
v-Bundle: Flexible Group Resource Offerings in Clouds

Liting Hu1, Kyung Dong Ryu2, Dilma Da Silva2, Karsten Schwan1

1College of Computing
Georgia Institute of Technology

Atlanta GA, USA
{foxting, schwan}@cc.gatech.edu

2IBM T.J.Watson Research Center
Yorktown Heights NY, USA

{kryu, dilmasilva}@us.ibm.com

Abstract—Traditional Infrastructure-as-a-Service offerings
provide customers with large numbers of fixed-size virtual
machine (VM) instances with resource allocations that are
designed to meet application demands. With application
demands varying over time, cloud providers gain efficiencies
through resource consolidation and over-commitment. For
cloud customers, however, this leads to inefficient use of the
cloud resources they have purchased. To address cloud
customers’ dynamic application requirements, we present a
new cloud resource offering, called v-Bundle, which makes
flexible the exchange of resource capacity among multiple VM
instances belonging to the same customer. Specifically
targeting network resources, for each customer application, we
first use DHT-based techniques to achieve an initial VM
placement that minimizes its use of the datacenter network’s
bi-section bandwidth. When VMs’ networking requirements
change, the customer can then use v-Bundle to trade the
networking resources allocated to her application. v-Bundle
maintains information about network resources with any-cast
tree-based methods implemented as extensions of the Pastry
pub-sub core. Experimental evaluations show that the
approach can scale well to thousands of hosts and VMs, and
that v-Bundle can provide customers with better bandwidth
utilization and improved application quality of service through
borrowing extra bandwidth when needed, at no additional cost
in terms of the total resources allocated to the customer.

Keywords-cloud computing; virtualization; v-bundle; bi-
section bandwidth; pastry overlay.

I. INTRODUCTION
Recently, there has been a dramatic increase in the

popularity of Infrastructure-as-a-Service (IaaS) clouds,
including Amazon EC2 [1], Rackspace [6], Eucalyptus [3],
Nebula [4], and Openstack [5]. Such systems provide
compute resources on-demand, bill on a pay-as-you-go
basis, and allow multiple customers to share a common pool
of virtualized resources. Also provided is a variety of pre-
configured, templated images containing various operating
systems and pre-installed software. The purchase of cloud
resources proceeds as follows. (1) The customer estimates
her application needs, using VM configuration parameters
like the desired CPU and memory capacities and outbound
network bandwidth; also specified are the operating systems
and the numbers of required VMs (interchangeably called
instances). (2) The customer finalizes the contracts with the
cloud provider for some period of use, e.g., a one-year term.
(1) and (2) fully define the resource package purchased by
the customer.

Figure 1. Example of traditional resource provisioning & v-Bundle’s

provisioning.

IaaS providers, in turn, allocate virtual resources
according to the customers’ settings, and such resources are
billed regardless of hosted applications’ actual current needs.
Therefore, when a customer’s applications experience
dynamic variations lasting for longer periods of time, this
may lead to inefficient or even unfair use of her cloud
resources: the customer may pay for computing capacity she
does not actually receive.

v-Bundle makes use of the dynamically changing
requirements of multiple applications within the group of
VMs purchased by a single customer. With v-Bundle’s
resource trading service, each customer can independently
optimize the use of her cloud resources. A simple example
illustrates the v-Bundle approach and potential benefits. At
the top of Figure 1, we depict a customer’s resource package
with 6 VMs (instances) placed over 3 host physical
machines (PMs) each with 2 VMs. The customer bought 3
standard VMs with 100 bandwidth Mbps capacity and 3
high I/O VMs with 200 Mbps bandwidth capacity, to match
the typical requirements of her front-end vs. back-end
services realized by these VMs. Suppose that each physical
host only has a 400 Mbps network interface. When all
application workloads are as light as 50 Mbps, all instances’
demands can be satisfied (see (a)). However, when
workloads exceed per-VM capacity allocations (see VM3
and VM4 in (b)), the de-facto standard cloud resource
offering provides only a max of 500 Mbps out of the total
900 Mbps total bandwidth available to the customer. As

2012 32nd IEEE International Conference on Distributed Computing Systems

1063-6927/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCS.2012.61

406

shown in (c), v-Bundle-based discovery of available
resources makes it possible to live migrate VMs to relocate
over-loaded VMs to borrow unused CPU cycles, memory or
bandwidth from lightly loaded ones, as long as all of those
VMs belong to the same customer. In this case, VM3 is
migrated to a lightly loaded server PM1 and borrows
compute capacity from VM1 and VM2, thereby relieving the
resource shortage of PM2.

While it is apparent how the v-Bundle approach can be
applied to CPU and memory resources, the networking
resource presents unique challenges to the realization of the
v-Bundle concept. This is because of currently prevalent
hierarchical networks in datacenter systems, with switch
infrastructures (starting with top of rack (ToR) switches)
that are increasingly over-provisioned at layers above ToR
(see Section 2). Those unique challenges are as follows:

1) Bi-section Bandwidth: is a critical, scarce, and
expensive resource. Recent studies [11] [16] [18] have
shown that servers in different racks have to share the up-
links from top of rack switches (i.e., ToRs) that are typically
1:5 to 1:20 oversubscribed. IaaS providers, however, are
unaware of the hosted instances’ communication patterns.
Thus, they use simple methods, like random or CPU-usage-
based placement, to map VM instances onto servers, as long
as there are sufficient resources left. For customers, this may
result in the undesirable outcome that they receive less
resources than what they paid for.

