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Abstract—Apache Hive, Apache Pig and Pivotal HWAQ are
very popular open source cluster computing frameworks for 
large scale data analytics. These frameworks hide the 
complexity of task parallelism and fault-tolerance, by exposing 
a simple programming API to users. In this paper, we discuss 
the major architectural component differences in them and 
conduct detailed experiments to compare their performances 
with different inputs. Furthermore, we attribute these 
performance differences to different components which are 
architected differently in the three frameworks and we show 
the detailed execution overheads of Apache Hive, Apache Pig 
and Pivotal HAWQ, in which the CPU utilization, memory 
utilization, and disk read/write during their runtime are 
analyzed. Finally, a discussion and summary of our findings 
and suggestions are presented.
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I. INTRODUCTION 

In the past decade, open source analytic software running 
on commodity hardware made it easier to run jobs which 
previously used to be complex and tedious to run. Example 
software include MapReduce, Hive, Pig, HBase Spark SQL
[2], and HAWQ and so on. These systems provide simple 
APIs, and hide the complexity of parallel task execution and 
fault-tolerance from the user. 

Among these tools, Apache Hive [12], Apache Pig [8][9]
and Pivotal HAWQ [7] are analyzing large data sets in a 
high-level language and run on top of Hadoop [1]. Apache 
Hive is a data warehouse infrastructure tool to process 
structured data in Hadoop and provides convenient SQL 
query language used to extract, transform and load (ETL)
[14]. But Hive cannot meet the requirement of the real-time 
interactive query in big data because it spends a long time to 
transforms SQL into the task of MapReduce.

Apache Pig is an abstraction over MapReduce that 
provides Pig Latin, which is a high-level language to write 
data analysis programs. Pig is a tool used to analyze larger 
sets of data representing them as data flows, but also, those 
Pig Latin scripts are internally converted to Map and Reduce 
tasks. 

Pivotal HAWQ is a parallel SQL query engine that 
combines the key technological advantages of the industry-

leading Pivotal Analytic Database with the scalability and 
convenience of Hadoop. HAWQ avoids filtering and 
transforming the source data through a heavy extract,
transform and load (ETL) process to data warehouses 
designed specifically for predefined analysis applications. 
Instead, the original data is directly stored into the HDFS
[11] central repository with few transformations. By 
providing an application in which analytic users do not need 
to do any changes to the ETL processes, HAWQ overcomes 
the traditional tools that cannot meet the analytical needs of 
users. Pivotal claim that HAWQ is the ‘world’s fastest SQL 
engine on Hadoop’, but such claims are hard to substantiate.

Hive and Pig are a high-level language for processing 
data at petabyte scale [8][12]. When it comes to low-scale 
data, they consume more time than other tools such as 
HAWQ. But when exactly do users need to change from 
Hive or Pig to HAWQ for a faster processing time and what 
are the resource consumption overheads?

Most of the reported works [10][13][14]were based on 
the existing the single tool and the single file format, and 
they did not in-depth discuss the performance and did not 
comprehensive compare for these three-type query tools.

Contributions. In this paper, we (1) compare the 
underlying technical differences between query tools such as 
the structural components and how different parts 
communicate with each other, (2) conduct experiments to 
analyze the performance of every query tool using the 
representative benchmarks Word Count (WC), and sample 
queries as well as the impact on the resource of CPU, 
memory and disk, (3) attribute these performance differences 
to the differences in their architectural components.

Paper Organization. The remainder of the paper is 
organized as follows. In section II we discuss the technical 
differences among these tools. In section III, we present our 
experimental results, along with the detailed analysis. 
Finally, a discussion and summary of our findings and 
suggestions are presented in section IV.

II. KEY ARCHITECTURAL COMPARISON

In this section, we discuss the underlying technical 
differences among Apache Hive, Apache Pig and Pivotal 
HAWQ, such as the structural components and how different 
parts communicate with each other.
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TABLE I. ARCHITECTURAL COMPONENT DIFFERENCES

Architectural 
Component

Platform
Apache Hive Apache Pig Pivotal HAWQ

User Interface Bash shell script. hive> is hive prompt. Any execution mechanism that is running
Pig script.

Standard protocols, such as JDBC, ODBC, 
and libpq that is used by PostgreSQL [5]
and Greenplum database [3].

Parser Parse Hive SQL and output directed 
acyclic graph (DAG) of all operators.

Check the syntax of Pig script and output
directed acyclic graph (DAG) of all operators.

Do semantic analysis and rewrite the parse 
tree.

Optimizer Execute simple rule based 
optimizations like pruning non 
referenced columns from table scans 
(column pruning) while converting 
SQL to map/reduce tasks.

