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Abstract—Web-based social networks enable new community-
based opportunities for participants to engage, share their
thoughts, and interact with each other. Theses related activities
such as searching and advertising are threatened by spammers,
content polluters, and malware disseminators. We propose a
scalable spam detection system, termed Oases, for uncovering
social spam in social networks using an online and scalable
approach. The novelty of our design lies in two key components:
(1) a decentralized DHT-based tree overlay deployment for
harvesting and uncovering deceptive spam from social commu-
nities; and (2) a progressive aggregation tree for aggregating the
properties of these spam posts for creating new spam classifiers
to actively filter out new spam. We design and implement
the prototype of Oases and discuss the design considerations
of the proposed approach. Our large-scale experiments using
real-world Twitter data demonstrate scalability, attractive load-
balancing, and graceful efficiency in online spam detection for
social networks.
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I. INTRODUCTION

The past few years have seen the rapid rise of Web-based

systems incorporating social features, such as online social

networks (OSNs) (e.g., Facebook, Twitter). These systems

have a common feature that they rely on users as the primary

source of posts and enable users to comment on others’ posts.

Unfortunately, such openness and reliance on users also attract

social spammers, who advertise commercial spam messages,

and disseminate malware [10]. Reports show that nearly 10%

of tweets on Twitter are all spam [1], and Facebook usually

blocks 200 million malicious actions every day [16].
We observed that social spammers who aim to advertise

their products or post victim links are more frequently spread-

ing malicious posts during a very short period of time. Fig. 1

shows the three days’ social rumor activities that are extracted

from a real-world dataset of the Charlie Hebdo shooting in

2015 [28]. X-axis and Y-axis present the time and the number

of rumors, respectively. Each peak with a color presents the

activities of one specific rumor. We can observe that: (1) once

spam post is produced, it spreads in a very short period of

time and will soon reach its peak; (2) the content of spam post

is always ”drifting”, and multiple peaks in different colors

indicate that the contents of social spam change rapidly.
Besides, recent surveys and research reported that social

spam is normally fast changing, and spam activities are

usually concentrated in a short period of time [2, 7, 26].
Therefore, the major challenge for the spam detection

system is enabling the update of trained classifiers to keep
pace of the collection of spam information promptly, so as to
uncover and defend against these social spammers.
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Figure 1. Social rumors of the famous Charlie Hebdo shooting in 2015,
Twitter [28]. We present the activities of 14 rumors in the figure and show
several example statements.

Traditional techniques for discovering evidence of spam

and spammers have the following limitations: (1) they mainly

focus on analyzing offline historical logs [11, 19, 20, 22, 24],

limiting the capability to adapt to the new spam emergence

and resulting in failing to uncover the most recent spam;

and (2) they mainly focus on centralized data sources and

ignore the fact that most OSN logs are continuously generated

in distributed web servers [11, 12, 17, 22], limiting the

capability to take the advantage of continuously processing

the distributed data on the fly and resulting in centralized

bottleneck and load unbalance.

From the data mining point of view, the spam detection has

three major steps: (1) model construction where the spam

classifier is created using a training dataset with a specific

algorithm, e.g., Random Forest [4]; (2) model test where

the test dataset is used to validate the accuracy of the spam

classifier; and (3) use well-trained classifier with new social

data to get predictions that identify new spam.

We propose a novel Online scalable spam detection system,

namely Oases. The key idea of Oases is to enhance the online
feature and scalable feature into the general spam detection

processing, in which the spam detection model is continuously

constructed with the online training dataset and model testing,

and the spam detection is performed in a scalable fashion.

Oases operates in two phases. The first phase is the

spam model construction. We build a distributed hash table

(DHT) [13] based aggregation tree to feed the distributed

data sources into a decentralized peer-to-peer overlay, which

consists of a root, branches and many leaves. The root

is responsible for disseminating the continuously updated

training dataset and test dataset to the branches and leaves.

Each leaf node is responsible for spam model construction

and spam model test by applying the training dataset to a

specific classifier such as Random Forest algorithm [4], and

testing the spam model using the test dataset. The intermediate

98

2018 IEEE 11th International Conference on Cloud Computing

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00020



results are aggregated by branches to the root for validation

and confirmation.