2) Decentralized Management: today’s IaaS offerings
can span thousands of servers with VMs from thousands of
customers. This presents challenges to centralized methods
for resource management. For example, the time complexity
for the load balancing step is O(#VMs ×#hosts), plus the
time required for cost-benefit analysis. For a cluster
containing 100 hosts and 10000 VMs, for instance, it takes
nearly 10 minutes for a load-balancing algorithm to run [9].
For a cloud provider that needs to manage thousands of
customers, it will be too costly to set up such a manager for
each customer.

v-Bundle is a novel multi-tenant virtualized datacenter
resource scheduler. It has the following key attributes:

- Bi-section bandwidth preserving: When booting up
VMs, it leverages a peer-to-peer protocol, Pastry
[16], to implement a topology-aware algorithm to
place “chatting VMs” geographically close to each
other. We assume that VMs from the same customer
are more likely to communicate with each other
than with others.

- Scalability: For the second step, rebalancing VMs,
v-Bundle leverages a multicast tree protocol, Scribe,
to implement a decentralized resource discovery
algorithm to shuffle workload, at VM granularity,
between over-loaded and less-loaded servers.

The Java Scribe/Pastry-based implementation of v-
Bundle is evaluated on a virtualized infrastructure consisting
of 15 hosts and 225 VMs. These VMs run a mix of
bandwidth-intensive workloads. Experimental results show
that v-Bundle can scale well, optimally utilize the available
bi-section bandwidth, and improve the applications’ QoS by

taking advantage of workload variations belonging to the
same customer.

The remainder of this paper is organized as follows.
Section 2 describes v-Bundle’s placement algorithm.
Section 3 describes v-Bundle’s resource shuffling algorithm.
Sections 4 and 5 evaluate v-Bundle with simulated
experiments and real experiments, respectively. Section 6
discusses related work. We conclude with directions for
future work in Section 7.

II. V-BUNDLE’ TOPOLOGY-AWARE PLACEMENT
ALGORITHM

Focusing on network resources, v-Bundle proposes a
novel placement algorithm that uses a DHT-based routing
protocol to guide initial VM placement. Using this network-
efficient method is a prerequisite for optimizing customers’
use of network resources.

As illustrated in Figure 2, if wrongly placing an
ensemble of frequently communicating “chatting” VMs
across multiple racks, this can negatively affect the services
provided by the application [15]. First, as the shared up-
links from ToRs become saturated, intra-ensemble
communications may be delayed, and such delays can be
further exacerbated by message retransmissions due to time-
outs. Second, the use of scarce, shared bandwidth can affect
other services and ensembles, as evident in applications like
Hadoop that experience slowdown due to file system-level
data reorganization. Therefore, if v-Bundle wants to
optimize the network resource usage for each customer, it
must start by first making its best efforts to avoid allocating
or relocating “chatting” VMs across multiple racks.

A. Pastry’s Peer-to-Peer Overlay
In Pastry [16], each participating node is assigned an

identifier (nodeId) that is used to identify nodes and route
messages. Given a message and a destination nodeId, Pastry
routes the message to the node whose nodeId is numerically
closest to the destination within limited O(logN) hops.

1) Routing table: Each Pastry node has two routing
structures, a routing table and a leaf set. The routing table
consists of node characteristics (IP address, latency
information, and Pastry ID) organized in rows by the length

Figure 2. Example of shared up-links from TORs crash, causing

performance degradation for many VMs.

407

of common prefix. When routing a message, each node
forwards it to the node in the routing table with the longest
prefix in common with the destination nodeId.

2) Leaf set: The leaf set for a node is a fixed number of
nodes that have the numerically closest nodeId to that node.
This assists nodes in the last step of routing messages and in
rebuilding routing tables when nodes fail.

B. “Topology-aware” Placement Algorithm
Assume there are N servers in the cloud. As shown in

Figure 3, first, a centralized certificate authority assigns
each server with a unique Id from 2, 2128-1. Note that the
nodeIds are assigned to reflect the physical proximity.
Specifically, nodeIds are assigned branches to branches to
be in accordance with the hierarchical structure of the data
center. The numerically adjacent nodes are also physically
close to each other. Second, when a new customer arrives,
say IBM, the customer name will be hashed to be a key (e.g.,
hash(IBM)) and tagged to all of that customer’s VMs. Third,
when preparing to boot up a new VM instance, a message is
encapsulated with that new VM’s attributes, resulting in a
query to the destination ID (which equals to hash(IBM)).
The server whose nodeId is numerically close to the key
would receive the query and check whether to boot up the
new VM. If the target server fails to satisfy the request, the
query will be forwarded to its neighbor set of servers. The
neighbor set M contains the nodeIds and IP addresses of |M|
nodes that are closest (according the proximity metric) to
the local node. The process repeats until the query is
satisfied.

C. Benefits and Design Rationale
Having described v-Bundle’s topology-aware algorithm,

we now explain its benefits and rationale.
1) Reducing the bi-section bandwidth bottleneck: The

algorithm is based on the assumption that VMs from the
same customer have a higher potential to communicate with
each other than with others. Since such “chatting VMs”
share the same key, they are more likely to be placed
geographically close within the same server or rack. As a
result, their inter-VM traffic is less likely to traverse

Figure 3. v-Bundle’s topology-aware VM Placement.

bottleneck switches or routers. When new VMs arrive, their
placement follows the same rule.

2) Simple and decentralized solution: v-Bundle uses a
query-response model to alleviate the load on front end
servers performing management. There is no need to ask
them to periodically acquire a snapshot of the cloud, to
check free resources or calculate the least loaded target
servers. Instead, the new VMs’ boot-up query can be
processed in parallel and in a distributed fashion.

