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Abstract—Digital Repository Systems have been used in most
modern digital library platforms. Even so, Digital Repository
Systems often suffer from problems such as low discoverability,
poor usability, and high drop-off visit rates. With these problems,
the majority of the content in the digital library platforms may
not be exposed to end users, while at the same time, users are
desperately looking for something which may not be returned
from the platforms. The recommendation systems for digital
libraries were proposed to solve these problems. However, most
recommendation systems have been implemented by directly
adopting one specific type of recommender like Collaborative-
Filtering (CF), Content-Based Filtering (CBF), Stereotyping, or
hybrid recommenders. As such, they are either (1) not able to
accommodate the variation of the user groups, (2) require too
much labor, or (3) require intensive computational complexity.

In this paper, we design and implement a new recommenda-
tion system framework for Digital Repository Systems, named
dpSmart, which allows multiple recommenders to work collab-
oratively on the same platform. In the proposed system, a user-
group based recommendation strategy is applied to accommodate
the requirements from the different types of users. A user recog-
nition model is built, which can avoid the intensive labor of the
stereotyping recommender. We implement the system prototype
as a sub-system of the FIU library site (http://dpanther.fiu.edu)
and evaluate it on January 2019 and February 2019. During this
time, the Page Views have increased from 8,502 to 10,916 and
10,942 to 12,314 respectively, compared to 2018, demonstrating
the effectiveness of our proposed system.

Keywords-group based recommendation, stereotyping recom-
mendation, subspace clustering, automatic log mining, automatic
user recognition

I. INTRODUCTION

Digital Repository Systems have been used in most modern

digital library platforms, which are used to store, archive, and

index all of the digital assets in the library as well as to

serve those assets to clients and users of libraries over the

Internet. Digital Repository Systems have three long existing

issues including (1) the low discoverability of the content;

(2) lack of assistance to explore the system; and (3) high

drop off visits. dPanther [1] (http://dpanther.fiu.edu) is

the Digital Repository Systems developed and implemented

by Florida International University (FIU) to host the digital

assets including digital archives and digital born content and

publications. The web server log of dPanther in 2019 shows

that only 24.9% of the the content has been discovered, 62.1%

intended search ended with a page review, and 58.8% resulted

in drop off visits.

In the past decade, many studies have been conducted to

remedy these issues. The most famous one is the recommen-

dation systems [2] [3] [4] [5] [6]. Recommendation systems, as

a subclass of information filtering systems, are typically used

to produce a list of recommended content from the hosting

system by predicting the ”rating” or ”preference” of the users.

They improve the content discoverability, provide guidance,

and retain more users for the hosting system. However, most

recommendation systems have been implemented by directly

adopting one specific type of recommender like Collaborative-

Filtering (CF) [7], Content-Based Filtering (CBF) [8], Stereo-

typing [9], or hybrid recommenders [10]. As such, they are

either (1) not able to accommodate the variation of the user

groups, (2) require too much labor, or (3) require intensive

computational complexity.
In this paper, we design and implement a new recommenda-

tion system framework for Digital Repository Systems, named

dpSmart, which allows multiple recommenders to work col-

laboratively on the same platform, including the Content Based

filtering (CBF) [8], Collaborative Filtering (CF) [7], Global

Relevance (GR), Query Suggestion (QS)/Term Suggestion

(TS) [11] and Location Based Filtering [12] models. The users

are grouped by a stereotyping model and different users are

served by different recommenders. The user vectors are built

based on the user behaviors extracted from the log data. By

optimizing the algorithm with multi-processes programming

fashion and maximizing the server capacity, the model re-

training time can be reduced significantly.
We implement the system prototype as a sub-system of

the FIU library site (http://dpanther.fiu.edu) and evaluate it on

January 2019 and February 2019. During this time, The Page

Views have increased from 8,502 to 10,916 and from 10,942

to 12,314 respectively, compared to Page Views in 2018.
The technical contributions of this paper are as follows:

• We implement a stereotype based recommendation sys-

tem that can adapt to multiple different recommenders.