The second phase is the spam model application. Each leaf

takes the new coming streaming events from the distributed

data sources (e.g., Twitter logs, Facebook logs, etc.), analyzes

them using the spam detection model from the first phase,

outputs spam and labels. The spam with their labels are then

aggregated to the root and reported to the end users.

The novelty of our work lies in that the posts are pro-

gressively aggregated for actively filtering out new spam and

publishing the training dataset to all distributed leaf agents to

update the classifiers in an online and scalable fashion. We

believe our system could promptly detect activities of spam-

mers and classify various latest spam for social networks.

This paper makes the following technique contributions:

• An online spam detection system called Oases is pre-

sented that defend against new changes of spam actions.

• A scalable DHT-based overlay with spam detection is

presented. It orchestrates the independent processing of

geographically distributed agents and aggregates their

intermediate results into the final results.

• A comprehensive evaluation of Oases performance and

functionality on a large cluster using real-world Twitter

data is presented.

Experimental results show that Oases achieves graceful

performances in scalability and the online spam detection

accuracy. And it achieves attractive load balancing in scaling

with hundreds of agents and millions of social posts. Data

classification also shows good performances with the F1 score

up to 96% and accuracy up to 94%. Besides, the system

presents consisting performances in the runtime overheads

and resource consumption when scaling from dozens to

hundreds agents.

The rest of this paper is organized as follows: Section II

describes the background of our work. Section III presents

the design and functional components of Oases. The evalu-

ation results using real-world logs are shown in Section IV.

Section V presents the related works. Finally, we describe the

conclusions from this work in Section VI.

II. BACKGROUND

Inspired by the success of DHT-based decentralized overlay

in peer-to-peer networks [6, 13], Oases uses DHT-based

routing protocols to (1) build a DHT-based aggregation tree

to feed the distributed data sources into a decentralized peer-

to-peer overlay for harvesting and uncovering spam and (2)

rapidly inform distributed agents about the updated classifiers.

In this section, we briefly discuss the background of our work.

A. Pastry Decentralized Overlay

In Pastry [13], each participating node is assigned with

an identifier (nodeId) that is used to identify node and route

message. Given a message and a key, the message can

be guaranteed to be routed to the node with the nodeId

numerically closest to that key, within �log2bN� steps (default

b = 4). Each node maintains a routing table and leaf set
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(b) The tree of a sample group.

Figure 2. (a) Routing a message from node 5723ea to node d56a52. (b) Node
d4333c serves as the rendezvous node of the group ’sample’, with nodeId
numerically closest to the groupId.

to support the message routing, self-organization, and fault

recovery functionalities.

1) Message routing: As shown in Fig. 2a, at each routing

step, a node typically forwards a message to a node whose

nodeId shares with the key a prefix of at least one (or

more) digit longer than the given nodeId. If no such a node,

it forwards the message to the node which nodeId shares

the prefix with the key same as the current node, but is

numerically closer to the key.

2) Routing table and leaf set: The routing table consists

of node prefixes (IP address, latency information, and Pastry

nodeId) arranged in rows by the common prefix length. The

leaf set for a node contains a fixed number of nodes that

have the numerically closest nodeIds to that node. This assists

nodes in the last step of routing messages and in rebuilding

routing tables when nodes fail.

B. Scribe’s Group Management

Scribe is an application-level group communication system

built upon Pastry. Scribe manages groups and maintains a

spanning tree containing the members of each group. Fig. 2b

presents a tree of group ”sample”. All nodes join Pastry,

and subsequently, nodes may join and leave groups. Scribe

can handle group sizes varying from one to millions, and it

efficiently supports rapid changes in group membership [6,

13]. It uses a pseudorandom Pastry key to name a group,

called groupId. Usually, the groudId is the hash of the group’s

textual name concatenated with its creator’s name. To create a

group, a Scribe node asks Pastry to route a CREATE message

using the groupId as the key. The node responsible for that key

becomes the root of the group’s tree. To join a group, a node

routes a JOIN message towards the groupId. The message will

continue to be routed till it reaches a node in that tree. The

route traversed by the message to the group multicast tree

would be added. As a result, Scribe can efficiently support

large numbers groups, arbitrary numbers of group members,

and groups with highly dynamic membership.