3) Flexible abstraction: v-Bundle offers cloud
customers a flexible abstraction to express their expectation
when placing VMs. For example, if a customer wishes to
place VM group 1 and VM group 2 close to each other, she
can simply ask the cloud provider to tag the two groups with
the same key.

III. V-BUNDLE’S DECENTRALIZED RESOURCE SHUFFLING
ALGORITHM

For the second step of cloud resource offering, resource
shuffling between VMs, v-Bundle proposes a novel search
and exchange algorithm, using Pastry’s any-cast facility to
guide VM redistribution. The goal is to permit each
customer to leverage the workload variations experienced
by her multiple and different applications. Resource
requirements are stated in terms of the minimal and
maximal resources for each VM instance, and VM
migration is used to deal with “cold” (lightly loaded) vs.
“hot” (over- or heavily loaded) servers. Specifically,
resource rebalancing under workload variation is enabled by
creating VM groups whose members advertise some spare
resource, e.g., bandwidth, and then give it away in response
to the receipt of any-cast messages from servers that seeks
to consume the bandwidth. Members leave the group when
they no longer have extra bandwidth available or when their
utilization exceed some threshold value (e.g., above group
average).

A. Background
1) Scribe’s Group Management
Scribe is an application-level group communication

system built upon Pastry. Scribe manages groups and
maintains a spanning tree containing the members of each
group. All nodes join Pastry, and subsequently, nodes may
join and leave groups. Scribe can handle group sizes varying
from one to millions, and it efficiently supports rapid
changes in group membership [12][22]. It uses a pseudo-
random Pastry key to name a group, called groupId. Usually,
the groudId is the hash of the group’s textual name
concatenated with its creator’s name. To create a group, a
Scribe node asks Pastry to route a CREATE message using
the groupId as the key. The node responsible for that key
becomes the root of the group’s tree.

Scribe leverages the existing proximity-aware Pastry
overlay. To join a group, a node routes a JOIN message
towards the groupId. The message will continue to be
routed till it reaches a node in that tree. The route traversed
by the message to the group multicast tree would be added.
As a result, Scribe can efficiently support large numbers of

408

groups, arbitrary numbers of group members, and groups
with highly dynamic membership.

2) Multicast and Anycast
Scribe supports two important properties: multicast and

any-cast. Multicast can be used to develop a hierarchical
aggregation tree: a fundamental abstraction for scalability.
Any-cast can be used to perform distributed resource
discovery.

• Multicast: Any node in the overlay can create a
group; other nodes can join the group and then
multicast message to all members of the group.
Multicast messages are disseminated from the
rendezvous point along the multicast tree.

• Any-cast: this is implemented using a distributed
depth-first search of the group tree. Any node in the
overlay can any-cast to a Scribe group by routing
the message towards the groupId. Pastry’s local
route convergence ensures that the message reaches
a group member near the message’s sender with
high probability.

B. VM’s Attributes: Reservation and Limit
Amazon EC2 sets a static attribute tuple for each VM

instance, e.g., a High-CPU instance with
configuration 1.7 , 5 2 ,1GB Mem EC ComputeUnits GB Bandwidth< > .
The cloud provider guarantees that the specified CPU,
memory, and bandwidth are always available for the
instance. However, VMs are not allowed to use more
resources than the specified value. As shown in this paper,
as a result, the customer might waste idle resources she
actually bought.

Therefore, unlike Amazon EC2, v-Bundle’s VMs
specify reservations and limits for CPU, memory, or
bandwidth resources, to express their demands for the cloud.
Reservation specifies a minimal guaranteed amount of a
resource. The VM is only allowed to power on if the
reservation is available and that amount of CPU, memory,
or bandwidth can be guaranteed even when the server is
over-loaded. Limit specifies an upper bound for CPU,
memory, or bandwidth for a VM instance. That is, more
resources can be allocated to a VM than the reservation
amount if the application workload changes. However, the
allocated resources will never exceed the specified limit.

C. Decentralized Resource Management
The workflow of v-Bundle’s resource rebalancing is as

follows. (1) Each server self-identifies its status as load
shedder or load receiver (here, we use the term “load” and
“utilization” interchangeably). The baseline is the average
utilization of corresponding resource plus a threshold. (2)
After self-identification, the load shedder initiates a query
including the hosted over-loaded VMs’ information to find k
nearby receivers.

To clarify, we next describe sample scenarios. Assume
there are 42 VM instances in one customer’s resource
package, hosted over 7 servers, in which 3 of them are
bandwidth over-loaded (assume bandwidth is the only
bottleneck resource and each VM instance consumes 10%
server’s bandwidth).

The first step would be to calculate the average
bandwidth utilization. As shown in Figure 4, we create two
aggregation trees, rooted at two rendezvous points, to
disseminate messages containing the aggregated
information. These two trees are the BW_Capacity tree and
the BW_Demand tree. All servers subscribe to them. The
server with nodeId numerically closest to the topicId acts as
the rendezvous point for the associated multicast tree. For
example, if hash(BW_Demand) equals to 1100, the node
with the same identifier or closest identifier like 1101 or
1099 will be the root of BW_Demand tree.

Each server has local data stored as a set of
(attributeName, value), such as (BW_Capacity, 10).
Periodically, the leaf node updates its local state/value and
passes the update to its parent, and then each successive
enclosing subtree updates its aggregate value and passes the
new value to its parent. The system then computes the
desired aggregate value at each layer up the tree until the
root holds the desired value. Finally, the root sends the
result down the tree to all members.

Figure 4. v-Bundle’s aggregation trees.