• The proposed system avoids the intensive labor and

automates the process from the log data extraction to

model training.

• By using a stereotyping recommender, we avoid the need

of personally identifiable information user data and we

reduce the noise recommendation.

• By implementing multi-process programming, the model

re-training time can be significantly reduced.
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The rest of this paper is organized as follows: Section II

summarizes the background and related works in recom-

mendation system research within the digital library domain;

Section III presents the design and functional components of

dpSmart; The evaluation results using real-world logs are

shown in Section IV, and finally we conclude this work in

Section V.

II. RELATED WORK

A. Recommendation System in Digital Library

Due to the uncertainty of the content, the variation of

patrons, and the unpredictable user interactions with the li-

brary system, content based recommendation systems have

dominated in digital library domain. C.Musto et al. [13]

proposed a Content-Based Recommender System for Digital

Library for Cultural Heritage. S.Philip et al. [14] proposed

a Content-Based approach in paper recommendation systems

for a digital library. However, the problem of a Content-

Based recommender lies in that this type of systems are

not able to accommodate the variation of the clients and

the user behaviors. Another type of recommendation system

is customization and personalization for the niche domain.

A.F.Smeaton et al. [15] proposed a method to personalize

recommendation system for digital library platform. However,

this type of system is very hard to generalize. In order to

generalize and further potentially automatize the customization

and personalization process, the user recolonization [16] was

proposed.

In the Research-Paper Recommendation Systems survey

[11], 200 publications have been reviewed and 62 different

methodologies have been proposed. Among those proposed

methods, content based filtering is in the top rank, and 55%

of the methods are either based on this or leveraged it.

Collaborative Filtering ranked No.2 with 18% of methods

used. Graph-based recommender ranked No.3 with in 16% of

methods used. Other recommenders like stereotyping, item-

centric, and hybrid recommendations are mentioned in 11 of

the publications.

B. User-group clustering for User Reorganization

Based on the designed framework, user modeling and

user group recognition are key functions to build a flexible

recommendation system. Previous publications regarding user

modeling have also been reviewed. A recent dissertation

from the University of Cornell [17] has been published to

introduce Mind Mapping based user modeling for research

paper recommendation systems. Although the result is very

promising, the approach is heavily rely on an open-source

JAVA application for managing PDF files, annotations, and

references with mind maps called Decear and required labeled

user data. Consider that lack of personally identifiable infor-

mation, user behavior data is one of the toughest challenges for

the recommendation system in Digital Library System hosted

by public libraries, we switch the machine learning approach

to an unsupervised learning methods to recognize the user

group. A good example can be found in [18], which proposed a

clustering based method for the web services recommendation

system. Although the method proposed in [18] is in web

services recommendation domain, it provides an solution for

the problem of lack of labeled user behavior information. A

more advanced subspace clustering based method [19] was

proposed in 2014 for user group identification. This subspace

based clustering method has two main features: prune non-

promising features for subspace extension dimensions and

fault tolerance.

C. Stereotyping Recommendation

Stereotyping has a long history for user modeling. Rich

[20] in 1979 initially described how to build user models by

using stereotyping. In 2007, additional research was conducted

by Guy [20] to implement Stereotyping Recommendation

method in media systems. The performance of stereotyping

Recommendation, by combining content-based filtering and

collaborative filtering, out-performs the regular Adhoc hybrid

recommendation system performance. As such, stereotyping

recommendation has been considered as the recommender

with the best performance. However the drawbacks of Stereo-

typing recommenders, such as pigeonholing users and labor

intensiveness, have significantly limited the usage of stereo-

typing recommender. These two drawbacks are directly caused

by the traditional way of manual processing process to identify

user groups.