Scribe supports two major properties: multicast and any-

cast. We use multicast to develop a hierarchical aggregation

tree: a fundamental abstraction for scalability of Oases. Multi-

cast sends the message to every group members and messages

are disseminated from the rendezvous point along the group

tree. Any-cast is implemented using a distributed depth-first

search of the tree. Any node in the overlay can any-cast to a

Scribe group by routing the message towards the groupId.
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Figure 3. Overall framework of Oases. Oases consists of four components: the Oases root, the leaf agent, the Oases model construction tree, and the Oases
spam processing tree. The Oases root first manually separates the collected raw data into training and test datasets. Second, the Oases root disseminates those
datasets to the leaf agents via the Oases model construction tree. Third, Oases leaf agents complete the data training processing. Besides, they connect to the
web servers to gather online social activity logs. Fourth, the Oases spam processing tree accomplishes the spam detection. By organizing the leaf agents to
complete spam mining tasks in a scalable manner, detected Spam and Ham (non-spam) posts are rolled up level by level via the tree until reach the root.
Finally, the classified results are transmitted to the users.

III. OASES DESIGN

In this section, we introduce the Oases system, discuss each

functional component of the system, and outline the details

of workflows in the Oases system.

A. Oases Overview

As shown in Fig. 3, the Oases system consists of four

major components: (1) the Oases root; (2) the Oases model

construction tree; (3) the Oases leaf agent; and (4) the Oases

spam processing tree.

The first component is the Oases root. The Oases root is

responsible for the main control flows on other nodes, e.g.,

publishing the instructions from the Oases root to branches

and leaf agents to start training the classifier, delivering

messages to the Oases leaf agents to start classifications, etc.

As shown in Fig. 3, for the first step, the Oases root manually

divides the raw dataset into training dataset and test dataset.

The training dataset and test dataset are then disseminated by

the Oases root to all distributed Oases leaf agents through the

Oases model construction tree which is discussed next.

The second component is the Oases model construction

tree. As shown in Fig. 3, for the second step, the Oases model

construction tree is responsible for creating efficient paths
for the Oases root to disseminate the training dataset and test

dataset to the Oases leaf agents. The key idea is the use of a

DHT-based application-level multicast tree [6] to disseminate

copies in a progressively way following the tree path, without

maintaining N point-to-point connections for N leaf agents.

The third component is the Oases leaf agent. The Oases

leaf agent is responsible for the training of the spam detection

model. As shown in Fig. 3, for the third step, the leaf agent

applies the received training dataset to the Random Forest

algorithm [4] to practice the classifier, and uses the test dataset

to enforce the classifier. The trained classifier is used later by

the fourth component to do the online spam detection.

The fourth component is the Oases spam processing tree.

The Oases spam processing tree is responsible for orchestrat-

ing the distributed Oases agents to fulfill the data mining tasks

of online spam detection in a scalable fashion. The Oases

leaf agents are directly connecting to the web servers that

generate user activity logs, i.e., tweets, and classify spams

out of these logs. As shown in Fig. 3, for the fourth step,

the workflow of Oases spam processing tree is as follows: a

scalable aggregation tree “rolls up” the classified results from

the Oases leaf agents level by level until the results reach the

root. For example, if one tree has 7 spam processing agents

and each leaf agent classifies 10,000 social data, then after

aggregation, the root agent receives 70,000 classified results.

B. Oases Root

The Oases root is responsible for the main control flows of

the whole system, including (1) dividing the raw dataset into

training dataset and test dataset; (2) publishing the datasets

from the Oases root to branches and leaf agents to start

training the classifier; and (3) aggregating the spam detection

intermediate results from the Oases leaf agents to the root.

The Oases root uses a DHT-based hierarchical tree as the

main channel for disseminating datasets and instructions. The

DHT-based hierarchical trees are built as follows:

1) Step 1: constructing a peer-to-peer overlay leveraging

Pastry [13]. Each Oases node is assigned a unique,

128-bit nodeId in a circular nodeId space ranging from

0 ∼ 2128 − 1. All nodes’ nodeIds are uniformly dis-

tributed. Given a message and a key, the message can

be guaranteed to be routed to the node with the nodeId

numerically closest to that key, within �log2bN� steps,

where b is a base with a normal value 4.

