2018 IEEE 11th International Conference on Cloud Computing

A Toolset for Detecting Containerized Application’s Dependencies in CaaS Clouds

Pinchao Liu, Liting Hu, Hailu Xu, Zhiyuan Shi, Jason Liu, Qingyang Wang', Jai Dayal*, Yuzhe Tang®
Florida International University, TLouisiana State University, *Intel Corporation, $Syracuse University
Email:{pliu002, lhu, hxu017, zshi005, liux} @cs.fiu.edu, qywang@csc.lsu.edu, jai.dayal@intel.com, ytang100@syr.edu

Abstract—There has been a dramatic increase in the pop-
ularity of Container as a Service (CaaS) clouds. The CaaS
multi-tier applications could be optimized by using network
topology, link or server load knowledge to choose the best
endpoints to run in CaaS cloud. However, it is difficult to apply
those optimizations to the public datacenter shared by multi-
tenants. This is because of the opacity between the tenants
and the datacenter providers: Providers have no insight into
tenants container workloads and dependencies, while tenants
have no clue about the underlying network topology, link, and
load. As a result, containers might be booted at wrong physical
nodes that lead to performance degradation due to bi-section
bandwidth bottleneck or co-located container interference.

We propose ‘DocMan’, a toolset that adopts a black-box
approach to discover container ensembles and collect infor-

mation about intra-ensemble container interactions. It uses a L 4 4

. Physical Node] Physical Node
combination of techniques such as distance identification and Database
hierarchical clustering. The experimental results demonstrate () _A_server |:|
that DocMan enables optimized containers placement to Client 0

reduce the stress on bi-section bandwidth of the datacenter’s
network. The method can detect container ensembles at
low cost and with 92% accuracy and significantly improve
performance for multi-tier applications under the best of
circumstances.

Keywords—Virtualization, Clustering, Dependency Analysis.

I. INTRODUCTION

Recently, there has been a dramatic increase in the
popularity of Container as a Service (CaaS) clouds, includ-
ing Microsoft Azure’s Container Service [I 1], Amazon’s
EC2 Container Service [!] and Lambda offerings [2], and
Google’s Container Engine service [4]. CaaS is a form of
container-based virtualization in which container engines,
orchestration and the underlying compute resources are
delivered to users as a service from a cloud provider. With
CaaS, users can boot, organize, run, scale, manage and
stop containers using a provider’s API calls or web portal
interface. Users purchase the containers from the cloud
providers and run applications inside containers.

Many applications, such as RUBIiS [16], Hadoop MapRe-
duce [10], Storm [18] are multi-tier applications in which
two or more components cooperate and communicate to
jointly provide a certain service or accomplish a job. A
typical multi-tier application, for instance, contains a pre-
sentation tier for basic user interface and application access
services, an application processing tier for processing the
core business or application logic, and a data access tier
for accessing data, and finally a data tier for holding and
managing data.

These CaaS multi-tier applications could be opti-
mized by using network topology, link or server load
knowledge to choose the best endpoints to be placed
[23] [24] [25] [30] [34]. For example, when container sizes
and application workloads are known, the interference be-
tween competitive multi-tier applications can be mitigated

An Ocean of User Containers
A

4

Fig. 1: A containers cluster use case.

by mapping their containers to remote physical servers
or racks. Power savings can be achieved by squeezing
lightweight containers that use complementary resources
into a small subset of physical servers and turning off
the redundant servers. However, these optimizations can
only apply to the private datacenter where the datacenter
provider owns both applications and the underlying infras-
tructure, and cannot apply to the public datacenter shared
by multi-tenants. This is because of the opacity between
the tenants and the datacenter providers: tenants have no
insight into the underlying datacenter network topology,
link and load. Providers have no insight into the tenant’s
container workloads. As a result, naively placing the heavily
communicating containers across the racks which have
the bottlenecked bi-section bandwidth [20] [27] [33] can
also lead to unacceptable latencies. Naively co-locating the
containers that run interactive queries, and the containers
that run batch jobs while eagerly consuming any idling
resources on the same servers can also lead to unacceptable
latencies.

Figure 1 illustrates a use case scenario. The cloud
provider uses the container orchestration tools such as Ku-
bernetes [8] for automating deployment, scaling, and man-
agement of containerized applications. It randomly places
containers using a bin-packing algorithm [37] as long as
the physical server can satisfy their resource requirements,
without considering the dependencies between containers.
In this case, client requests arrive at the container running
the web server front end and are then forwarded to one
of the containers running application servers, which in
turn may request data from a backend container hosting
a database.