III. SYSTEM DESIGN

We design and implement a new recommendation system

framework for Digital Repository Systems, named dpSmart,

which allows multiple recommenders to work collaboratively

on the same platform. dpSmart has four major components:

1) the automatic web server log mining module to generate

user behavior data, 2) the user-group clustering module for

automatic user group recognition, 3) the recommendation
strategy module for stereotyping filter based on different

user group, and 4) the customized recommenders module
to implement into dPanther Digital Repository Systems.

Figure 1 shows the overall design of dpSmart. The work-

flow starts from gathering and processing log data from an

IIS web server. The automatic web server log mining module

is responsible for processing the data to generate the user

vectors. Once the user vectors are generated, the User-group

clustering module runs the cluster and generates the group of

the users. The recommendation strategy module then maps

the generated cluster to the corresponding user group and

establishes the stereotyping filter. Based on the stereotyp-

ing filter, the customized recommender modules can provide

customized recommendations from embedded recommenders.

The detailed design and implementation of each module are

discussed below.

A. Automatic Web Server Log Mining Module

We utilize two types of resource (i.e., the web server log

and the database log) to legally analyze user behaviors. Both

types of log data are naturally generated whenever a web-based
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Fig. 1: Overall framework of dpSmart. dpSmart consists of four components: the automatic web server log mining module,

the user-group clustering module, the recommendation strategy module, and the customized recommenders module. The

automatic web server log mining module first processes the log data into user vectors. Secondly, the user-group clustering module

runs the subspace clustering and maps the clusters into user groups by using dominate features. Thirdly, the recommendation

strategy module defines the group preference against different recommenders for the stereotyping filter. Finally, the customized

recommenders module generates the final recommendations from specific recommenders.

application is published and very limited user information is

stored. We generate datasets through the following data prepa-

ration and processing methods, which can be used directly to

build user vectors.

The IIS logs are the primary resource for our system because

they contain some key information, including but not limited

to:

• The client IP address
• The time of the activity
• The region of where the user comes from
• The type of activities the was interacting with the system

This information is used as dimensions for building the

user vectors. The original IIS log has the schema as shown

in Table I. Note that we assume that each IP on a particular

date represents a single user, so a user vector is generated

from the combination of IP address and the date from IIS

logs, IP-date log.

We first process the raw IIS logs and make them more

useful by filtering out logs from bots, local access, scripts,

style sheets, and other file loading. We then rebuild the logs by

combining the IP and date to create basic user logs that contain

the IP activity of the website on a single date. Next, we convert

each IP-date log into an IP-date user vector, and each user

vector contains all the numeric item numbers they accessed

using the number of transactions. The basic user vector that

we can build directly from the IIS log is a vector containing

two dimensions which are the number of entries accessed in

the database and the number of visits from this IP address.

Secondly, we start expand the dimensions. Since the IP

address contains the location information, after geo-coding the

IP address, two additional dimensions (latitude and longitude)

can be added to the vector to generate a fourth dimensional

vector. This base vector can provide information about where a

particular user came from, how often users access our system,

and whether the user has successfully accessed a particular

item in the system.

The dimensions can be expanded more by integrating the

database query log. The query log also records the contents of

the query as well as the IP address. Since the search action is

a very strong indicator of the willingness of a particular user

to find content in the system, the number of searches made by
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a particular user is added as an additional dimension of the

user vector. In addition to the number of queries, the search

content is also very useful. One of the key terms that conveys

the clearest information is the system ID of the project in the

database. Since the system ID is defined using a specific name

convention, it can be identified from the regular expression.

Users who use the system ID as a search term are likely to be

internal users from our organization or academic users from

close partner organizations. Therefore, the system ID is added

to the user vector as another dimension. As shown in Figure 1

step 1, the generated six-dimensional user vector is used as

the basic user vector. However, the six dimensions are not

sufficient to build any reliable clustering results. Therefore,

we must introduce the metadata of the accessed project to

expand the dimension.