2) Step 2: building a multi-cast tree leveraging Scribe [6]

(more details can be found in Section III-E). Any node

in the overlay can create a group with a groupId which

is the hash (SHA-1) the group’s name concatenated

with its creator’s name. Other nodes can join the group

by routing a JOIN message towards the groupId. The
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Figure 4. Sample of the data classification in the Oases leaf agent. Original
test data has no labels. After classification, the predicted labels are generated.
Label 1 presents Spam and 0 presents Ham (non-spam).

node which its nodeId is most near to the groupId

serves as the root. The tree multicasts a message to

all members of the group within O(logN) hops.

3) Step 3: enhancing the aggregation function on branches.

The Oases root and middle-level nodes jointly imple-

ment (1) the aggregation flow and (2) the control flow.

For example, for the social spam detection application,

batches of social logs are parsed as a map from hashed

data contents (ID) to the classified tags (labels), i.e.,

(DDA2, 1) and (F7B5, 0) in the Oases leaf agent (here

the classified tag 1 means the data is classified as

spam, tag 0 represents non-spam, and we use shortened

hashes to indicate ID). Then the aggregation tree that

progressively ‘rolls up’ and reduces those ID-label pairs

from the distributed leaf agents to the root (more details

can be found in Section III-F). Besides, when necessary,

the Oases root can multicast to its workers within the

group, to notify them to empty their sliding windows

and/or synchronously start a new batch.

C. Oases Leaf Agent

The Oases leaf agent is responsible for the local data

processing task by executing the root’s instructions. Data

processing task in the leaf agent consists of two roles: (1) local

data classification and; (2) local online social spam detection.

The local data classification is the first role of the leaf

agent. Each leaf agent trains a classifier by using the training

dataset. Then it uses the test dataset to examine the accuracy

of the trained model. Besides, the leaf agent updates its trained

model periodically with the new delivered training and test

datasets from the root. This allows the trained model to detect

spam efficiently with the latest spam features.

Fig. 4 shows the processing of data classification in a leaf

agent. Original social data is normalized in dataset without

labels. After the classification via the trained model, each

instance of the original data acquires a classified label, which

identifies spam or not.

Fig. 5 shows the visualization of data classification in one

leaf agent. Fig. 5a shows the original dataset without predicted

labels. After the classification, this dataset is classified as two

groups, as shown in Fig. 5b, where the purple and orange

color represent Ham (non-spam) and Spam, respectively.

The local online social spam detection is the second role

of the leaf agent. In Oases, each leaf agent connects to a

web server so as to collect the online social streaming data

from this server. Then the leaf agent completes the online data

analysis upon streaming data flow with the trained model and

produces classified results. Finally, all leaf agents collaborate

(a) Unclassified data.

Spam Posts
Ham Posts

(b) Classified data with labels

Figure 5. Visualizaiton of the data classification in the Oases leaf agent. (a)
shows the original dataset which has no labels. (b) shows the dataset with
labels predicted by the model.

to shuffle the classified results to the upper layer via the spam

processing tree. More details can be found in Section III-F.

D. Oases Classified Algorithm

We next introduce the details of the classic algorithm that

be implemented, Random Forest algorithm [4], in our training

and test processing.

Why Random Forest? Random Forest algorithm is a

classic data mining algorithm and had been implemented

with graceful performances in various works of social spam

detection [21, 24]. Random Forest constructs a fixed number

of decision trees for training during the training processing

and results in one final decision which is determined from

multiple individual trees. This algorithm is derived from

decision tree learning and tree bagging.

In the training process, the classifier in each leaf agent

receives the training dataset from the root agent, then ran-

domly samples N cases to create a subset of the data. The

subset usually about 66% of the total set. One subset of the

samples creates one decision tree. That is repeatedly to choose

some different small subset of attributes at random and creates

all decision trees. When leaf agent starts the test processing,

trained classifier puts the test dataset into the forest. Then it

runs down all trees of the forest. The classification result is

the majority vote among all decision trees.