As illustrated in Figure 2, an ensemble of frequently
communicating, the ‘chatty’ containers are placed across

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00032

IEEE
194 computer

soclety

Core Route

_ /7
Saturated ‘-'-.«

Saturatedl Aggregation Switch
= G . (E1E012

Data Center Layer 3

Layer 2

L2 Switch
Top-of-Rack Switch
Chatty

+® Containers

Web éerver Cliént Applicatibn Server Database Server

Fig. 2: Example of shared up-links from Top-of-Rack crash, causing
performance degradation for many containers.

multiple racks. Such a placement can negatively affect the
services provided by the ensemble. Since these are typically
5:1 to 20:1 oversubscribed, this can result in a worst-case
available bi-section bandwidth as low as 125Mbps [28].
Furthermore, the higher level switches in the network
topology cost much more, due to the amount of network
bandwidth and numbers of ports they have to support.
Recent studies [19] [27] [33] have shown that the servers in
different racks have to share the up-links from top of rack
switches (ToRs). First, as the shared up-links from ToRs
become saturated, intra-ensemble communications may be
delayed. Such delays can be further exacerbated by message
re-transmissions due to time-outs. Second, the use of scarce,
shared bandwidth can affect other services and ensembles,
as evidences in applications like Hadoop MapReduce that
experience slowdown due to file system-level data reorgani-
zation. Finally, a link failure can cause severe imbalances
across paths and may require relocation of some of the
containers in order to reduce over-subscription.

In this paper, we propose DocMan, a novel container
API that (1) identifies potential container ensembles in
cloud via resource utilization logs, (2) assesses the degree
of “chattiness” among the containers in these potential
ensembles, thereby (3) enabling optimized container place-
ment to reduce the stress on bi-section bandwidth of the
data center’s network. DocMan has the following unique
properties:

e Transparency and privacy-preserving — as a non-
intrusive tool, DocMan does not require any code
modification to the containers or applications.

e Lightweight — unlike the network sniffer tools that
bring heavy burdens to the management software,
DocMan has negligible CPU and memory overheads.

e Actionable — insights derived from running DocMan
can help management software better co-locate con-
tainer ensembles on underlying hosts.

Discovering container ensembles and their inter-
container dependencies are quite challenging. A naive
method that continuously gathers statistics about all com-
municating containers is prohibitively expensive. First, it
would require introspection of all packets sent and re-
ceived by the containers; this would induce notable CPU
overheads and additional per packet latency of the tens of
microseconds. Second, additional memory resources would

195

be required to maintain statistics for every pair of IP
addresses.

DocMan uses a three-step approach. Firstly, it acquires
container-level statistics commonly available in container
management systems (e.g., Kubernetes), such as the total
numbers of packet in/out over time. Secondly, it computes
the correlation coefficients among these statistics. Finally,
it divides the corresponding containers into subsets (also
called ensembles) using correlation values and a hierarchi-
cal clustering algorithm [36].

We have designed and implemented DocMan and evalu-
ated its effectiveness on a testbed that consists of 20 phys-
ical servers with 114 Docker containers. These containers
run a diverse mix of business, web, Internet services, and
batch workloads. Experimental results show that DocMan
can identify container ensembles with 92.0% accuracy, and
improve the application performance in terms of throughput
and latency by making sophisticated placement decisions.
In particular, we observe an up to 625% improvement
in the application throughput for a RUBiS instance, a
33.4% improvement in application throughput for Hadoop
MapReduce instances, and 7.9% improvement for Spark
Streaming instances under the best circumstances.

The remainder of this paper is organized as follows.
Section II discusses background and motivation. Section I1I
describes the DocMan design and implementation. Sec-
tion IV presents the experimental setup and performance
evaluation. Section V discusses the related work. We con-
clude with some directions for future work in Section VI.

II. MOTIVATION

The novelty of our work lies in that, instead of using
an intrusive approach to detect containerized application’s
dependencies (e.g., via intercepting packet [21] [31] [32]
or injecting code [22] [26] [35]), DocMan uses a non-
intrusive approach via capturing the CPU, memory and I/O
logs for detecting dependencies. The rationale behind our
approach is that we observed that real-world containerized
multi-tier applications exhibited strong correlation among
their resource usage statistics.

We analyzed Google traces [5]. The log represents 29
day’s worth of cell information on May 2011, on a cluster
of 12.5k machines. The cluster uses Linux containers [9] for
resource isolation and usage accounting. A job is comprised
of one or more tasks, each of which is accompanied by a
set of resource requirements used for scheduling (packing)
the tasks onto machines. Each task runs within its own
container. Tasks are scheduled onto machines according
to the given lifecycle. We randomly selected 3 jobs from
Google traces in the same period, each job containing 1005,
999, and 1997 tasks separately.

Fig. 3a and Fig. 3b show that the different jobs have
different resource usage patterns, indicating that there exists
the hidden dependencies within the tasks that belong to
the same job. For example, the “CPU spikes” and “CPU
valleys”, or the “memory spikes” and “memory valleys”
of the tasks that belong to the same job (i.e., container en-
semble) consistently occur together. To summarize resource
consumption range of tasks belonging to the different jobs,
Fig. 3c and Fig. 3d show the Cumulative Distribution

0.015F

©0.010

U Usa

0. 0.005F

Memory Usage

Cli

0.000 [t ‘

Job_A Job_C Job_A Job_B Job_C
Google Trace Job

Job_B
Google Trace Job

(a) CPU rate. (b) Memory usage.