Execute the logical optimizations to split, 
merge, transform, and reorder operators. 
Provide more control and optimization over 
the flow of the data than Hive does.

Enhance query performance tuning in the 
following areas:
(1) Queries against partitioned tables;
(2) Queries that contain a common table 
expression (CTE);
(3) Queries that contain subqueries.

Planner Check the syntax and transform query 
to plan and send it back to driver.

Compile the optimized logical plan into 
sequences of MapReduce jobs.

Take a query parse tree and generate a 
parallel execution plan.

Dispatcher Check the query and plan, send the 
execute plan to execution engine.

Send the plan to execution engine. Dispatch the slices of plan to executor.

Executor The conjunction of Hive and Hadoop,
use the flavor of MapReduce to get the 
result and send back to Driver and then
show on user interface.

The conjunction of Pig and Hadoop, use the 
flavor of MapReduce to get the result and send 
back to show on user interface.

Run each slice of plan and get the result.

As shown in TABLE I. we identify the following 
architectural components: user interface, parser, optimizer, 
planner, dispatcher, and executor. Studying these 
components covers the majority of architectural differences 
among the three platform tools. 

III. EXPERIMENTS

A. Experimental Setup
Our Apache Hive, Apache Pig, and Pivotal HAWQ 

clusters are deployed on the same hardware, with a total of 
ten servers. Each node has one core at 2 GHz, 230 GB 
storage space, and 4 GB of physical memory. Nodes are 
connected using a 1 Gbps Ethernet switch. Each node runs 
64-bit Ubuntu 14.04 LTS (kernel version 3.13.0). All of the 
tools used are deployed on Java 1.7.0.

Hadoop: We use Hadoop version 2.7.3 to capture 
the newest characteristics to run MapReduce on 
YARN [6]. We configure HDFS with 128 MB block 
size. 
Apache Hive: We use Hive version 1.2.1 running on 
HDFS 2.7.3 and follow the general configuration 
tutorial to make it work on fundamental hardware. 
Apache Pig: We use Pig version 0.16.0 running on 
HDFS 2.7.3.
Pivotal HAWQ: We use HAWQ version 1.1.0.1 
with supplementary tools needed such as 
PostgreSQL.

B. Overall Result
1) Word Count: We use Word Count (WC) program to 

evaluate the three different platform tools. For these 
experiments, we use the example WC program included 
with Apache Hive, Apache Pig and HAWQ, and we use 
Hadoop’s random text writer to generate input.

TABLE II. OVERALL RESULTS: WORD COUNT (MS)

Input Size
Platform

Apache Hive Apache Pig Pivotal HAWQ

67 MB 52712 102250 1934

667 MB 142214 162753 16229

1.3 GB 227979 389155 31265

TABLE III. OVERALL RESULTS: QUERY (MS)

Query
Platform

Apache Hive Apache Pig Pivotal HAWQ
Time (ms) 21385 25496 2317

TABLE II. presents the overall results for WC for 
various input sizes, for Apache Hive, Apache Pig and Pivotal 
HAWQ. Pivotal HAWQ is approximately 27x, 9x, and 7x 
faster than Apache Hive for 67 MB, 667 MB and 1.3 GB 
input, respectively. Compared to Apache Pig, Pivotal 
HAWQ is approximately 53x, 10x, and 12x faster for 67 
MB, 667 MB and 1.3 GB input, respectively.

Interestingly, for smaller input, Pivotal HAWQ has 
superior performance than Apache Hive and Apache Pig. For 
these platforms, the application logic and the amount of 
intermediate data is similar. We believe that this difference is 
due to the difference in the startup stage, in which Pivotal 
HAWQ has much less overhead than the other two tools. 

2) Query: TABLE III. shows the result of querying with 
a sample data source of 10 million entries. We create a 
source file related to mobile phone register information, 
e.g., activate day, phone number, city name, district code, 
community code. All data types used in the entries are string 
type. Our result shows that Pivotal HAWQ is approximately 
9x, and 11x faster than Apache Hive and Apache Pig, 
respectively. 
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Figure 1. CPU Utilization of Apache Hive, Apache Pig and Pivotal HAWQ over Time

Figure 2. Memory Utilization of Apache Hive, Apache Pig and Pivotal HAWQ over Time 

Figure 3. Disk Write of Apache Hive, Apache Pig and Pivotal HAWQ over Time

C. CPU Utilization
In following sections, we show the detailed execution 

plans of Apache Hive, Apache Pig and Pivotal HAWQ, in 
which the CPU utilization, memory utilization, and disk 
read/write during their runtime are analyzed.

