
Breaking Down Hadoop Distributed File Systems Data Analytics Tools:
Apache Hive vs. Apache Pig vs. Pivotal HWAQ

Xin Chen
College of Computing

Georgia Institute of Technology
xinchen384@gatech.edu

Liting Hu, Liangqi Liu, Jing Chang,
Diana Leante Bone

School of Computing & Information Sciences
Florida International University

{lhu, lliu025, jchan072, dlean001}@cs.fiu.edu

Abstract—Apache Hive, Apache Pig and Pivotal HWAQ are
very popular open source cluster computing frameworks for
large scale data analytics. These frameworks hide the
complexity of task parallelism and fault-tolerance, by exposing
a simple programming API to users. In this paper, we discuss
the major architectural component differences in them and
conduct detailed experiments to compare their performances
with different inputs. Furthermore, we attribute these
performance differences to different components which are
architected differently in the three frameworks and we show
the detailed execution overheads of Apache Hive, Apache Pig
and Pivotal HAWQ, in which the CPU utilization, memory
utilization, and disk read/write during their runtime are
analyzed. Finally, a discussion and summary of our findings
and suggestions are presented.

Keywords-Hive; Pig; HAWQ; MapReduce; HDFS; Big Data
Analytics

I. INTRODUCTION

In the past decade, open source analytic software running
on commodity hardware made it easier to run jobs which
previously used to be complex and tedious to run. Example
software include MapReduce, Hive, Pig, HBase Spark SQL
[2], and HAWQ and so on. These systems provide simple
APIs, and hide the complexity of parallel task execution and
fault-tolerance from the user.

Among these tools, Apache Hive [12], Apache Pig [8][9]
and Pivotal HAWQ [7] are analyzing large data sets in a
high-level language and run on top of Hadoop [1]. Apache
Hive is a data warehouse infrastructure tool to process
structured data in Hadoop and provides convenient SQL
query language used to extract, transform and load (ETL)
[14]. But Hive cannot meet the requirement of the real-time
interactive query in big data because it spends a long time to
transforms SQL into the task of MapReduce.

Apache Pig is an abstraction over MapReduce that
provides Pig Latin, which is a high-level language to write
data analysis programs. Pig is a tool used to analyze larger
sets of data representing them as data flows, but also, those
Pig Latin scripts are internally converted to Map and Reduce
tasks.

Pivotal HAWQ is a parallel SQL query engine that
combines the key technological advantages of the industry-

leading Pivotal Analytic Database with the scalability and
convenience of Hadoop. HAWQ avoids filtering and
transforming the source data through a heavy extract,
transform and load (ETL) process to data warehouses
designed specifically for predefined analysis applications.
Instead, the original data is directly stored into the HDFS
[11] central repository with few transformations. By
providing an application in which analytic users do not need
to do any changes to the ETL processes, HAWQ overcomes
the traditional tools that cannot meet the analytical needs of
users. Pivotal claim that HAWQ is the ‘world’s fastest SQL
engine on Hadoop’, but such claims are hard to substantiate.

Hive and Pig are a high-level language for processing
data at petabyte scale [8][12]. When it comes to low-scale
data, they consume more time than other tools such as
HAWQ. But when exactly do users need to change from
Hive or Pig to HAWQ for a faster processing time and what
are the resource consumption overheads?

Most of the reported works [10][13][14]were based on
the existing the single tool and the single file format, and
they did not in-depth discuss the performance and did not
comprehensive compare for these three-type query tools.

Contributions. In this paper, we (1) compare the
underlying technical differences between query tools such as
the structural components and how different parts
communicate with each other, (2) conduct experiments to
analyze the performance of every query tool using the
representative benchmarks Word Count (WC), and sample
queries as well as the impact on the resource of CPU,
memory and disk, (3) attribute these performance differences
to the differences in their architectural components.

Paper Organization. The remainder of the paper is
organized as follows. In section II we discuss the technical
differences among these tools. In section III, we present our
experimental results, along with the detailed analysis.
Finally, a discussion and summary of our findings and
suggestions are presented in section IV.