After each server has obtained the cluster level
information, including the current bandwidth demand and
the total bandwidth capacity through publishing, it can
calculate the average utilization at its own end, and can
identify itself as shedder or receiver. In our example, the
average utilization line would be 42/70=60%, as shown in
Figure 5.

Figure 5. Self-identification as load shedder or load receiver.

409

Figure 6. Self-identification as load shedder or load receiver.

The second step would be reliable resource rebalancing.
As shown in Figure 6, to do so, it will subscribe to a new
any-cast tree, called the Less-Loaded tree. Suppose a load
shedder wants to evacuate its VMs to loader receivers. Let’s
now look at how workload exchange happens:

• Step1: The load shedder periodically sends a load-
balance query towards the less-loaded tree. The
query contains its evacuated VMs’ information like
the bandwidth requirement.

• Step2: The query is encapsulated as an any-cast
message and forwarded to an any-cast address with
groupId equal to hash(less-loaded), which means
that at least one of the servers can accept messages
for that any-cast address. v-Bundle prefers
topologically closest candidates among the target
candidates to receive the query first so as to
maintain the bisectional bandwidth preserving
placement.

• Step 3: The first load receiver that receives the
query will check (1) if it has sufficient reserved
bandwidth to accept the new VM; (2) after
accepting the new VM, if the server’s updated
bandwidth utilization is still under the cluster mean
plus a threshold, which avoids possible oscillation
for back-and-forth shedding/receiving. If both
checks pass, this server sends a response back and
hold part of its bandwidth waiting for the new VM,
else it forward the query to other members.

• Step 4: If the load shedder receives an
acknowledgement from the load receiver indicating
acceptance, the shedder initiates that VM’s
migration. Meanwhile, the load shedder updates its
bandwidth utilization periodically; it stops sending
load-balance query if its bandwidth utilization drops
down the average line.

D. Implementation Highlights
The implementation includes two parts: (i) a hypervisor-

based controller that shapes the resource usage of each
running instance; (ii) a cross-hypervisor interface that define
a new aggregation abstraction, which paves the way for
utilizing the DHT system’s internal trees for aggregation
and for achieving scalability.

Focusing on network bandwidth, v-Bundle uses control
groups combined with Linux traffic shaping (TC) to control

the volume of traffic being sent into a network by each VM
in a specified period. v-Bundle uses TC to set rate and ceil.
Rate means the guaranteed bandwidth available for a given
VM and ceil is short for ceiling, which indicates the
maximum bandwidth that VM is allowed to consume.

The cross-hypervisor interface aims at providing each
participating server with a summary view of global
information. We define a new aggregation abstraction,
which is across all servers in the system. Each server can
show interest in one or more topics and subscribe to one or
more aggregation trees correspondingly. Each physical
server has local data stored as a set of (topic, attributeName,
value) tuples such as (configuration, numCPUs, 16). We
associate an aggregation function with each topic. For each
level-i subtree, the root of the subtree calculates the
aggregated value of its children’s data and sends updates to
its parent.

Each node has one or more topic managers that keep
track of the topics in which it is interested. Each topic
manager maintains the linkages to its ancestor and
descendants. We refer to a store of (ChildNodehandle, value)
tuples as an information base. Each intermediate node
contains its children’s reduction information base. These
values and parent-children structures changes as new node
updates, joins and leaves. Each node periodically retrieves
the children’s updated reduction information bases and the
root node publishes the result.

E. Benefits and Design Rationale
First, v-Bundle enables flexible resource shuffling

between VM instances by setting thresholds. For example, if
the hosted application is a VoIP-like bandwidth aggressive
instance, the threshold should be small in order to provide
timely relief to “hot” servers.

Second, the load shedder can exploit Scribe’s any-cast
facility to discover and manage free bandwidth at small time
scales. The any-cast tree is self-organizing and self-
repairing, and any-cast completes after visiting a small
number of nodes (O(log(n)), where n is the number of
servers in the datacenter. This means that the cost for
discovering any load receiver is limited to O(log(n)) hops.

Third, similar to the placement algorithm, the resource
rebalancing algorithm is also simple and decentralized,
avoiding the need for a central manager that could become a
performance bottleneck and single point of failure.

IV. SIMULATED EXPERIMENT EVALUATION
Our experimental setup is limited to 15 servers. These

servers are 15 dual-core dual-socket, each with two Intel
Xeon 5150 processors, 16GB of memory, and 80GB hard
drives. They are distributed across 4 edge switches, with 4,
4, 4 and 3 servers/switch. All switch and NIC ports run at
1Gbps. Switches are connected to each other and the
oversubscription ratio is set to be 8:1.

The limited size of this setup prompts us to create a
larger-scale simulation in order to evaluate v-Bundle’s DHT
decentralized management. Specifically, using one JVM to
represent one node, we emulate up to H=3000 servers and
V=5000~10000 VMs for 5 customers.

410

0 10 20 30 40 50 60 70
0

10

20

30

40

10 12 14 16 18 20
10

12

14

16

18

20

Racks in Order Within One Datacenter

S
er

ve
rs

 in
 O

rd
er

 W
ith

in
 O

ne
 R

ac
k

Zoom In: VM/PM Mappings

0 10 20 30 40 50 60 70
0

10

20

30

40

Zoom In: VM/PM Mappings

S
er

ve
rs

 in
 O

rd
er

 W
ith

in
 O

ne
 R

ac
k

Racks in Order Within One Datacenter

10 12 14 16 18 20
10

12

14

16

18

20

0 10 20 30 40 50 60 70
0

10

20

30

40

10 12 14 16 18 20
10

12

14

16

18

20

Examples of VMs communicating across the rack

Zoom In: VM/PM Mappings

Se
rv

er
s

in
 O

rd
er

 W
ith

in
 O

ne
 R

ac
k

Racks in Order Within One Datacenter

Figure 7. VM/PM mappings when instanciating
5000 VMs on top of 3000 servers for 5 customers
using v-Bundle’s approach:

a, black dot: customer<Accolade>’s VM;
b, red dot: customer<Beenox>’s VM;
c, green dot: customer<Crystal>’s VM;
d, pink dot: customer<Deck13>’s VM;
e, orange dot: customer<Epyx>’s VM.