Figure 1. shows CPU utilization of Apache Hive, Apache 
Pig and Pivotal HAWQ over time respectively. Apache Pig 
has a peak value of 86.5% CPU usage at the beginning but 
goes down quickly to 61.2%. Since Apache Pig does not 
accept other languages such as Java API, the initial CPU cost 
is mostly due to the translation from SQL-like Pig language 
to traditional MapReduce jobs and plans. Compare to 
Apache Pig, Apache Hive keeps high CPU utilization and 

the time interval is approximately four times that of Apache 
Pig. The several peaks observed after the initial stage of high 
CPU utilization are due to the job which involves saving data 
into a file. For Pivotal HAWQ, it enables data pipelining 
within a stage and MapReduce jobs materializes the output 
of each stage, and thus the processing speed of HAWQ is 
much faster than both Apache Pig and Apache Hive, but the 
startup is CPU much more costly than the other two tools. 

D. Memory Utilization
Figure 2. shows memory utilization in the master node of 

Apache Hive, Apache Pig and Pivotal HAWQ over time 
respectively. We choose the master node because it has the 
heaviest workload, such as managing data node 
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communication, extracting data from data nodes, and 
recording job execution process, etc. It shows that Pivotal 
HAWQ consumes about 60% memory while Apache Hive 
remains at approximately 45% memory and Apache Pig 
remains at approximately 40% memory.

E. Disk Performance
Figure 3. compares the disk write performance of the 

three tools. Apache Pig and Apache Hive use execution 
engine to connect the system with Hadoop, but Pivotal 
HAWQ uses Pivotal Greenplum Database [3]. Therefore, 
when they are doing the same query job, they write the result 
in distinct ways. Pivotal HAWQ shows a high utilization of 
disk I/O to write all the output within a short period of time, 
which indicates its high usage peak for disk write.  Apache 
Pig has two peaks, because Apache Pig generates several 
output files to save intermediate results and different peaks 
represent different parts of result file. Apache Hive will not 
generate a file without designating a file or a command.

IV. SUMMARY & DISCUSSION

In this section, we summarize the key insights from the 
results presented in this paper, and discuss lessons learned 
which would be useful for both researchers and practitioners. 

Overall, our experiments show that Pivotal HAWQ is 
approximately 7x, and 9x faster than Apache Hive for Word 
Count, and query representative data source of 10 million 
entries, respectively. Pivotal HAWQ is approximately 12x, 
and 11x faster than Apache Pig for Word Count, and query, 
respectively. There is not much performance difference 
between Apache Hive and Apache Pig. 

About system utilization, Apache Pig has a burst of CPU 
utilization at the beginning as same as Apache Hive and 
Pivotal HAWQ, but it lasts for a much shorter time than 
Apache Hive and Pivotal HAWQ. Pivotal HAWQ have 
much more network I/O cost and disk I/O cost than Apache 
Pig and Apache Hive. They all consume a large proportion 
of memory.

This paper presents the first in-depth analysis of these 
performance differences and system utilization differences 
between the three frameworks. Particularly, we attribute 
Pivotal HAWQ’s performance advantage to a number of 
architectural differences from Apache Hive and Apache Pig:

Since HAWQ enables data pipelining within a stage, 
MapReduce jobs materializes the output of each 
stage, either locally or remotely on HDFS and thus 
avoids materialization overhead such as serialization, 
disk I/O, and network I/O. 
Apache Hive and Apache Pig use simple rule-based 
algorithm to optimize a plan, while HAWQ employs 
a cost-based query optimizing algorithm, which 
makes it capable to figure out an optimal plan. 
The task startup and coordination of HAWQ is more 
efficient than Apache Hive and Apache Pig’s 
YARN. 

Lessons learned. Configuring Apache Hive, Apache Pig 
and Pivotal on top of HDFS in a cluster mode is 

troublesome. It is important to pay attention to the conflicts 
between different versions of tools since they use some 
common jar files, such as jline.jar. Make sure the shared jar 
file versions are the same in all tools. We also observed 
several implementation differences between different 
versions of Hadoop HDFS. For example, the new YARN 
unit changes the traditional MapReduce structure and creates 
a new way to track jobs and provides some new ports to 
listen and monitor status. We recommend researchers and 
practitioners to use the new and stable version of those tools. 
In order to ensure that the data analytics tool works 
smoothly, it is also recommended to install other 
compensative development kit or tools, such as Nmon [1] to 
help monitor system resource utilization.

For future research, we will use a large-scale cluster 
environment with more nodes and higher capabilities in 
order to test the tools with more extensive data sources. We 
hope that our contributions to the evaluation of these data 
analytics tools for HDFS can give insights to those interested 
researchers and practitioners.
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