II. KEY ARCHITECTURAL COMPARISON

In this section, we discuss the underlying technical
differences among Apache Hive, Apache Pig and Pivotal
HAWQ, such as the structural components and how different
parts communicate with each other.

2017 IEEE 10th International Conference on Cloud Computing

2159-6190/17 $31.00 © 2017 IEEE

DOI 10.1109/CLOUD.2017.117

794

TABLE I. ARCHITECTURAL COMPONENT DIFFERENCES

Architectural
Component

Platform
Apache Hive Apache Pig Pivotal HAWQ

User Interface Bash shell script. hive> is hive prompt. Any execution mechanism that is running
Pig script.

Standard protocols, such as JDBC, ODBC,
and libpq that is used by PostgreSQL [5]
and Greenplum database [3].

Parser Parse Hive SQL and output directed
acyclic graph (DAG) of all operators.

Check the syntax of Pig script and output
directed acyclic graph (DAG) of all operators.

Do semantic analysis and rewrite the parse
tree.

Optimizer Execute simple rule based
optimizations like pruning non
referenced columns from table scans
(column pruning) while converting
SQL to map/reduce tasks.

Execute the logical optimizations to split,
merge, transform, and reorder operators.
Provide more control and optimization over
the flow of the data than Hive does.

Enhance query performance tuning in the
following areas:
(1) Queries against partitioned tables;
(2) Queries that contain a common table
expression (CTE);
(3) Queries that contain subqueries.

Planner Check the syntax and transform query
to plan and send it back to driver.

Compile the optimized logical plan into
sequences of MapReduce jobs.

Take a query parse tree and generate a
parallel execution plan.

Dispatcher Check the query and plan, send the
execute plan to execution engine.

Send the plan to execution engine. Dispatch the slices of plan to executor.

Executor The conjunction of Hive and Hadoop,
use the flavor of MapReduce to get the
result and send back to Driver and then
show on user interface.

The conjunction of Pig and Hadoop, use the
flavor of MapReduce to get the result and send
back to show on user interface.

Run each slice of plan and get the result.

As shown in TABLE I. we identify the following
architectural components: user interface, parser, optimizer,
planner, dispatcher, and executor. Studying these
components covers the majority of architectural differences
among the three platform tools.

III. EXPERIMENTS

A. Experimental Setup
Our Apache Hive, Apache Pig, and Pivotal HAWQ

clusters are deployed on the same hardware, with a total of
ten servers. Each node has one core at 2 GHz, 230 GB
storage space, and 4 GB of physical memory. Nodes are
connected using a 1 Gbps Ethernet switch. Each node runs
64-bit Ubuntu 14.04 LTS (kernel version 3.13.0). All of the
tools used are deployed on Java 1.7.0.

Hadoop: We use Hadoop version 2.7.3 to capture
the newest characteristics to run MapReduce on
YARN [6]. We configure HDFS with 128 MB block
size.
Apache Hive: We use Hive version 1.2.1 running on
HDFS 2.7.3 and follow the general configuration
tutorial to make it work on fundamental hardware.
Apache Pig: We use Pig version 0.16.0 running on
HDFS 2.7.3.
Pivotal HAWQ: We use HAWQ version 1.1.0.1
with supplementary tools needed such as
PostgreSQL.

B. Overall Result
1) Word Count: We use Word Count (WC) program to

evaluate the three different platform tools. For these
experiments, we use the example WC program included
with Apache Hive, Apache Pig and HAWQ, and we use
Hadoop’s random text writer to generate input.