Figure 8. (a) v-Bundle: After 5000 VMs,
another 5000 new VMs are instanciated on the
same 3000 servers for the same 5 customers
using v-Bundle’s approach:

a, black dot: customer<Accolade>’s VM;
b, red dot: customer<Beenox>’s VM;
c, green dot: customer<Crystal>’s VM;
d, pink dot: customer<Deck13>’s VM;
e, orange dot: customer<Epyx>’s VM.

Figure 8. (b) Greedy: After 5000 VMs, another
5000 new VMs are instanciated on the same
3000 servers for the same 5 customers using
greedy-based’s approach:

a, black dot: customer<Accolade>’s VM;
b, red dot: customer<Beenox>’s VM;
c, green dot: customer<Crystal>’s VM;
d, pink dot: customer<Deck13>’s VM;
e, orange dot: customer<Epyx>’s VM.

A. DHT-based Placement Evaluation
Figure 7 shows the snapshot of v-Bundle’s datacenter in

terms of virtual to physical machine mappings, where the X-
axis represents all racks in the datacenter, the Y-axis
represents the servers in order within one rack, and the
crossing point is a VM’s position. The adjacent servers
across racks will be assigned remote nodeIds so as to avoid
VMs belonging to the same customer to happen to be placed
on them. The graph clearly demonstrates that the VMs
belonging to the same customer are placed geographically
close to each other. The VMs belonging to different
customers are dispersed evenly across the whole data center.
Therefore, the inter-VM traffic traversing the bottleneck
switch or router is minimized.

Another 5000 new VMs are provisioned for each
customer. Figure 8(a) shows the updated snapshot of v-
Bundle in the datacenter. It is shown that although the
number of VMs is doubled for each customer, VMs sharing
the same key are still placed together to the greatest extent
within the same rack or server. The reason lies in that keys
are chosen randomly and mapped to geographically diverse
servers, so peers who are adjacent in keys have space to
grow or shrink.

For comparison, a greedy placement’s snapshot is
displayed in Figure 8(b). The greedy algorithm makes
decisions on the basis of information at hand without
considering the effects these decisions may have in the
future. It places the new coming VMs on the first server it
finds with enough resources. As a result, the initial snapshot
looks like Figure 8(b), in which newcomer VMs fail to find
a place adjacent to the VMs with which they collaborate and
have to traverse long paths to communicate with each other.

B. Decentralized Resource Rebalancing Evaluation
To evaluate v-Bundle’s resource rebalancing, we create

a scenario in which most of the servers hosting VMs for a

given customer show load imbalance. The reason might be
that some of the customer VMs’ resource demands achieve
their peak while some other VMs have low demand. When
using v-Bundle, we expect to see that the hot servers are
relieved, ending with a more balanced snapshot.

The threshold is the margin added to the average
utilization line. If a server’s utilization is greater than the
average line by a certain margin, it self-identifies as a load
shedder. Otherwise, if it is smaller than the average line by a
certain margin, it self-identifies as a load receiver. The
balancing happens as a result of servers making VM
exchanges among each other in order to take advantage of
workload variations and thus maximize the utilization of the
resources purchased by the customer. The goal of load
balancing is to ensure that all servers are within range 0 to
mean+threshold. Once satisfied, resource rebalancing will
stop. Of course, if the average line is really low, the
resource rebalancing will not be triggered. The threshold
value and tolerance level may be set up jointly by data
center administrators and customers.

Figure 9. Initial snapshot and after snapshot of 3000 servers (75000
VMs) with different resource utilizations: a, gray dot: servers’ status
before rebalancing; b, red dot: servers’ status after rebalancing.

411

Figure 9 shows the bandwidth utilization’s snapshot of
3000 servers before and after the v-Bundle rebalancing
process, where the X-axis represents servers in order, and
the Y-axis represents the resource utilization in percentage
terms. The average utilization line is 0.6226. From Figure 9,
we can see that before v-Bundle rebalancing takes effect,
about half of the servers are overloaded. When the threshold
equals 0.3, the servers over 90% utlization experience relief
(see Figure 9(a)). When the threshold equals 0.1, the servers
over 70% experience relief (see Figure 9(b)). This
demonstrates that the smaller the threshold, the more servers
may be involved in rebalancing, resulting in more
exchanges among over-loaded and less-loaded servers.

To demonstrate that v-Bundle can make rebalancing
decisions quickly with increasing numbers of servers,
Figure 10 shows the instance rebalancing process for 30
servers and 3000 servers, where the X-axis represents the
time in minutes, and the Y-axis represents the standard
deviation (SD) of all servers’ utilizations. To simplify the
result, we ignore that migration itself consumes bandwidth.
Between about 32 minutes and 60 minutes, two sharp
decreases in utilization are observed, separated by a
rebalancing interval of 25 minutes. We can see that, when
setting the same default threshold (0.183), 3000 servers and
30 servers use similar time to reach stable snapshots. The
reason lies in that shedding load requests are initiated
spontaneously by each individual server and VMs’
exchanges happen in parallel within the resource bundle.
The decision is made locally and thus, the time cost does not
increase linearly or exponentially with the total number of
servers.