Cumulative Distribution

o

.0
0.000

1.0 §10
El
0.8 2038
3
0.6 a 0.6
[
04 —— Job A | 204 —— Job_A
0.2 Job_B % 0.2 Job_B
—— Job_C g —— Job_C
0

0.0

"0.000

0.005 0.010 0.015

0.005 0.010
Memory Usage Value

CPU Usage Value

0.015

(c) CDF of CPU rate. (d) CDF of Memory usage.

Fig. 3: Resources usage statistic for 3 jobs in Google trace log during a same period. (Job_A is Job4665892165; Job_B is Job6261947650; and Job_C

is Job6486323509.)

Function (CDF) results. The results demonstrate that the
tasks of the same job are highly likely to fall into the same
range of CPU or memory utilization, which can be used to
infer the intra-ensemble correlations discussed below.

III.DOCMAN DESIGN

This section illustrates DocMan’s design, which includes
(1) monitoring of basic resource usage statistics of con-
tainers; (2) computing the correlation coefficients among
these statistics to identify their distances; and (3) using hi-
erarchical clustering algorithms to detect potential container
ensembles.

A. Data Collection

The first step is to capture the following universally
available system-level metrics about each container:

CPU: CPU usage per second in percentage terms (%).

Memory: Memory usage per second (MB).

I/0: Packets transmitted per second (KByte/sec).

These periodic measurements result in three time series
signals per container. Before explaining the actual analysis
being applied, we illustrate the utility of taking these
measurements with a simple example.

Multi-tier applications (e.g., RUBiS [16]) typically use
a request-response architecture, in which a client container
sends a request to the front end (e.g., Apache), which
assigns the work to an appropriate server (e.g., Tomcat)
running the application logic. The application logic services
the request by querying the backend (e.g., a database
server like MySQL) to produce the necessary output, and
sending the response back to the client. Therefore, given the
nature of multi-tier applications, we can expect correlations
between the CPU, Memory and I/0 statistics for interacting
containers. For example, an instant rise of CPU usage or
packet flow rate in one container directly or indirectly
triggers activities in other containers, thereby creating the
correlations among these statistics.

To more clearly show the correlations among these
statistics, we did an experiment on two RUBIS instances
with 2000 clients and 500 clients workloads, respectively.
Each instance has three containers, i.e., client, Tomcat
server and MySql database. The container-level metrics of
CPU, memory and I/O for these containers are continuously
collected and compared in Fig. 4, where the system load
is the normalized value of CPU, memory plus I/O with
the same weight. The results show that the containers that

196

collaborate together to accomplish the same task within the
same instance tend to have similar trends of system load,
while the containers that are responsible for different tasks
do not exhibit correlations. The same logic can be applied
to other applications as well, such as big data analyt-
ics application like Hadoop MapReduce applications [10],
Storm applications [18], Spark Streaming applications [17],
which are popular in CaaS clouds. For example, MapRe-
duce adopts a Partition/Aggregate pattern which scale out
by partitioning tasks into many sub-tasks and assigning
them to worker containers (possibly at multiple layers).
These worker containers are expected to work together to
accomplish the task.

There are several design tradeoffs about data collection:

e Metrics selection. Although “I/O” (PacketIn and Pack-
etOut) is a more intuitive metric to do correlation
analysis among communicating containers, we also
include CPU and memory as complementary metrics
because they will provide extra information in certain
scenarios. For example, if a bunch of containers do
many-to-many but infrequent data exchanges, it is dif-
ficult to detect them using only I/O metric, especially
when the interval between data exchanges is larger
than the sampling window. In such cases, other metrics
can capture the missing signals.

Sampling window. Larger sampling window does not
always means more accurate result. For example, if the
large window accidentally covers the idle period when
the container ensemble has no inter-communications.
The final result may not be as accurate as smaller
windows. On the other hand, if the sampling window is
too small, it may fail to catch up the useful information
timely. Therefore, we need to find the appropriate
sampling window for each representative application.

B. Distance Identification

Each containers log can be organized as a vector of an
array (a, f3,7). o is the CPU usage record; B is the Memory
usage record; and ¥ is the I/O usage record, respectively.
Then, the all containers generate a vector matrix for the
cloud service provider to analyze. We choose the Pearson
product-moment correlation coefficient (PMCC) [13] to
measure the degree of correlation, giving a value between
-1 and +1 inclusive.

The mathematical logic is as below: there are two vec-
tors X and Y to demonstrate any two vectors which are

20

—=— RUBiSInstance 1 Qient
—— RUBiSInstance 1 Server
—o— RUBiSInstance 1 Database|
—e— RUBiSInstance 2 Qient
—— RUBiSInstance 2 Server
——RL 2 Database| | |

i
i

i Workload of 500 clients

10r’ﬂ/§. og!go .

RUBIE

5

iPerf

o

ENOD

RN

o

System Load Average
5

o
o

0

50

100 150 200 250
Running Time in Seconds
Fig. 4: Example of a multi-tier RUBiS application
showing correlation on server usage. The differ-
ent sets of RUBIS applications have their own
resources usage trend.