E. Oases Model Construction Tree

The Oases model construction tree is responsible for cre-

ating efficient paths for the Oases root to disseminate the

training and test dataset to the Oases leaf agents. Here we

use an example to illustrate the Oases model construction tree.

The sample scenario is presented in Fig. 6. Assume there are 7

nodes in the Oases system. The node with nodeId numerically

closest to the topicId acts as the rendezvous point for the

associated multicast tree. For example, if hash(model) equals

to 0088, the node with same identifier or closest identifier like

0087 or 0089 will be the root of the model tree. In Fig. 6,

the tree is rooted at the rendezvous point and the other nodes

subscribe to this tree. The Oases root multicasts the training

and test datasets to all leaf agents in O(logN) hops. Then

those leaf agents are triggered to apply the received dataset

to the local classifier to complete the model training and test

processing using the Random Forest algorithm [4].

F. Oases Spam Processing Tree

The Oases spam processing tree is responsible for coordi-

nating distributed leaf agents to accomplish the online spam
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Figure 6. Oases Model Construction Tree. In this tree, the Oases root
multicasts the training and test datasets to the leaf agents via the efficient
paths that the tree offered within O(logN) hops.

detection globally. In this section, we use a sample scenario

to present the workflow of the Oases spam processing tree.

As shown in Fig. 7, the leaf agent processes the online

social streaming data with its trained classifier. For instance,

after processing, original data (mnk, ?), in which the question

mark means it hasn’t been classified, is detected as spam and

marked as (mnk, 1). Then the leaf agent sends the hashed

content, e.g., hash(mnk) = 788A and its label formatting as

(788A, 1), to the upper layer.

Further, the spam processing tree progressively rolls up and

reduces those ID-label pairs from the distributed leaf agents

to the root. For example, 〈(788A, 1), (2D17, 0)...〉, 〈(0DA4,

0), (788A, 1)〉, are reduced as 〈(788A, 2), (2D17, 0), (0DA4,

0)...〉 in the branches of tree. And then those pairs are reduced

as 〈(788A, 3), (D1C6, 2), (2D17, 0), (0DA4, 0)...〉 to the root

as the final results. The value of labels indicates the number

of leaf agents which detect this data as spam, e.g., (788A,

3) represents that there are 3 leaf agents classifying the data

“mnk” as a spam post. Those hashed IDs with larger values

in labels indicate the higher possibility as spam posts.

G. Self-adjustable Tree

Oases supports self-tuning in the tree structure level. By

manipulating the parameter n of the tree fan-out, with achiev-

ing 2n fan-outs per agent, it can format different trees.

The design of this feature is to support multiple targets in

spam processing. For example, when an application is high

latency sensitivity, it can modify the tree depth by adjusting

the value of tree fan-out. Assuming there are 10b agents in

Oases, the default depth of the tree is log2bN , where b = 4.

By changing the default fan-out from 24 to 25, the average

depth of the tree is reduced from 5 to 4. So root-to-leaf data

transfer can achieve lower latency by across fewer layers.

When an application desires a good failure recovery, Oases

can increase the depth of trees by reducing the tree fan-out.

Using the same example above, Oases can change the fan-out

from 32 to 16, resulting in that a tree’s depth increases from

4 to 5. A deeper tree can benefit the agent’s failure recovery.

This depends on the mechanism for failure recovery in Oases:

once a child fails to receive a heartbeat message, it suspects

its parent failed, and this agent will route the JOIN message

to the group’s identifier. Oases then sends the message to a
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Figure 7. Oases spam processing tree. Each leaf agent collects social
streaming data from web servers. Then its trained model processes data and
produces the classified results, and sends the results to the upper layer.

new parent to repair the tree. When a tree has a small fan-out

and a large depth, the failure of one agent can only affect

the performances of the following sub-agents, while fewer

sub-agents can reduce this failure effects.

H. Benefits and Design Rationale

In this section, we discuss why Oases has the online and

scalability benefits and the rationale behind the design.