15 20 25 30 35 40 45 50 55 60 65 70 75
0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

After
Rebalancing

During Rebalancing

Before Rebalancing

Time in Minutes
(Updating Interval = 5 min Rebalancing Interval = 25 min)

U
til

iz
at

io
n'

s
S

ta
nd

ar
d

D
ev

ia
tio

n
(S

D
) o

f S
er

ve
rs

 Server = 30 VMs = 794
 Server = 3000 VMs = 75350

Figure 10. Instance rebalancing process for 3000 servers (75350 VMs)
and 30 servers (794 VMs).

Figure 11 shows performance gains due to v-Bundle’s
instance rebalancing, where the X-axis represents the time
in minutes, and the Y-axis represents the sum of bandwidth
resource in Mbps. It is found that between 0~33 minutes,
there is an obvious difference between the resource demand
in total and the actual satisfied resource in total. Because
some VMs’ demands reach the peak value but are bounded
by the hardware limits of the underlying servers, other
VMs’ demands decrease to some low value and end up

15 20 25 30 35 40 45 50 55 60 65 70 75
1.850

1.855

1.860

1.865

1.870

1.875

1.880

1.885

1.890

Time in Minutes
(Updating Interval = 5 min Rebalancing Interval = 25 min)

After Rebalancing

During Rebalancing

 Resource Demand in Total
 Actual Satisfied Resource in Total

R
es

ou
rc

e
by

 N
et

w
or

k
B

an
dw

id
th

(/1
0^

6
M

bp
s)

Before Rebalancing

Rebalancing Interval

Figure 11. Resource gains during Instance rebalancing for 3000 servers
(75350 VMs)

wasting the underlying server's resources, Between 34~61
minutes, v-Bundle takes effect. v-Bundle initiates 2 rounds
of load shedding at about minutes 33 and 57. We can see
that the actual satisfied resource in total is approaching the
resource demand in total due to v-Bundle moving unfairly
treated VMs to free servers, and thus taking advantage of
customer-level workload variations. After 62 minutes, all
VMs' demands are satisfied. It is only at this time that the
customer paying for some level of QoS actually receives it.

V. REAL EXPERIMENT EVALUATION
We have asserted that v-Bundle can help improve the

QoS of applications belonging to one customer, by taking
advantage of workload variations. In this section, we
evaluate v-Bundle on a real virtualized environment
consisting of 15 servers and 225~300 VMs.

We instantiate 255~300 virtual machines in total, each
of which is configured to use 128MB of RAM. Xen 3.1.2 is
the virtual machine monitor on each host for all
experiments, and the host kernel for XenLinux is a modified
version of Linux 2.6.18.

A. Workload and Metrics
A mix of bandwidth-aggressive applications is chosen to

create the bandwidth bottleneck and unbalanced scenario:
SIPp [7] is a traffic generator for the SIP protocol. It can

establish real client and server sessions and initiate/release
thousands of calls with a given rate. It can also send media
(RTP) traffic through RTP echo and RTP/pcap replay.
Media can be audio and video. Call rate (calls per seconds)
starts from 800, increases by 10 every second, with the
maximum rate set to 3000 and total calls to 1000K. The
following statistics are gathered to measure SIPp’s
execution performance: the ratio of failed call and
application’s response time partition.

SiPp is the application requiring QoS and we want to
provide it with “efficient” use of purchased group resource,
and in order to generate resource contention, we run Iperf
[8]. Iperf is a commonly used network workload generation
tool that can create TCP and UDP data streams and measure
the throughput of the network carrying them. Iperf includes

412

client and server functionality, and can measure the
throughput between the two ends, either unidirectionally or
bi-directionally. We continuously run Iperf pairs to generate
interference traffic and thus introduce the bandwidth
bottleneck.

B. Experiment Methodology and Results
After evaluating the decentralized management of v-

Bundle using simulation, we next evaluate the benefit of v-
Bundle for optimizing resource usage and thereby
improving the QoS of applications. In the first step, a mix of
bandwidth aggressive applications is booted unevenly on

the hosts and run with an increasing workload. After a while,
when the bandwidth becomes the major bottleneck and the
unbalancing scenario is detected, v-Bundle will create the
less-loaded anycast tree and start the VM/PM rebalancing
process. Cost-benefit analysis is applied before any actual
migrations are performed.

Migration may be either live or cold, with the distinction
based on whether the instance is running at the time of
migration. In live migration, the instance continues to run
during its transfer, whereas with cold migration, the VM is
paused, saved, and sent to another physical server.
Migration is possible only if administrators choose
appropriate storage solutions (e.g., SAN, NAS, etc.) to
ensure that guest OS file systems are also available on their
destination servers. In our example, we use live migration
and export a shared storage for guest domains via NFS.

Figure 12 shows SIPp's performance gains in terms of
number of failed calls due to v-Bundle's instance
rebalancing, where the X-axis represents time in seconds,
and the Y-axis represents the number of failed calls. It is
found that before the 300th second, since Iperf VM and
SIPp VM are co-located on the same server, when their
demands achieve peak value, they are bounded by hardware
limits. As a bandwidth sensitive application, SIPp
experiences performance loss in terms of numbers of failed
calls. Between the 300th second and the 375th second, v-
Bundle takes effect by initiating VMs relocations. After the
375th second, the SIPp application's quality of service is
improved greatly.

