemCached integration, which

using a simple threshold value to control the Hot/Cold

blocks. Job execution time, I/O throughput, CPU usage and

memory usage are considered as the performance metric for

all the workloads. All of the metrics will be recomputed

using modified replication management scheme in Hadoop

and will be used to evaluate the overall performance.

To evaluate the proposed design, we analyze the same

performance metrics taken initially and expecting to get a

performance improvement in all the metrics.

Even though we are expecting several improvements,

there might be some overhead involved as follows:

• In case of cache miss, there will be extra overhead in

the I/O operation since an additional layer is involved.

• Since the Hot blocks will get change over time, updat-

ing the MemCached will be another overhead.

• Due to the limited size of caching, we have to design

an approximate policy for the blocks replacement in

MemCached.

IV. EXPERIMENTAL RESULTS

The test is performed on the server that has two Intel

processors, 16GB of memory and 6TB hard drives. The

different sizes (from 100GB to 500GB) of data is generated

with BigDataBench BDGS module and, performed two dif-

ferent operations on these synthetic data. The experimental

results includes i) identification of Hot and Cold blocks in

HDFS (Hadoop 2.8.2 [4]), and ii) Exploration of the initial

performance metrics of the system from log analysis.

A. Dynamic Hot and Cold Block Detection

To detect which blocks are hot and which are cold in

HDFS, first we generated a 60 min stream of block access

using randomization. Then, we analyzed the Global map to

get the number of the read count for each block. In the

settings, 16 data blocks are stored in the Hadoop cluster,

each block contained 524MB data generated by BDGS.
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Figure 2. Read count of HDFS data blocks

Figure 2 shows the read count history of each 16 data

blocks of the HDFS. Here, data block 1, 2, and 12 are the

top three blocks accessed during the time period. Meanwhile,

data block 5 is the least accessed block. Global key-value

store is used, so every node in the Hadoop cluster can access

the status of Hot and Cold Blocks.

Using any other kinds of storage for keeping record of

Hot/Cold status, like file will result in more I/O overhead and

might hurt the improvement gain. So using the in-memory

key-value store for Hot and Cold block detection is leveraged

for the higher performance. This will enable the function to
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analyze the HDFS file access in real time and detect the Hot

blocks in the system.

B. Vanilla Model to Copy Hot Blocks to MemCached

In this vanilla model, MemCached is used as a caching

system to alleviate the loads of user requests based on a

predefined threshold value. Algorithm 2 describes the Hot

block detection mechanism. When DFSClient requests for

a specific data block, NameNode looks for all the available

DataNodes options and return the LocatedBlocks as a list to

the client. Then the client processes to choose the best node

and passes the request to DFSInputStream to handle packet

transfer from DataNode. DFSInputStream uses BlockReader

and PacketReceiver sequentially to read the packets from the

stream. Then checking the access pattern in DFSInputStream

read function to update the access counts in a map as

key-value. When the access count for any block reaches

the predefined threshold, the system will apply caching

techniques.

We compare the proposed design with this vanilla model

and the default HDFS infrastructure. Since MemCached

has the expiration time, if a block becomes Cold after

certain period, it will be automatically deleted which let the

vanilla model also serves the purpose of simple dynamically

changing replication.

Figure 3 shows the process of moving in the Hot block

and moving it out when it becomes Cold. This process does

not require any complicated calculation, but it is required

to define the Hot block threshold and the expire time in

advance. These setups require the experience of using the

HDFS applications, meanwhile, the applications accessing

data blocks method tends to be consistent during the life

cycles.

All data blocks are not accessed uniformly in HDFS.

Depending on the popularity, different blocks could be

accessed more frequently than the others making the residing

DataNodes hot. So, detecting the Hot and Cold blocks

dynamically using the access history is one of the main

challenges. Dynamic detection steps include populating the

file access stream with a randomized scheme over a certain

period of time to represent the real life scenario. During

the streaming time, we analyze the file access requests from

the DFSClient (Distributed File System Client) and the most

frequently accessed file will be identified as Hot blocks for

the future steps.

C. Performance Analysis

To gather the current system performance metrics, we

used two workloads from BDGS: Word Count and Grep.

The workloads are applied on different sizes of data stored

in HDFS. Word Count data source is generated by the

program which randomly picks words from a dictionary file,

and then counts the number of occurrences of each word in

Algorithm 2: Dynamic Hot and Cold block detection

Input: BlockID and SequenceNo of

CurrentLocatedBlock that is being read from

DFSClient, Map with (BlockID,AccessCount),

threshold

Output: Set status of BlockID

1 key =

CurrentLocatedBlock.BlockID + SequenceNo;

2 if (key exists in Map ) then
3 AccessCount = Map.get(key) + 1 ;

4 Map.put(key,AccessCount, timer) ;

5 else
6 Map.put(key, 1, timer) ;

7 end
8 AccessCount = Map.get(key);
9 if AccessCount > threshold then

10 status(BlockID) = hot;

11 Set BlockID content in MemCached ;

12 else
13 status(BlockID) = cold;

14 Normal operation;

15 end
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Figure 3. After hit count is over the predefined threshold, the block is
defined as Hot and MemCached records it. After a specific period, once the
hit count stops increasing, MemCached will reset the records and release
the occupied memory.

the given input set. Grep extracts matching strings from

text files and counts how many time they occurred.

Figure 4 shows the jobs execution time comparison results

between original HDFS framework and the proposed dynam-

ical model design. Figure 4(a) is about Word Count exe-

cution time. It shows after applied new design, the execution

time decreased, especially for the bigger data size input, the

decreased time is much more remarkable. For 400GB and

500GB file size input, the execution time decreases 36% and

29% respectively comparing to the default setup, even 10%
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(b) Grep execution time.

Figure 4. Job execution time for word count and grep.
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(b) Grep I/O throughput.

Figure 5. I/O throughput for word count and grep.

and 17% comparing to the vanilla MemCached integration.

Figure 4(b) is about Grep execution time. Although there is

no clear trend of the impact for execution time along with

data size increasing, the performance still increased after

integrating with MemCached.

Figure 5 shows the evaluation of read performance in

terms of throughput. The throughput factor is not much

sensitive with the changes of input data size. Worth to note

is, that after implementing MemCached, both Word Count
and Grep got increased throughput, since Hot block data are

available to be retrieved from memory which far quickly

than retrieving data from the disk.

For the overhead analysis, Figure 6(a) shows that 60s

expiration window is the optimal one in the testing cases

and CPU time is the lowest for this configuration which is

even lower than the original default HDFS setup. The reason

can be explained as the I/O wait time is negligible because of

the in-memory caching. That means deployed MemCached

would cost some CPU resource, but the saved I/O wait

time can neutralize the impact. Figure 6(b) shows that, after

implementing MemCached into HDFS, the memory cost is

increased, that because these memory cost is majorly used

to save Hot block dynamically. This is the trade-off for the

system performance increase.

V. CONCLUSION

In this paper, we analyze the possibility to improve

the HDFS data blocks replication mechanism. The caching

strategy MemCached is leveraged in the design to effectively

replicate the popular blocks in memory. The experimental

results show that the proposed design is able to improve

the HDFS based applications’ performance from different

perspectives and has the potential to overcome the critical

issues of traditional Big Data storage systems.
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