Online. Oases enables the progressive aggregation of the

properties of the spam posts for creating new spam classifiers

to actively filter out new spam posts and update the classifiers

to all distributed data process agents. That ensures the spam

classifiers to always keep pace with the latest social spam,

and identify new spam with high efficiency.

Exploring DHTs for Scalability. The Oases model con-

struction tree and spam processing tree are self-organizing

and self-repairing, and can be easily expanded in a dis-

tributed manner. The use of DHT guarantees that the cost

of multicast and aggregation can be fulfilled within O(logN)
hops. Moreover, multiple groups are supported in one single

overlay, which means that the overhead of maintaining a

complex overlay can be amortized over all groups’ spinning

trees [13]. Specifically, all agents in overlay are viewed as

equal peers, so, each agent can be a root, parent, leaf agent

or any combination of the above, which leads to well balance

of the computation loads.

Handling Nodes’ Failures. The Oases system uses leaf

sets to handle node failure [6]. Each node maintains a leaf

set. The leaf set is the set of l nodes which nodeIds that are

numerically closest to the present nodeId, with l/2 larger and

l/2 smaller. A typical value of l is nearly 8�log2bN�, where N

is the total number of nodes in the system. Neighboring nodes

in node’s leaf set exchange keep-alive messages periodically.

An agent is presumed as a failure if it is unresponsive for a

period. Then those members in the left set of failed node’s

leaf set are notified and they update their leaf sets. Once the

node recovers, it will contact the node in its last known leaf

set, obtain their current leaf sets, update its own leaf set and

then notify the members in the new leaf set of its recovery.
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(b) Delivery time of results.
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Figure 8. Performance evaluation of Oases on time of data delivery, receive, and training test process. (a) shows the time of the leaf agents receiving data
blocks from root agent with various size of data blocks and different number of agents. (b) represents the time of shuffling data from leaf agents to upper
layer in the tree. (c) shows the training and test time in data processing with different size of data blocks.

IV. EVALUATION

We evaluate the Oases system with the real-world online

social network streaming data. Experimental evaluations an-

swer the following questions:
• What are the spam detection accuracy rates of the Oases

system (Sec. IV-B)?

• What are the performances of data shuffling, processing

and delivery latency in Oases (Sec. IV-C & Sec. IV-D)?

• What is the overhead and resource consumption of the

system at runtime (Sec. IV-E)?

A. Testbed and Application Scenarios

Experiments are conducted on a testbed of 800 agents

hosted by 16 servers running on Linux. Each server has a

QEMU Virtual CPU with 3.4GHz processor, 4G of memory

and 30 GB hard drives. The system was implemented in Java

by using Java SE Development Kit 7 in x64, version 1.7.

Oases’s functionality is evaluated by running an online

social data application. Nearly 3,000,000 tweets from Twitter

streaming API had been collected and evaluated via our

system from 12.2016 to 02.2017. We use the straightforward

content features (URL, words, etc.) to predict labels. Oases

uses test dataset to examine the model which is trained with

training dataset. The application is implemented to predict

labels from online data streams via the Oases leaf agents.

B. Spam Classification Results

We evaluate the spam classification results of Oases and

compare the performance with several popular classifiers.

Evaluations rely on a sample dataset which consists of 50,000

posts (37465 posts are Ham and 12535 posts are Spam).

The results are shown in Table I. Random Forest is default

implemented in Oases and other classifiers include K-Nearest

Neighbor (KNN), Support Vector Machine (SVM), Logistic

Regression, and Naive Bayes. F1-score (F-Measure) responses

for an important factor in measuring the classification per-

formance. The results show that Random Forest achieves

promising performance with the F-measure up to 96.2%

and the accuracy up to 94.8%. Combined with these key

indicators, Random Forest achieves the best performance

among all classifiers.

C. Data Shuffling Time and Data Processing Time

The Oases model construction tree, as the efficient paths

for dataset distribution, directly influences the local data pro-

Table I. RESULTS OF SPAM CLASSIFICATION WITH MULTIPLE CLASSIFIERS.