Last but not the least, the metadata of the record can provide

a lot of more dimensions. One of the most unique features of

a Digital Repository Systems or digital library system is that

all records in the system have prepared metadata that is stored

in the metadata engine. With this feature, we can immediately

increase the user vector’s dimensions to 50, 100 or more by

linking user behavior to metadata. For example, when visiting

a particular project, such as the Miami 1920 album, users may

also be interested in other historical albums, or they may be

interested in other projects by photographer Eva FitzGibbon

Drummond, or they may be interested to items in the same

collection. In this case, with Coral Gables Memory and Miami

Metropolitan Archive, we need to carefully select the metadata

tags because we want to collect enough data to fit the cluster

to our predefined user groups, and we don’t want to introduce

too many dimensions. So, after building the basic user vector,

we can further expand the dimension by introducing metadata

information in the metadata engine.

B. User-group clustering Module

Since we pre-define the target user group and recommenda-

tion strategy, for any active users, as long as we can identify

the user group to which the user belongs, we can dynamically

provide appropriate recommendations and minimize noise

recommendations.

Ideally, if there are fixed metrics that distinguish users in

these groups, we can simply identify the user group based

on the criteria. However, these user groups are overlapped

and it is difficult to find a clear boundary between user

behavior patterns among groups. as shown in Figure 2, we

use several dominate features to separate the user group. For

example, a very powerful indicator is the appearance of a

system ID in a search term. Most likely, the system ID is

for internal users only. However, some academic users also

save the system-generated ID for quick access to their favorite

projects. Another good example is location information. If the

location information is internal to the library, then the access

should be directed to the internal user group. However, many

users of the academic group also work in the library. The

identification of the user group can be achieved by using an

indicator from the log data. As shown in Figure 2, a sample

decision tree illustrates this point. Note that in order to use

a tree based classifier, we have to find the tagged training

data, which is not available in existing systems. Therefore,

clustering methods are applied in our research.

• Number of visits
• Search conducted
• Number of Items
• ID involved in search
• Location of the users
In the dpSmart framework, a subspace clustering method

[19] is used to generate the user cluster. Based on a survey [21]

published in 2009 for the algorithms of subspace clustering

are two major subspace algorithms: bottom-up versus top-

down approaches. We choose a topical top-down algorithm,

PROCLUS [22] for our framework, since it allows us to define

the number of clusters generated for the data set. The software

WEKA and a third party package, Opensubspace v3.31 are

used to generate the user cluster.

C. Recommendation Strategy Module

Similar to other information management systems, Digital

Repository Systems have predefined target user groups. The

target user groups can be divided into five groups, namely the

Library Internal Users, Digital Library Users, Local Academic

Users, Active Web Users, and Passive Users. The detailed

definitions for each group are listed below:

1) Library Internal Users - the users from our internal or-

ganization like the developers, the librarians, the system

administrators, and metadata creators.

2) Academic Users - professional users who are familiar

with Digital Repository Systems as well as the content

inside the system. This user group mainly consists

of scholars/professors, undergraduate/graduate students,

researchers.

3) Digital Library Users - the users who are familiar

with the structure and interface of Digital Repository

Systems. This type of user can retrieve information from

the system by following the metadata structure. They are

normally not as focus on one specific topic.

4) Active Web Users - users who are interested in using

the system to conduct the search and try to explore the

content but have difficulty finding the right content or

are not able to access any content.

5) Passive Web Users - users who only stop by the landing

page without doing anything.

According to this grouping, we further develop a recom-

mendation strategy as shown in Figure 1 Step 3. The recom-

mendation preference is marked in different types of attitudes,

red heart if preferred, smile face if they don’t bother, and

block sign if they dislike. For internal users who are metadata

creators, digital assets owners, and system administrators, they

don’t want any type of content-based or collaborative filters.

They are keen to Query Suggestions, Term suggestions, and

Location based suggestions. Global Relevance, which makes

recommendations based on the system status like the popular
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TABLE I: Formats of W3C Extended Log File.