300 350

generated by the containers. Each element is an array of
resources usage record in the vector. X = X1,X>,..., Xy,
Y =1,Y,...,Y,, then the correlation between X and Y
is:

n X, @ Xllxi YOt,' Y (;i
igl (i((ﬁi - Xéi) (Yﬁi - Yl/i)
corr = ' XYi Y% L
n X(Xi X(/xi n Y o Yé‘i
Z (| Xs | — Xéi)2): ({ Y8 | - Yéi)2
i=1 X)’i ?/’: i=1 YYi Y. }2

The calculation result corr is between -1 and 1. If it is O, it
means they have no relationship. Near -1 means that they
are negatively related with each other and near 1 means
that they are positively related with each other. Since the
negative relationship is meaningless in practice, we update
all the negative numbers to O in the output matrix.

Fig. 5 shows the result that is performed by Python pack-
age numpy|[2] calculation. It illustrates that the containers
are performing same tasks, which are having a higher value
near to 1. Such as the value between container 0, 1, and
2, the respective values are 1.00, 0.99, and 0.99. In the 3D
chart, the values are at the top part. However, comparing
to other containers, they have a lower value which is near
to zero, that means they do not have a direct relationship.
Such as 1 and 15, the value is only 0.03. For 2 and 14, the
value is only 0.04. These values are at bottom part in the
chart.

We further define the concept of distance to describe the
strength of dependencies between two containers:

1
corr;’

, corri =0

corr; >0

Distance(X;,Y;) = (2)

(e}

The distance value matrix will be used as input informa-
tion for the next step hierarchical clustering.

C. Hierarchical Clustering

Clustering[3] is the process of making a group of abstract
objects into classes of similar objects. A cluster of data
objects can be treated as one group. Two commonly used
clustering algorithms are hierarchical clustering and k-
means clustering. DocMan uses hierarchical clustering for
the following reasons:

Fig. 5: 3D plot of correlation matrix between con-
tainers including iPerf containers, RUBiS con-
tainers, and Hadoop containers.

197

AT
» -.&\ -"l.g

o
STE:.'o

Cluster Dendrogram

o7
% |
o)

1000

o

Hadoop |

00

600

a0

20

Fig. 6: Hierarchical tree generated by clustering
algorithm.

Hierarchical clustering does not require the number of
clusters in advance.

It works well with both globular and non-globular
clusters, while k-means fails to handle non-globular
data.

k-means clustering is sensitive to initial centroids. If
the user does not have adequate knowledge about the
data set, this may lead to the erroneous results.

The process of hierarchical clustering is as follows:
Step 1: initially assign each container to a cluster, so
that there are N initial clusters for N containers.

Step 2: find the closest (most similar) pair of clusters
and merge them into a single cluster.

Step 3: compute distances (similarities) between the
new cluster and each of the old clusters.

Step 4: repeat Step 2 and Step 3 until all items are
clustered into a single cluster of size N.

Concerning Step 4, of course, there is no point in having
all N items grouped into a single cluster, but doing so results
in the construction of the complete hierarchical tree, which
can be used to obtain k clusters by just cutting its k— 1
longest links. K can be based on the number of racks in
the datacenter, or it can be chosen to make the inter-cluster
distance less than a certain threshold.

IV.EXPERIMENTAL EVALUATION

Our experimental evaluations answer the following ques-
tions:

e What is the accuracy rate of DocMan’s toolset for
identifying the dependencies among the containers?
What are the potential performance gains of the
containerized applications by applying the DocMan
toolset for new placement?

What are the runtime overheads of the DocMan
toolset?

Our key evaluation results are as follows.

The accuracy rate of the DocMan toolset averages
92%. Classification the area under the ROC (Receiver
operating characteristic) curve is 0.93. ROC is a graph-
ical plot that illustrates the diagnostic ability of a
binary classifier system as its discrimination threshold
is varied.

By applying the DocMan toolset, for RUBiS instance,
the latency is reduced by an average of 6 times and the
throughput is increased by 72 times under the best cir-
cumstance. For Hadoop and Spark MapReduce tasks

Word Count and Secondary Sort, the latency
is reduced by 21%.

e The DocMan toolset’s CPU overhead is 55% lower
than Wireshark and 14% lower than tcpdump. Its
memory overhead is 97% lower than Wireshark and
30% lower than tcpdump.

A. Testbed

The test is performed on 20 dual-core dual-socket
servers. Each of them have two Intel processors, 4GB of
memory and 20GB hard drives. The 20 servers are equally
distributed across 4 edge switches. All switches and NIC
ports run at 1Gbps. The switches are connected with each
other, with an oversubscription ratio of at most 4:1. All
servers run on Ubuntu 16.04 with Docker version 17.06.

Experiments employ 3 instances of Hadoop MapReduce
(30 containers), 3 instances of iPerf (9 containers), 3
instances of RUBIS (9 containers), 3 instances of Sparks
Streaming (30 containers), 3 instances of Storm (27 con-
tainers), and 3 instances of Redis (9 containers), resulting in
a total of 114 containers running a mix of business, internet
services, and batch workloads.