TABLE II. OVERALL RESULTS: WORD COUNT (MS)

Input Size
Platform

Apache Hive Apache Pig Pivotal HAWQ

67 MB 52712 102250 1934

667 MB 142214 162753 16229

1.3 GB 227979 389155 31265

TABLE III. OVERALL RESULTS: QUERY (MS)

Query
Platform

Apache Hive Apache Pig Pivotal HAWQ
Time (ms) 21385 25496 2317

TABLE II. presents the overall results for WC for
various input sizes, for Apache Hive, Apache Pig and Pivotal
HAWQ. Pivotal HAWQ is approximately 27x, 9x, and 7x
faster than Apache Hive for 67 MB, 667 MB and 1.3 GB
input, respectively. Compared to Apache Pig, Pivotal
HAWQ is approximately 53x, 10x, and 12x faster for 67
MB, 667 MB and 1.3 GB input, respectively.

Interestingly, for smaller input, Pivotal HAWQ has
superior performance than Apache Hive and Apache Pig. For
these platforms, the application logic and the amount of
intermediate data is similar. We believe that this difference is
due to the difference in the startup stage, in which Pivotal
HAWQ has much less overhead than the other two tools.

2) Query: TABLE III. shows the result of querying with
a sample data source of 10 million entries. We create a
source file related to mobile phone register information,
e.g., activate day, phone number, city name, district code,
community code. All data types used in the entries are string
type. Our result shows that Pivotal HAWQ is approximately
9x, and 11x faster than Apache Hive and Apache Pig,
respectively.

795

Figure 1. CPU Utilization of Apache Hive, Apache Pig and Pivotal HAWQ over Time

Figure 2. Memory Utilization of Apache Hive, Apache Pig and Pivotal HAWQ over Time

Figure 3. Disk Write of Apache Hive, Apache Pig and Pivotal HAWQ over Time

C. CPU Utilization
In following sections, we show the detailed execution

plans of Apache Hive, Apache Pig and Pivotal HAWQ, in
which the CPU utilization, memory utilization, and disk
read/write during their runtime are analyzed.

Figure 1. shows CPU utilization of Apache Hive, Apache
Pig and Pivotal HAWQ over time respectively. Apache Pig
has a peak value of 86.5% CPU usage at the beginning but
goes down quickly to 61.2%. Since Apache Pig does not
accept other languages such as Java API, the initial CPU cost
is mostly due to the translation from SQL-like Pig language
to traditional MapReduce jobs and plans. Compare to
Apache Pig, Apache Hive keeps high CPU utilization and

the time interval is approximately four times that of Apache
Pig. The several peaks observed after the initial stage of high
CPU utilization are due to the job which involves saving data
into a file. For Pivotal HAWQ, it enables data pipelining
within a stage and MapReduce jobs materializes the output
of each stage, and thus the processing speed of HAWQ is
much faster than both Apache Pig and Apache Hive, but the
startup is CPU much more costly than the other two tools.

D. Memory Utilization
Figure 2. shows memory utilization in the master node of

Apache Hive, Apache Pig and Pivotal HAWQ over time
respectively. We choose the master node because it has the
heaviest workload, such as managing data node

796

communication, extracting data from data nodes, and
recording job execution process, etc. It shows that Pivotal
HAWQ consumes about 60% memory while Apache Hive
remains at approximately 45% memory and Apache Pig
remains at approximately 40% memory.

E. Disk Performance
Figure 3. compares the disk write performance of the

three tools. Apache Pig and Apache Hive use execution
engine to connect the system with Hadoop, but Pivotal
HAWQ uses Pivotal Greenplum Database [3]. Therefore,
when they are doing the same query job, they write the result
in distinct ways. Pivotal HAWQ shows a high utilization of
disk I/O to write all the output within a short period of time,
which indicates its high usage peak for disk write. Apache
Pig has two peaks, because Apache Pig generates several
output files to save intermediate results and different peaks
represent different parts of result file. Apache Hive will not
generate a file without designating a file or a command.

IV. SUMMARY & DISCUSSION

In this section, we summarize the key insights from the
results presented in this paper, and discuss lessons learned
which would be useful for both researchers and practitioners.

Overall, our experiments show that Pivotal HAWQ is
approximately 7x, and 9x faster than Apache Hive for Word
Count, and query representative data source of 10 million
entries, respectively. Pivotal HAWQ is approximately 12x,
and 11x faster than Apache Pig for Word Count, and query,
respectively. There is not much performance difference
between Apache Hive and Apache Pig.