Log Field Description

date Date at which transaction completed, field has type <date>
time Date at which transaction completed, field has type <date>
s-ip Server IP address and port, field has type <address>
cs-method Client to server method
cs-uri-stem Client to server stem portion alone of Uniform Resource Identifier (URI, omitting query), field has type <uri>
cs-uri-query Client to server Query portion alone of URI, field has type <uri>
s-port Server port
cs-username Client to server user name
c-ip Client IP address and port, field has type <address>
cs(User-Agent) Client to server (user-agent)
sc-status Server to client status code, field has type <integer>
sc-substatus Server to client substatus code, field has type <integer>
sc-win32-status Server to client win32 status code, field has type <integer>
time-taken Time taken for transaction to complete in seconds, field has type <fixed>

items or new added items, is the preferred recommendation

for Internal Users.

Academic users need a completely different recommen-

dation strategy than internal users. These users are very

professional and well-trained in Digital Repository Systems

or Digital Library Systems, so they really reject irrelevant

information. Therefore, global relevance, QS/TS, and Location

Based recommender should be blocked for them. A Content

based recommender is the one they preferred and Collaborative

filtering is not considered as noise recommendations. The Dig-

ital Library Users are familiar with digital collection systems

but do not have a background knowledge of the content in

the system, so it is difficult for them to come up with a

clear research area. Since these are the main target users, our

recommendations are hard to judge for this user group. For

these two types of users, we just hide collaborative filtering,

since users in the two groups do not necessarily have many

similarities in preferred content.

D. Customized Recommenders Module

As mentioned before, we utilize the Content-based Filter-

ing (CBF), Collaborative Filtering (CF), Global Reference

(GR), Query Suggestion (QS)/Term Suggestion (TS), and

Location based Recommendation in the module. These five

recommenders are implemented separately and coordinated

according to the results of the stereotyping filter. The details

of the custom design are shown as below.

1) Content-based Filtering (CBF): Based on the record

curation process, there are two suitable models to create the

item-similarity model: (a) Jaccard [23], which is good at

depicting similarities between two sets and (b) Directed Graph

[24], which is good at depicting the similarity of two vectors.

Zhou [25] presented the challenge of eliminating noise and

sparsity using Graph-based method, which is mainly caused

by the metadata type and content. The same problem may be

more challenging in dPanther. A feature of dPanther as a

Digital Repository Systems is that it provides a large collection

of research articles, research papers, engineer studies/reports,

newspapers, government documents, music scores and many

other types of historical documents. From this perspective,

the Digital Repository Systems actually provides services for

multiple metadata types, which may be completely different.

As such, it is very difficult to build directed graphs for records

because there are many missing links when moving across

different metadata types. Therefore, we choos to establish a

similarity model based on Jaccard similarity. Record vectors

in the dPanther system can be constructed by directly using

metadata tags and values. By applying Jaccard similarity, the

similarity between items in dPanther can be calculated as

follows:

S(a, b) =
|Aa ∩Bb|
|Aa ∪Bb| (1)

• Where S is the Jaccard Similarity

• a, b are any two items in dPanther system

• A, B are the set of metadata fields and value of item a
and b

However, even if this provides default similarity between

items in the dPanther repository, the result does not ac-

curately represent the actual relationship between the items,

because in the current method, all metadata fields in the

collection are equally important, but actually, the metadata

fields within the project set have an explicit priority. For

example, subject keywords in a set actually play a major role in

calculating similarity. If two items share one subject keyword,

its impact on the similarity calculation should be greater than

the impact of sharing one publisher. Therefore, we modified

the original Jaccard method to accept weight data set. Thus,

we have:

SW(a, b) =
|∑∞

n=1((An ∩Bn) ∗Wn)|
|∑∞

n=1((An ∪Bn) ∗Wn)| (2)

• Where SW is the weighted Jaccard Similarity

• a, b are any two items in dPanther system

• A,B are any pair metadata field from n selection metadata

data fields between item a and b

• w is the weight assigned for a specific pair of one

metadata field

By implementing the weighted Jaccard Similarity, we have

build a reliable measurement system for the items’ content.