B. Workload and Metrics

Apache Hadoop Mapduce(v2.7.1) [6] is an open-source
software framework used for distributed storage and pro-
cessing dataset of big data using the MapReduce pro-
gramming model. We use three instances of 10 Hadoop
MapReduce containers, one of them is master, the rest
are slaves. The namenode process and the YARN cluster
manager are launched on the master node, and each slave
node is responsible for launching its own datanode process.

Apache Spark Streaming(v1.4) [17] is a fast and gen-
eral engine for large-scale data processing. We use three
instances of 10 Spark Streaming containers, one of them
is master, the rest are slaves. The master process and the
built-in standalone cluster are started on the master node,
and each worker is responsible for launching the executor
process.

iPerf3 [7] is a tool for active measurements of the
maximum achievable bandwidth on IP networks. It supports
tuning of various parameters related to timing, buffers, and
protocols. We use three instances of iPerf containers. Within
each instance, there are one server and two clients.

RUBIiS(v1.4.2) [16] is an eBay-like benchmark. We use a
PHP-based configuration of RUBIS, with a web server front
end (Apache) and an application server (Tomcat) connected
to a backend database (MySQL). The workload is generated
by a web simulation client.

Apache Storm(v1.1.0) [18] is a distributed real-time com-
putation system. It makes easy to process unbounded and
real-time streams of data. We set three instances of 9 Storm
containers, one of the containers is Nimbus, and three of
them are ZooKeepers and the rest of them are Supervisors.
Topologies of WordCount, Reach and RollingTopWords are
running on them separately.

Redis(v3.2) [15] is an in-memory data structure store,
used as a database, cache and message broker. It imple-
ments a large hash table on top of system calls. We use

198

ror "‘5‘.(,,,
I' s JRe
» '
08 i g
g T e Pid
& N et
o . i
'E 0.6 ! ,,/’
g ". /”
% 0.4f 1 ’/’,
E _.' =+ Average ROC curve (area = 0.93)
0.2 ROC curve of RUBIS (area = 0.89)
’ Rl ROC curve of Hadoop (area = 0.90)
_»7 =- ROC curve of iPerf (area = 0.97)
e
0'8.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 7: ROC curve shows the accuracy of DocMan black box method. The
overall accuracy area is 0.93, which is considered as excellent level.

Rack 1 Rack 2 Rack 3 Rack 4
MmO OoO'!'lw OO !®mwOO 'y e O
CAVIie ©A OO0 1@ O A
AAO OVOI®GVYO i@pvoO
After Relocation l
Rack 1 Rack 2 Rack 3 Rack 4
O}@@}OOO}OOO
27 O0le © ¢! VYV | AAA
| | |
O00I0 O VOO | A AO

RUBIS Container <>Iperf Container A Storm Container
@ Hadoop Container ¥ Spark Container O Other Container

Fig. 8: Before and after containers mapping.

three instances of 3 Redis containers. In each instance, one
of them is the server, the rest are clients.

C. DocMan’s Functionality Evaluation

We first evaluate the accuracy rate of DocMan in finding
the right set of ensembles. Then, we evaluate the benefits
of these findings for improving container’s placement on
hosts through the comparison of the applications throughput
and response time between initial containers placement and
final containers placement. Finally, we evaluate the runtime
overhead, if any, induced by the DocMan toolset.

1) DocMan’s Accuracy Rate

Fig. 6 shows the hierarchical trees constructed using the
decreasing level of the dependencies strength. We firstly de-
termine a N xN correlation strength matrix, and then run the
hierarchical clustering algorithm over the distance matrix.
The hierarchical trees are generated by R [14], which shows
the calculated dependencies between the containers being
observed. It demonstrates that DocMan can effectively
expose most of the underlying dependencies between the
containers within our testbed. To fulfill the requirement of
dependencies detection, DocMan black-box process does
not require any code modification to the containers or the
applications.

Fig. 7 shows the ROC curve of classifiers. The ROC
curve is used to describe the accuracy rate of container clas-
sification results. It is created by plotting the true positive
rate against the false positive rate. In our cases, it is more

-

. 7l 777 Before |] Besfore] | 2 Before 7 0 V) Before
KX After B After BB After 7 B After

g 5 Time Consumption Decreased
%4 ‘/ I
3
g3
5
Z> L

1

0

& & F L L B d F & F S & B > F & F £ & B
RUBISActivity RUBISActivity RUBISActivity RUBISActivity
(a) Up ramp statistics (b) Runtime session statistic (c) Down ramp statistics (d) Overall statistics

Fig. 9: Performance comparison for RUBIS on different running stages and overall statistics (RUBiS Activity: al:Home a2:Browse a3:Browse Categories
ad:Search Items In Category a5:Browse Regions a6: Browse Categories In Region a7: Search Items In Region).