About system utilization, Apache Pig has a burst of CPU
utilization at the beginning as same as Apache Hive and
Pivotal HAWQ, but it lasts for a much shorter time than
Apache Hive and Pivotal HAWQ. Pivotal HAWQ have
much more network I/O cost and disk I/O cost than Apache
Pig and Apache Hive. They all consume a large proportion
of memory.

This paper presents the first in-depth analysis of these
performance differences and system utilization differences
between the three frameworks. Particularly, we attribute
Pivotal HAWQ’s performance advantage to a number of
architectural differences from Apache Hive and Apache Pig:

Since HAWQ enables data pipelining within a stage,
MapReduce jobs materializes the output of each
stage, either locally or remotely on HDFS and thus
avoids materialization overhead such as serialization,
disk I/O, and network I/O.
Apache Hive and Apache Pig use simple rule-based
algorithm to optimize a plan, while HAWQ employs
a cost-based query optimizing algorithm, which
makes it capable to figure out an optimal plan.
The task startup and coordination of HAWQ is more
efficient than Apache Hive and Apache Pig’s
YARN.

Lessons learned. Configuring Apache Hive, Apache Pig
and Pivotal on top of HDFS in a cluster mode is

troublesome. It is important to pay attention to the conflicts
between different versions of tools since they use some
common jar files, such as jline.jar. Make sure the shared jar
file versions are the same in all tools. We also observed
several implementation differences between different
versions of Hadoop HDFS. For example, the new YARN
unit changes the traditional MapReduce structure and creates
a new way to track jobs and provides some new ports to
listen and monitor status. We recommend researchers and
practitioners to use the new and stable version of those tools.
In order to ensure that the data analytics tool works
smoothly, it is also recommended to install other
compensative development kit or tools, such as Nmon [1] to
help monitor system resource utilization.

For future research, we will use a large-scale cluster
environment with more nodes and higher capabilities in
order to test the tools with more extensive data sources. We
hope that our contributions to the evaluation of these data
analytics tools for HDFS can give insights to those interested
researchers and practitioners.

REFERENCES

[1] Apache Hadoop: http://hadoop.apache.org/.
[2] Apache Spark: https://spark.apache.org/sql/.
[3] Greenplum Database: http://greenplum.org/.
[4] Nmon: http://nmon.sourceforge.net/pmwiki.php.
[5] PostgreSQL: https://www.postgresql.org/.
[6] YARN: https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-

yarn-site/YARN.html.
[7] L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv, L.

Lonergan, J. Cohen, C. Welton, G. Sherry, and M. Bhandarkar,
“HAWQ: a massively parallel processing SQL engine in hadoop,”
In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (SIGMOD '14). ACM, New York, NY.

[8] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.
Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and U.
Srivastava, “Building a high-level dataflow system on top of Map-
Reduce: the Pig experience,” Proceedings of the VLDB Endowment
2, no. 2 (2009): 1414-1425, 2009.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: a not-so-foreign language for data processing,” Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data, pp. 1099-1110. ACM, 2008.

[10] Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C., Reinwald, B., and
Özcan, F, “Clash of the titans: MapReduce vs. Spark for Large Scalse
Data Analytics,” Proceedings of the VLDB Endowment, 8(13), 2110-
2121.

[11] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST '10).
IEEE Computer Society, Washington, DC, USA, 1-10.

[12] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.
Liu, P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over
a map-reduce framework,” Proceedings of the VLDB Endowment 2,
no. 2 (2009): 1626-1629.

[13] Liu, T., Liu, J., Liu, H., & Li, W., “A performance evaluation of Hive
for scientific data management,” 2013 IEEE International Conference
on Big Data, 39-46.

[14] Garg, V., “Optimization of Multiple Queries for Big Data with
Apache Hadoop/Hive,” International Conference on Computational
Intelligence and Communication Networks (CICN), 2015.

797