100 150 200 250 300 350 400 450 500

0

200

400

600

800

1000

1200

N
um

be
r o

f F
ai

le
d

C
al

ls

Time in Seconds (s)

During Rebalancing

After Rebalancing

Before Rebalancing

Figure 12. Number of failed calls of SIPp application before

rebalancing versus after reblancing.

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
0.945

10

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n(

C
D

F)

of
 R

es
po

ns
e

Ti
m

e

Time in Millisecond (s)

 Before Rebalancing
 After Rebalancing0.005

Figure 13. Cumulative distribution function of response time of SIPp
application before rebalancing versus after reblancing.

Figure 13 shows the SIPp's performance gains in terms
of the cumulative distribution of response time due to v-
Bundle's instance rebalancing. Before rebalancing, only
10% of the calls have a response time of less than 10
milliseconds. After rebalancing, the response time of 90%
of the calls is less than 10 milliseconds.

C. Overhead Analysis
As undue numbers of tree reconfigurations and

migrations will cause unexpected overheads, it is important
to make sure that the overall QoS cost is not exceeding the
overall QoS benefit.

We analytically estimate the computation time for all
pub-sub operations: subscriptions, unsubscriptions, and
publications. We also measure the aggregation time for a
message that is sent by a subscriber till it is received by the
root/publisher, and the per host communication overheads in
terms of messages/round. All times are measured using the
nanoTime method in J2SE 1.6.0 and averaged over 1000
measurements on 3 Dell PowerEdge 1950 compute servers
containing Intel Xeon 5150 processors using Java 1.6.0.
Table 1 summarizes the overhead for v-Bundle operations.

TABLE I. COMPUTATION OVERHEAD FOR V-BUNDLE OPERATIONS

Figure 14 shows the aggregation latency of v-Bundle by
tracking a message from the time it is sent by each
subscriber till the message is aggregated to the publisher.
Note that the message is sent periodically by each subscriber
with an interval of 5 minutes, so we show two lines in
which the blue line represents the time cost without adding
an updating interval, and the red line calculates the total
time cost for pushing the message from leaves to root.

Observe that the latency increases linearly as the number
of nodes increases exponentially. The reason lies in that, as
the number of nodes increases, the height of the
aggregation/dissemination tree also increases. For example,
the height of the tree is bound to 3 layers for 256 nodes and

413

16 32 64 128 256 512 1024
30000

30010

30020

30030

30040

30050

 Adding Updating Interval
 Without Adding Updating Interval

Number of Servers

A
vg

 L
at

en
cy

 fo
r A

gg
re

ga
tin

g
M

sg
 fr

om
 L

ea
ve

s
to

 R
oo

t
(m

illi
se

co
nd

)

linearly increase as
server increases expontenially

0

10

20

30

40

50

R
aw

 A
vg Latency for A

ggregating M
sg from

 Leaves to R
oo

(m
illisecond)

Figure 14. Latency of aggregating info from leaves to root versus the
number of nodes for v-Bundle.

increases to 3 layers for 1024 nodes. An increase in height
by one incurs an additional latency of 10ms (local-area
network latency), thereby increasing the overall latency.
However, within the overall latency, the time added at every
node due to v-Bundle is quite small (about 1-2 ms).

We also measure overhead per host in terms of
messages/round. We instantiate a FreePastry ring with
different numbers of servers and compute the number of
messages sent for each server. We break the overall
overhead into two categories: overall communication
needed for maintaining aggregation framework and for
running v-Bundle on top. Figure 15 shows the cumulative
distribution function (CDF) of the total overhead for 512
and 1024 servers. Note that for 90% of the servers, the
overall overhead is less than 40 KB/round and 140
msg/round for the 1024 host setup. Furthermore, the
overhead grows organically, in a very logarithmic fashion,
and even for 100K nodes, it should only go to 80 KB/round
based on the projection.

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

 1024 servers
 512 servers

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

(C
D

F)
 o

f M
es

sa
ge

Message Per Round
Figure 15. Cumulative distribution function of message per round for hosts.

VI. RELATED WORK
To the best of our knowledge, we are the first to provide

a cloud-level service for customers to efficiently use their
purchased cloud resources combination. Further, by
avoiding performance bottlenecks due to limited bi-section
bandwidth, we offer a path to cloud providers for
transitioning from current hierarchical to future ‘flat’
datacenter networks. In this section, we compare and
contrast the approach presented in this paper with related
work in the literature.

A. Cloud Resource Offering
Based on Xen virtualization technology for Linux and

XenServer for Windows, Rackspace Cloud [6] and Amazon
EC2 [1] support customers to easily boot up an instance an
instance automatically, and scalable image repositories
make it possible to configure and boot up 1 to 50 VMs in
minutes. While the providers can consolidate customer
VMs, no support is given to customers to better manage the
cloud resources they have purchased. If a customer buys 10
instances with 100GB bandwidth total, to run some
application, then, even when 9 of those instances only use
1GB bandwidth during demand lulls, the customer cannot
shed the redundant instances in favor of her 10th instance,
forcing her to pay for the wasted 90GB bandwidth while
one instance may still starve.

B. Dedicated Physical Severs Offering
Given a private data center consisting of dedicated

physical servers, VMware DRS [9] continuously monitors
utilization across all servers in the resource poll, and
intelligently allocates available resources among VMs.
Unlike Amazon EC2 or Rackspace, VMs are not tied to the
booting server on which they are started. When a VM
experiences increased load due to its hosted applications,
VMware DRS will work with VMware VMotion [10] and
use live migration to redistribute VMs and re-balance
workload across physical servers. A central manager is used
to monitor each server’s utilization and track each VM’s
resource demand. This is feasible for small private clouds,
but fails to serve large public clouds running on hundreds or
thousands of servers. In addition, it does not support to
“exchange” resource deficit and surplus across VMs of the
same customer.