—=— Database Transimitted After Arrangement —— Frontend Transimitted After Arrangement
—>— Datapase Transimitted Before Arrangement —x— Frontend Transimitted Before Arrangement
1000 - 1000 1200 — T 1000
| | []
800 \ (@ { a0 (b) Jfrooof | T‘ \‘ o (© 800 J\T (d)

2 After Arrangement o | After Arrangement

2 o

(% 9 600 After Arrangement 600 |

400

9]
= a 200
3 g .
5 _g 40 PRI
>

50

eL 30l)
= 5 Br sl]

5 Before Arrangement 20 Before Arrangement 1 2 Before Arrangement 1 20t J x X x

X X p

o x X X

€ 1of x M x x x | 20 X M X xx > x’i

S 10} « 5 x x| 10f X) \

Z X X B) G oSt

2 o % JLK, b | A OSSOUL I g oo
o DRSS Rl Rl g L Kl SRR) o LSRR PRE XORX rkada 0 s oL T
0 10 20 30 40 50 60 70 80 90 100 0 810 820 830 840 850 860 870 880 890 900 o 10 20 30 40 50 60 70 80 90 100 800 810 820 830 840 850 860 870 880 890 90

Time in Seconds Time in Seconds Time in Seconds Time in Seconds

Fig. 10: Throughput comparison for RUBiS before arrangement and after arrangement. It shows after arrangement the throughput increased averagely
1.93 times than before arrangement. (a) (b) are the database transmitted packages throughput during up ramp period and the runtime period. (c) (d) are
the front end transmitted packages throughput during up ramp period and the runtime period.

Time Consumption Decreased

200 V4 150 40 40
7 Z
7 V] Before V)] Before V) Before

— 120 g
3] B After 0l B After 0k B After
g Z
kA 90
(0]
£
=
o 60
t
< 30

4 0

Q N Q Q O P

\@@ N \@@ N
Data Sze Data Sze
(@) Secondary Sort in Hadoop (b) Word Gount in Hadoop (c) Secondary Sort in Spark (d) Word Count in Spark

Fig. 11: Latency comparison of Hadoop MapReduce application and Spark Streaming application before arrangement and after arrangement.

complicated than the binary classifier since more than two benefits of using this information as inputs for improving
applications can co-exist on the same rack. We depict three container placement on the hosts.

classifiers accuracy results of RUBiS, Hadoop MapReduce Fig. 8 shows the applications mappings to hosts and
and iPerf, and the overall average accuracy line, which racks before and after arrangement driven by DocMan’s
is calculated based on the separate accuracy results. The insights. We set the bandwidth between different racks
average accuracy is 92% and the overall underline average as 2Mbps limited bi-section to simulate the scenario that

area of ROC is 0.93. An area of 1 represents a perfect test; upper-level network traffics are saturated. According to the
an area of 0.5 represents a worthless test. The result shown intra-ensemble dependencies, we put the same instance

in the Fig. 7 is considered as an excellent one. applications to one rack to avoid the saturated network
2) DocMan’s Potential Benefits traffics, then prove that the new placement can lead to better
After determining the container ensembles and the hierar- application performance. Here, we assume that CPU and

chical clustering of container instances, we next evaluate the memory resources are not bottlenecks.

199

TABLE I: Compare With Other Monitoring Tools

Monitor Tool Code Memory CPU CPU
Base Cost Peak Average

DocMan 630 0.35GB 7.8% 6.7%
Lines

Wireshark 30MB 1.20GB 68.0% 14.3%

tcpdump 931KB 0.05GB 10.0% 7.5%

Fig. 9 and Fig. 10 present the comparison results for
RUBIS instance before and after arrangement, in terms
of the response time and throughput separately. There are
three different RUBiS running periods statistic data from
2000 rounds basic website activities. The periods are up
ramp, runtime session, down ramp, and wrap them up as
the final overall statistic. Fig. 9 shows that the response
time is reduced after arrangement. For example, in the
overall statistic, the activity of “view item” is faster 7.25
times. Meanwhile, Fig. 10 demonstrates the throughput
increased 1.93 times averagely after arrangement since the
new placement effectively avoids the saturated network.

Fig. 11 presents the enhanced performance of Hadoop
MapReduce and Spark instances. It shows that the perfor-
mance for Hadoop MapReduce is averagely increased by
33.4%, and performance for Spark is averagely increased by
7.9%. We deploy Word Count and Secondary Sort
into Hadoop MapReduce and Spark Streaming instances.
Word Count data source is generated by a program which
randomly picks words from a dictionary file which includes
5000 English words, and then counts the number of oc-
currences of each word in a given input set. Secondary
Sort problem relates to sorting values associated with a
key in the reduce phase.

Experimental results clearly indicate the benefits of
dependency-aware containers placement, thereby demon-
strating that information obtained by using DocMan toolset
can help improve placement and migration actions while
reducing utilization of network resources in container as a
service clouds.