Classifiers Accuracy F1 FPR
Random Forest 94.8% 0.962 0.26
SVM 94.5% 0.937 0.446
KNN 91% 0.911 0.374
Logistic 92% 0.908 0.303
Naive Bayes 86% 0.871 0.477

cessing time. Besides, after the data processing, the classified

intermediate results propagate from distributed leaf agents,

to the upper layer for aggregation, until they reach the Oases

root. The aggregation tree, as the structure for shuffling results

from the leaves to the root, directly influences total spam

processing latency. Therefore, we first report the time of the

leaf agents receiving data blocks (datasets) from the root

in Fig. 8a, and then report the time of intermediate results

aggregating from the leaves to the root in Fig. 8b. Finally, we

show the data processing time of each leaf agent in Fig. 8c.

Data Shuffling Time. Here we classify the data shuffling

time into two parts: (1) the time of the leaf agents receiving

data blocks from the root; and (2) the time of results aggre-

gating from the leaf agents to the root. The number of the

Oases agents varies from 25 to 800. Simultaneously, various

sizes of data blocks are used for evaluation.

Fig. 8a and Fig. 8b show that, when the system uses the

same datasets but with a different number of agents, the time

of delivery and reception linearly increases, rather than fold

increases. This is because that the linear increment of the

delivery or reception time is strictly determined by the tree

depth O(logN), which further reflects that the tree topology

in the overall performance exhibits a very good balance.

Data Processing Time. Fig. 8c shows the time of model

training and test processing in one agent with various sizes of

data blocks. Result shows that with the increment of the size

of data blocks, the training processing time also increasing

rapidly, especially when the data block has 20k and 25k posts.

It indicates that over-large size of data blocks can be the

bottleneck of the whole system when considering the size

reaches to 25k with the training time up to 1150s. Costly time

in the training processing will cause the whole system looks

like in “busy-waiting” - though the leaf agent is working on

the training processing, the root cannot get any useful results

in a long time. Therefore, the choice of a suitable size of the

data block can promote the best performance of the system.
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(b) Average delivery latency of data.
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Figure 9. Latency of root aggregation, data delivery and fault recovery latency with different tree structures. (a) shows the average latency of root agent
aggregates whole results in one process cycle. (b) shows the average data delivery latency across the different trees. The tree bit decides the fan-out of each
agent with 2n. (c) represents the average fault recovery latency of failed agents in different trees.

D. Aggregation Latency and Self-adjustable Tree

Performance impact due to large data blocks. After

the hashed ID-label pairs are shuffled to the upper level, the

Oases root actively aggregates the data stream into the final

result pool. Although the Oases architecture ensures that the

aggregation processing can be completed with logN hops.

However, many factors may impact the performance of the

root aggregation, such the size of the data blocks, the network

bandwidth, and the traffic interference.

As shown in Fig. 9a, the size of the data blocks (training

and test datasets) has an important effect on the latency.

In the case of reasonable dataset size, e.g., 5k, the average

latency is nearly 100 seconds. However, when using large

data blocks (e.g., 20k), the latency grows much faster than

the size increment of the data block.

We believe that the increased latency indicates that the

system has reached a limited overload when processing with

extra large data blocks. In this case, some agents are still

active but other agents may be blocked to wait for the

server’s resources. In addition, oversized dataset exacerbates

the burden of each leaf agent during the training and testing

processing that causes the overload even further overload.

Tree Structure Adjustment. Fig. 9b and Fig. 9c represent

the performances of delivery latency and recovery latency

with different tree structures. In Fig. 9b, tree bit decides

the tree fan-out of each agent. For example, when tree bit
= 4, the fan-out is 16, which means each agent has 16

following agents. Results in Fig. 9b show that delivery latency

increases when the tree layer increases (small tree bit), in

which delivering a data block from the leaf to the root need

to cross more layers.

Fig. 9c presents the relationship between the failure re-

covery and the tree structure. Results show that when the

tree layer is small (large fan-out), the latency of agent failure

recovery increases. That is reasonable as we present before.

When the tree fan-out gets larger, once an agent fails, more

child agents need to recover their functions and structures,

which will take a longer time to process and find a new parent.

Besides, with the increment of tree agents, the average latency

decreases. This proves that when the tree becomes deeper, the

locality properties of Pastry lead to shorter routes and benefit

the recovery of failed agents [13].