C. Techniques to improve hosted applications’ QoS
Q-Clouds [17] tunes resource allocations to mitigate

performance interference effects. It transparently provisions
additional resources when deploying VMs. The additional
resources (“head room”) can be used for compensating for
performance interference between VMs, the goal being to
prevent or ameliorate the effects of consolidation and
sharing seen by applications. As there is little control over
how tenants share the network, to avoid starved VMs,
Seawall [20] uses an edge-based rate controller to achieve
max-min fairness across tenant VMs by sending traffic
through congestion-controlled hypervisor-to-hypervisor
tunnels. The rate controller takes as input the packets
received and sent by the compute node and congestion

414

feedback from the network and recipient. Similar to
Seawall, SoftUDC [14] uses hypervisor rate limiters to
control the network utilization of different tenants within a
shared datacenter.

The difference between the above techniques and v-
Bundle lies in that v-Bundle rebalances the VMs via live
migrations among “hot” servers and “cold” servers so as to
borrow the unused resources from the customer’s own
instances. In contrast, Q-Cloud asks for additional resources
(“head room”) from the cloud provider to make better QoS
guarantees to resource starved applications. Seawall and
SoftUDC choose to hold back or set a limit on those
aggressive applications and thus leave space for those that
suffer.

VII. CONCLUSIONS AND FUTURE WORK
Focusing on the network bandwidth resource, v-Bundle

presents a set of light-weight, non-intrusive and
decentralized methods for optimizing the resource usage for
each customer by enabling computing capacity switching
among her VMs, improving their applications’ quality of
service, meanwhile helping the cloud provider save the
critical bi-section network bandwidth.

v-Bundle benefits cloud customers and cloud providers
in several ways. In general, it provides the customers a new
offering, called virtual resource bundle, in which their
instances are no longer “fixed size” and always being
allocated with full resources even when they do not need
them. Instead, VMs belonging to the same customer can
shuffle their compute capacity using VM migration. At the
same time, the cloud provider obtains a proactive way to
optimize the usage of critical bi-section datacenter network
bandwidth. The VMs that are more likely to communicate
are placed geographically close to each other by using DHT-
based routing protocols, thus preserving scarce bi-section
bandwidth and reducing potential ill effects on other
bandwidth-sensitive services. v-Bundle’s simple design can
be realized in a scalable fashion, without requiring changes
to datacenter facilities.

v-Bundle’s methods are fully implemented, but
additional work is required for using it to continuously
monitor and manage data center systems at scale [21]. This
includes improving the decentralized resource shuffling
algorithm by considering multiple metrics like CPU,
memory, and bandwidth. Moreover, we are working on a
cost-benefit module that is capable of predicting the
overhead due to live migrations and the benefit from
resource shuffling.

References
[1] http://aws.amazon.com/ec2/
[2] http://www.appengine.google.com/
[3] http://www.eucalyptus.com/
[4] http://nebula.com/
[5] http://www.openstack.org/
[6] http://www.rackspace.com/managed_hosting/private_cloud/
[7] http://sipp.sourceforge.net/
[8] http://iperf.sourceforge.net/
[9] http://www.vmware.com/products/drs/overview.html
[10] http://www.vmware.com/products/vmotion/overview.html
[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A.

Vahdat. “Hedera: Dynamic Flow Scheduling for Data Center
Networks,” In USENIX NSDI, April 2010.

[12] M. Castro, M. B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang and A. Wolman, “An Evaluation of Scalable Application-
level Multicast Built Using Peer-to-peer overlays,” Infocom 2003,
San Francisco, CA, April, 2003.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” ACM SIGCOMM 2009, August 2009.

[14] M. Kallahalla, M. Uysal, R. Swaminathan, D. E. Lowell, M. Wray, T.
Christian, N. Edwards, C. I. Dalton, and F. Gittler, “SoftUDC: A
Soware-Based Data Center for Utility Computing,” Computer,
37(11):38–46, 2004.

[15] G. Lee, N. Tolia, P. Ranganathan, R. H. Katz, “Topology-aware
resource allocation for data-intensive workloads,” In Proceedings of
ApSys'2010, pp.1~6.

[16] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J.C. Mogul,
“SPAIN: COTS Data center Ethernet for Multipathing over Arbitrary
Topologies,” In Proc. NSDI, 2010, pp.265-280.

[17] R. Nathuji, A. Kansal, “Q-Clouds : Managing Performance
Interference Effects for QoS-Aware Clouds,” in Proceedings of the
5th European conference on Computer systems, (ACM, 2010), p.
237–250.

[18] S. Radhakrishnan, H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen,
and A. Vahdat, “Helios: A Hybrid Electrical/Optical Switch
Architecture for Modular Data Centers,” In Proceedings of the ACM
SIGCOMM Conference, New Delhi, India, August 2010.

[19] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,”
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, pages 329-350,
November, 2001.

[20] A. Shieh, S. Kandula, A. Greenberg, C. Kim, “Seawall: performance
isolation for cloud datacenter networks,” In the 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud' 10), June
2010.

[21] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, M. Wolf, “A
Flexible Architecture Integrating Monitoring and Analytics for
Managing Large-Scale Data Centers,” In ICAC, 2011.

[22] P. Yalagandula, M. Dahlin, “A Scalable Distributed Information
Management System,” Sigcomm’04, Aug. 30-Sept. 3, 2004, Portland,
Oregon, USA.

415