3) DocMan’s Overhead Analysis

Table I shows the comparison of DocMan and other
two popular network monitoring tools, Wireshark and
tcpdump. It demonstrates the attributes of the DocMan
toolset’s lightweight feature and low overhead. To analyze
the overhead of DocMan toolset, the first phase of corre-
lation detection has no extra overhead because the basic
container level statistics are already available in container
management systems (e.g.,Kubernetes). The second phase
of distance identification has a complexity of O(N?) where
N equals the number of containers, costing several seconds.
The third phase of clustering has a complexity of O(N?)
costing several seconds.

Figure 12 shows the overhead of DocMan toolset com-
paring with Wireshark and tcpdump. Wireshark is the
worlds foremost and widely-used network package and
protocol analyzer. Tcpdump is a common packet analyzer
that runs under the command line. Figure 12a demonstrates
that Wireshark costs 5 times more memory than DocMan
or tcpdump. For DocMan clustering step, it runs regularly
for every 50 seconds. The memory additional cost is stable
and as low as 20MB.

Figure 12b shows the CPU usage statistics. To launch
Wireshark, it incurs a CPU burst, which potentially impacts

200

3>

,’-.....‘._-..,..,.--.‘,.'.
75 100 125 150 175 200
Time in Seconds

(a) Memory usage. (b) CPU rate.
Fig. 12: Overhead comparation between DocMan, Wireshark and tcpdump.

F or # DocMan | |
@ L 60 —— Wireshark| 1
T er %50» -+ - Topdump |
gt § ol]
2 10}
fa N
g o8p @20'

0

LR ST
25

o

25 50 75 100 125 150 175 200 0 50
Time in Seconds

other running container applications since it costs high
CPU computation within a short period. Even it goes to
stable status, it still consumes much more CPU resource
than DocMan. CPU usage for tcpdump is similar with
DocMan. However, users usually use tcpdump combine
with Wireshark if they require a visualized result.

In summary, the overhead of the DocMan toolset is much
lower than other popular network tools.

V. RELATED WORK

We classify related literature into three different cate-
gories: Injecting code to obtain runtime information, based
on communication pattern between cluster service provider
and tenants to detect the dependencies, and optimizing
cluster applications based on network packets inference.

Injecting code to obtain runtime information. Code
injection technologies inject some extra code into the source
code of target programs to capture runtime information.
For example, Fay [26] uses runtime instrumentation and
distributed aggregation to get software execution traces.
vPath [35] provides path discovery by monitoring thread
and network activities and reasoning about their causality.
It is implemented in a virtual machine monitor, making it
agnostic of the overlying middleware or application but it
requires changes to the VMM code and the guest OS.

Based on communication pattern between cluster
service provider and tenants to detect dependencies.
Cloudtalk [19] lets users describe their tasks to the cloud
and help them make appropriate choices for task placement.
BtrPlace [29] is used as a planning tool to limit the
number of applications or to predict the need to acquire
new servers, meanwhile, provides a high-level scripting
language, allowing service users to describe requirements.
However, they did not consider the natural dependencies
between tasks, and require users to have domain knowledge
to provide accurate resources usage description.

Optimizing cluster applications based on network
packets inference. Meng et al. [32] propose to initialize
the applications in data center based on their network
traffic information. They design a two-tier approximate
algorithm to find the traffic patterns and adjust the network
architectures to improve the cluster performance. Mag-
pie [21] captures events from OS kernel, middleware, and
application components and calculates the time correlation
of these events. DocMan not only focuses on network
metric but also focuses on other metrics, which enable more
considerable factors for the provider to optimize cluster
performance.

VI.CONCLUSION

In this paper, we study the dependency detection problem
in a public CaaS environment. First, we identify that there
exists hidden dependencies between containers that belong
to the same application by monitoring their resource usage
statistics at runtime. Second, we design a black-box toolset
called DocMan to detect these dependencies with negligible
overhead. Third, we evaluate the accuracy of DocMan with
real-world containerized applications.

DocMan’s methods are fully implemented, but additional
work is required for using it to continuously detect and
manage containers at cloud-scale. For example, we need to
filter out background traffic noises (i.e., heartbeat packets),
since such traffic might otherwise be interpreted as intra-
ensemble communications. Further, it would be interest-
ing to integrate DocMan into management solutions like
Kubernetes and Docker Swarm. We also plan to lever-
age DocMan’s insights to guide the container placement,
thus improving containerized application’s performance and
amortizing the expenses related to their debugging and
maintenance.

VII. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their feedback that improved the paper significantly.
We’d thank Florida International University Graduate &
Professional Student Committee and School of Computing
and Information Sciences for the travel award to present
this work.

REFERENCES

Amazon ec2 container service. https://aws.amazon.com/ecs/.

[

[2] Aws lambda - serverless compute. https://aws.amazon.com/lambda.

[3] Cluster. https://en.wikipedia.org/wiki/Cluster_analysis.

[4] Google cloud platform container. https://cloud.google.com/
container-engine.

[5] Google trace log. https://github.com/google/cluster-data/blob/master/
ClusterData2011_2.md.

[6] Hadoop. http://hadoop.apache.org.

[7]1 Iperf. https://iperf.fr.

[8] Kubernetes. https://kubernetes.io.