Table II. THE RUNTIME OVERHEADS OF OASES. IT REPRESENTS THE CPU,
MEMORY, I/O, AND CONTEXT SWITCH OVERHEADS.

VSD CPU Memory I/O C-switch
%used %used wtps cswsh/s

5k 47.6% 38.0% 2.23 322.72
10k 51.1% 43.8% 3.20 280.69
15k 51.0% 44.2% 2.78 304.57
20k 50.9% 45.1% 1.80 314.06

VSD: various size of data blocks.
wtps: write transactions per second.
cswsh/s: context switches per second.

E. Runtime Overhead

Table. II shows the runtime overhead of Oases. As the result

shows, the Oases system has similar overheads in the utiliza-

tion of CPU, memory, I/O, and context switches when dealing

with the data blocks of different sizes. This is because the

Oases system uses a decentralized architecture to distribute

the management load evenly over the distributed servers, and

the hierarchical tree structure facilitates communication across

multiple agents and servers.

We also evaluate the server’s resource consumption, with

each server supporting five leaf agents. As shown in Fig. 10,

the processing cycle time is close to 140 seconds, with the

CPU and memory utilization reaching a higher level from

15s to 155s. In addition, the processing performance is quite

consistent with the former results in Fig. 8.

V. RELATED WORK

A. Spam Detection in Social Networks

Offline. Many former studies had focused on offline meth-

ods in analyzing social data [11, 15], which utilized a limited

historical dataset. Based on the connection between users and

user trusts, [17] identifies victims in Twitter with a dataset that

was collected in 10 months. By analyzing several historical

datasets, Spade [22] presents that new spam can be detected

from one social network across other social networks. Prior

studies classified social spam from various perspectives, either

from the view of polluted contents [11], user behaviors [27],

or from hashtags [15], inherent features [21]. However, these

studies still limit in a specific size of historical data and are

difficult to catch up the online latest features of social spam.

Centralized Processing. Former studies normally focused

on centralized processing [12, 17]. [8] presents an online

spam filtering framework in a central server by using spam
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(a) CPU utilization in one server

(b) Memory utilization in one server.

Figure 10. CPU and memory utilization in one server.

campaigns. TopicSketch [23] is a real-time framework that

combines a sketch-based topic model and a hashing-based

dimension reduction to detect bursty topics. Lfun [7] is a

real-time statistic features-based system which can extract

spam from social drifting data. Monarch [18] utilizes the

online URL blacklists to detect URL spam in real-time. The

difference between our approach and these studies is that

they normally focused on centralized spam analysis, while

we focus on social spam detection in distributed manner.

B. Distributed Social Data Processing

Recent applications had been cooperated with scalable

methods to achieve efficient processing [3, 14]. [5] presents

a parallel spam filtering system based upon MapReduce. To

mitigate the accuracy degradation by parallel SVM, they

augment with ontology semantics. Different with them, we

allow data training can be completely implemented in local

agents and maintain the desired accuracy. ELF [9] is a

decentralized model for the streaming process and supports

powerful programming abstraction for batch, iterative and

streaming processing. SSTD [25] is a dynamic truth discovery

scheme which can discover Twitter data truth with scalability.

Different from above work, we use the latest data features as

the feedback and analyze social spam in a scalable way.

VI. CONCLUSION

In this paper, we present the online scalable spam detection

system (Oases), a distributed and scalable system which

detecting the social network spam in an online fashion.

By periodically updating the trained classifier through a

decentralized DHT-based tree overlay, Oases can effectively

harvest and uncover deceptive online spam posts from social

communities. Besides, Oases actively filters out new spam

and updates the classifiers to all distributed leaf agents in

a scalable way. Our large-scale experiments using real-world

Twitter data demonstrate scalability, attractive load-balancing,

and graceful efficiency in online spam detection. Future work

on Oases will go beyond additional implementation steps,

e.g., to implement new specification/configuration APIs for

end users, achieve high-availability by exploring checkpoint-

ing/failover approaches, reduce runtime overhead, all with

goals of achieving both good performance and high resource

efficiency for large-scale online spam detection.
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