For each individual item, we can have a corresponding ranked

similar item list. Then, the next major step is to design another
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Fig. 2: Sample Decision Tree to demonstrate how to identify the user groups by using the dominate features. Three dominated

features, Metadata, Search Terms, and ID-involved are used for the user group recognition. The green box demonstrates the

recommenders selection for the different user group.

method to generate measurement for items from user-similarity

prospective.

2) Collaborative Filtering (CF): For public library systems,

there are two main obstacles to track user information: (a)

The privacy policy limits user information and (b)lacks rating

motivation. The process of accessing digital collections is

considered part of user privacy (https://library.fiu.edu/using-
the-library/patron-privacy-policy). Even if the system has a

user account function, the users account activities are not

allowed to be used for this type of research. Besides, unlike

Amazon or Ebay, the preferences for the items are very

individually based, thus it is hard to find a motivation for

the users to provide rating for the digital collections they have

viewed in the system. What is more, even if the rating is

available, it may not necessarily useful across the users groups.

Therefore, in the design of the dpSmart recommender, the

only available resource to use is the web log which contains

the IP addresses of the visits. In our research, we assume one

IP address in the same day represents a specific user. From

the IP address, we can get an idea of the region where the

users came from, time they visited the system, topics they are

interested, and then associate the items with these information.

By considering the information from the user visits, we

can take advantage of implicit feedback alternatively. Implicit

feedback strongly relates with the behaviors of users. There

are two ways to get implicit feedback. One way is based on

whether users check on the content of items in history. If so,

we assume that users may like items and rate 1 as scores,

otherwise rate 0. While the other way is to count the number

of visits for the same item from the one specific user. Since

one ”hit” from the web server log does not necessary mean

one visit from the client side, it may also indicate the user

downloading the picture from the item detail page, or clicking

the link from the client detail page, or playing the video or

audio from the detail page. Therefore, this count does not only

indicate the actual visits from the user but also provides the

interest level from the user.

By considering the two implicit feedbacks, we can get

the scores for user-item similarity. The second step is to

calculate the similarities between items. Assuming we have

two items i and j, if we get scores based on whether users

check on contents, then the similarities between i and j can

be calculated using standard Cosine Similarity [26]. The basic

Cosine Similarity is define as below:

S(i, j) =
|N(i) ∩N(j)|
2
√|N(i)||N(j)|

(3)

• Where S is the cosine-based similarity

• N(i) and N(j) mean the total number of users who rate 1

for item i and item j, respectively

By considering the counting of number of visits for the

items, we come up with the adjusted Cosine Similarity as:

S(i,j) =

∑
u∈U (R(u,i) −Ru)(R(u,j) −Ru)

2

√∑
u∈U ((R(u,i) −Ru)2)

2

√∑
u∈U ((R(u,j) −Ru)2)

(4)

• Where S is the cosine-based similarity
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• U stands for the group of users who rate both item i and

item j
• R(u,i) or R(u,j) means the score for such the item by the

user

• Ru is the average of the u-th users ratings

3) Global Relevance (GR): The third method we proposed

to use in the dPanther system is the Global Relevance (GR)

recommender. The original GR is simply defined as:

GRScore ∝ number of hits of the item (5)

However, the collections in dPanther are generally con-

sistent with geo-registration features, which appeal to users

in specific regions rather than general interests. Therefore, we

introduce enhanced GR scores with the consideration of the

contribution as follows:

GRu ∝ Ni where Li ∈ Lu (6)

• Where GR is the Global Reference Score

• u is the current user

• i is the item in dPanther system

• N is the number of hits of item i

• L is the location information

4) Term Suggestion (TS)/Query Suggestion (QS): The

last method which we implemented is Term Suggestion

(TS)/Query Suggestion (QS). Since one of the major com-

ponents is metadata search/query function, many unsuccessful

visits are caused by the search function failures. The sugges-

tion function contains two steps. Firstly, the system suggests

the key word based on the users input. After a user hits the

search, the system conducts a similarity analysis between the

input search term and the subject key words from the metadata

and then provides the suggestion. The similarity of the term

to the metadata is generated by using the Jaccard index as

suggestion by [27]:

S(a,b) =
|DSa ∩DSb|
|DSa ∪DSb| (7)

• Where S is the Similarity Score between the search term

and the item subject keywords

• a is the input search term

• b is the item in the system

• DS is the data set that consists of the key works

IV. EVALUATIONS

We evaluate dpSmart from two different perspectives:

computational complexity and the actual impact to its hosting

Digital Repository Systems dPanther. The experimental

evaluations answer the following questions:

• Whether the multiple-process programming algorithm
improves the hosting Digital Repository Systems perfor-
mance?

• When it is integrated into the Digital Repository Systems,
what are the benefits of dpSmart regarding the page
views, bounce & drop-off rate?

• How are the Digital Repository Systems usability like
Avg. Time on Page, Avg. Pageload, Avg. Direction Time,
Avg. Server Reponse Time, and Avg. Page Overload Time
improved by integrating dpSmart?

A. Experiment Setup and Data Collection

1) Multi-process Programming Experiment: The experi-

ments were conducted on a windows machine with four cores
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(a) The Page View Stats for the year 2015-2018.
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(b) The Page View Stats from Jan. to Mar., 2018.
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(c) The Page View Stats from Jan. to Mar., 2019

Fig. 5: The Page View Stats for the year from 2015 to 2018, from January to March in year 2018, and from January to March

in year 2019.
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(a) The Bounce & Drop-off Rate from the Year
2015-2018.
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(b) The Bounce & Drop-off Rate from Jan. to
Mar., 2018.
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(c) The Bounce & Drop-off Rate from Jan. to
Mar., 2019

Fig. 6: The Bounce & Drop-off Rate for the year from 2015 to 2018, from January to March in year 2018, and from January

to March in year 2019.

CPU and 32 GB of memory. 4,000 metadata records are

randomly selected from the database and processed to generate

the item vector. We conduct the experiment by run the CB fil-

tering algorithm against the 4,000 records by using 1-process,

3-processes, 5-processes, and 7-processes respectively. The

algorithm run time, CPU Usage, and Memory Usage are

collected.

2) System Data Collection: For the system evaluation, since

dPanther is an existing production system, we focus on

the real system statistics to evaluate if the recommendation

module has a positive impact on the hosting system. Common

performance metrics including Page View, Unique Page View,

Average Time on Page, Bounce Rate, Drop-off Rate, Avg.Time

on Page, Avg. Page Load Time, Avg. Direction Time, and

Avg. Page Overload Time are collected for the evaluation.

There are some milestones for the evaluation. The first module

implemented in the system is the Customized Recommenders

Module, which was published for production in January, 2016.

The Automatic Web Server Log Mining Module, User-group

clustering Module, and Recommendation Strategy Module are

related to each other. Therefore, these three modules were

implement all at once in January, 2019. In addition, we also

applied the optimized multiple processes programming so that

we can rebuild the model more frequently. In order to evaluate

the impact of these three modules, we compared the system

statistics from January, February, and March of year 2018 and

year 2019. We rebuilt the model every week in the month

of January and February and left the model as is in March.

The statistics for this period are also analyzed for the system

changes after the new implementation.

B. Multi-process Programming Evaluation

As shown in Figure 3a, the total run time for the 4,000

record process has been reduced from 365 seconds to 137

seconds for 1 process to 3 processes and further reduced to

98 seconds after increasing to 5 processes. But the total run

time is only reduced from 98 seconds to 97 seconds after we

increased to 7 processes. The figure also indicates that the

more records processed, the more time are saved.