[9] Linuxcontainers.org. https://linuxcontainers.org.

[10] Mapreduce. https://en.wikipedia.org/wiki/MapReduce.

[11] Microsoft azure container service. https://azure.microsoft.com/en-us/
services/container-service/.

[12] Numpy. http://www.numpy.org.

[13] Pearson correlation coefficient. https://en.wikipedia.org/wiki/
Pearson_correlation_coefficient.

[14] R project. https://www.r-project.org/about.html.

[15] Redis. https://redis.io.

[16] Rubis. http://rubis.ow2.org.

[17] Spark. https://spark.apache.org.

[18] Storm. http://storm.apache.org.

[19] Alexandru Agache, Mihai Ionescu, and Costin Raiciu. Cloudtalk:
Enabling distributed application optimisations in public clouds. Eu-
roSys ’17, pages 605-619, New York, NY, USA, 2017. ACM.

[20] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,

Nelson Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling
for data center networks. In Proceedings of the 7th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI’10,
pages 19-19, Berkeley, CA, USA, 2010. USENIX Association.

201

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.
Using magpie for request extraction and workload modelling.
OSDI’'04, pages 18-18, Berkeley, CA, USA, 2004. USENIX As-
sociation.

Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and
Eric Brewer. Pinpoint: Problem determination in large, dynamic in-
ternet services. In Proceedings of the 2002 International Conference
on Dependable Systems and Networks, DSN *02, pages 595-604,
Washington, DC, USA, 2002. IEEE Computer Society.

Mosharaf Chowdhury, Srikanth Kandula, and Ion Stoica. Leveraging
endpoint flexibility in data-intensive clusters. SIGCOMM Comput.
Commun. Rev., 43(4):231-242, August 2013.

Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan,
and Ton Stoica. Managing data transfers in computer clusters with
orchestra. SIGCOMM ’11, pages 98-109, New York, NY, USA,
2011. ACM.

Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow
scheduling with varys. In Proceedings of the 2014 ACM Conference
on SIGCOMM, SIGCOMM ’14, pages 443-454, New York, NY,
USA, 2014. ACM.

Ulfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu.
Fay: Extensible distributed tracing from kernels to clusters. SOSP
’11, pages 311-326, New York, NY, USA, 2011. ACM.

Nathan Farrington, George Porter, Sivasankar Radhakrishnan,
Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fain-
man, George Papen, and Amin Vahdat. Helios: A hybrid electri-
cal/optical switch architecture for modular data centers. SIGCOMM
’10, pages 339-350, New York, NY, USA, 2010. ACM.

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kan-
dula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen
Patel, and Sudipta Sengupta. V12: A scalable and flexible data center
network. SIGCOMM °09, pages 51-62, New York, NY, USA, 2009.
ACM.

Fabien Hermenier, Julia Lawall, and Gilles Muller. Btrplace: A
flexible consolidation manager for highly available applications.
IEEE Trans. Dependable Secur. Comput., 10(5):273-286, September
2013.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica.
Mesos: A platform for fine-grained resource sharing in the data cen-
ter. NSDI'11, pages 295-308, Berkeley, CA, USA, 2011. USENIX
Association.

Liting Hu, Karsten Schwan, Ajay Gulati, Junjie Zhang, and Cheng-
wei Wang. Net-cohort: Detecting and managing vm ensembles in
virtualized data centers. In Proceedings of the 9th International
Conference on Autonomic Computing, ICAC ’12, pages 3-12, New
York, NY, USA, 2012. ACM.

Xiaogiao Meng, Vasileios Pappas, and Li Zhang. Improving the
scalability of data center networks with traffic-aware virtual machine
placement. INFOCOM'10, pages 1154-1162, Piscataway, NJ, USA,
2010. IEEE Press.

Jayaram Mudigonda, Praveen Yalagandula, Mohammad Al-Fares,
and Jeffrey C. Mogul. Spain: Cots data-center ethernet for multi-
pathing over arbitrary topologies. NSDI'10, pages 18-18, Berkeley,
CA, USA, 2010. USENIX Association.

Balaji Palanisamy, Aameek Singh, Ling Liu, and Bhushan Jain.
Purlieus: Locality-aware resource allocation for mapreduce in a
cloud. SC ’11, pages 58:1-58:11, New York, NY, USA, 2011. ACM.

Byung Chul Tak, Chungiang Tang, Chun Zhang, Sriram Govindan,
Bhuvan Urgaonkar, and Rong N. Chang. vpath: Precise discovery of
request processing paths from black-box observations of thread and
network activities. USENIX’09, pages 19-19, Berkeley, CA, USA,
2009. USENIX Association.

Joe H. Ward. Hierarchical grouping to optimize an objective func-
tion. Journal of the American Statistical Association, 58(301):236—
244, 1963.

Minyi Yue. A simple proof of the inequality ffd (1) 11/9 opt (1) + 1,
1 for the ffd bin-packing algorithm. Acta Mathematicae Applicatae
Sinica, 7(4):321-331, Oct 1991.