The CPU and Memory Usage over time in Figure 3b and

Figure 3c also indicates that 5 processes approach best utilized

the resources. Figure 4 also reveals that the average CPU

Usage and Memory Usage reduced from 81.5% to 78.7% and

0.47% to 0.45% respectively.
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C. Impact to the Hosting Digital Repository Systems

In Figure 5a, the page views and Unique Page Views have

been increased from 87,168 to 190,665 and 55,311 to 119,783

respectively from the year of 2015 to the year of 2016. This

figure also reveals that both Page View and Unique Page View

dropped in year 2017 from 190,665 to 120,837 and 119,783

to 84,936, respectively. The reason may lie in that the model

wasn’t recalculated while new content and log data were gen-

erated. After recalculating the recommenders multiple times

in the year 2018, we can see that the number increases again

from 120,837 to 164,969 and 84,936 to 112,972 respectively.

In Figure 7, the Avg. Time on Page also indicates that in

2015, users spent more time on average on a page, which

are most likely from internal or academical users. When the

recommenders work and attract more general/layman users,

the Avg. Time on Page dropped accordingly.

Figure 6a shows the Bounce Rate and Drop-off Rate trend

from the year 2015 to the year 2018. Similar to the Page

View statistics, both Bounce Rate and Drop-off Rate show

a reverse proportional relation to the recommenders module.

Even though this is not as clear as the Page View statistic, it

still shows that an updated recommenders module can help to

reduce the Drop-off rate. However, as shown in Figure 6b

and Figure 6c, the same trend cannot be confirmed after

implementing the Automatic Web Server Log Mining Mod-

ules, User-group clustering Module, and Recommendation

Strategy Module. This is mainly because that the stereotyping

recommender is more used to enhancing the recommendation

quality and reducing the recommendation noise. It is not

necessarily has a direct impact on he Bounce Rate and Drop-

off Rate.

From the Figure 7 and Figure 8, we can verify that the

system usability does not decrease a lot compared to the year

2018. The Avg. Page Load Time, Avg. Direction Time, Avg.

Server Response Time and Avg. Page Overload Time are all

increased compared to the year 2018, but still much lower

than the year 2016 and year 2017. Secondly, the Page View

in Figure 5b and Figure 5c also increased in January and

February in the year 2019 from 8,502 to 10,916 and from

10,942 to 12,314 respectively. The Page View has decreased

in March from 15,239 to 12,450 compared to the year 2018

which caused by the out of dated model.

In summary, dpSmart has remedied the computational

complexity problem by implementing the multi-process pro-

gramming. The system statistics also confirmed that dpSmart
effectively increased the Page Views of the hosting system by

implementing the customized recommenders.

V. CONCLUSION

In this paper, we design and implement a flexible group

based recommendation framework, called dpSmart, and

integrate it into a real-world Digital Repository System

dPanther (http://dpanther.fiu.edu). The goal of dpSmart
is to address the limitations of the digital repository system

which includes low discoverability, poor usability, and high

2015 2016 2017 2018
0

1

2

3

4

5

Ti
m
e
(S
ec
on
d)

Year

Avg. Time on Page (x100)
Avg. Pageload
Avg. Direction Time
Avg. Server Reponse Time
Avg. Page Overload Time

Avg. time on
page reduced.

Fig. 7: The system usability statistics from 2015 to 2018.
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Fig. 8: The system usability statistics from Jan. to Mar., 2019.

drop-off visit rates. dpSmart provides capability of automatic

user vector generation from log data, clustering based user

group identification, flexible recommendation strategy, and

multiple recommenders integration. The proposed system also

suggests several customizing methods to customize the specific

recommendation algorithms for the specific system. The exper-

imental evaluation shows that by applying the multi-process

programming, the model building time can be significantly

reduced. The system usage statistics also indicate that during

the evaluation time from January 2019 to February 2019, the

Page Views have increased from 8,502 to 10,916 and 10,942

to 12,314 respectively, compared to 2018, demonstrating the

effectiveness of our proposed framework.
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