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Abstract—Traditional Infrastructure-as-a-Service offerings 
provide customers with large numbers of fixed-size virtual 
machine (VM) instances with resource allocations that are 
designed to meet application demands. With application 
demands varying over time, cloud providers gain efficiencies 
through resource consolidation and over-commitment. For 
cloud customers, however, this leads to inefficient use of the 
cloud resources they have purchased. To address cloud 
customers’ dynamic application requirements, we present a 
new cloud resource offering, called v-Bundle, which makes 
flexible the exchange of resource capacity among multiple VM 
instances belonging to the same customer. Specifically 
targeting network resources, for each customer application, we 
first use DHT-based techniques to achieve an initial VM 
placement that minimizes its use of the datacenter network’s 
bi-section bandwidth. When VMs’ networking requirements 
change, the customer can then use v-Bundle to trade the 
networking resources allocated to her application. v-Bundle 
maintains information about network resources with any-cast 
tree-based methods implemented as extensions of the Pastry 
pub-sub core. Experimental evaluations show that the 
approach can scale well to thousands of hosts and VMs, and 
that v-Bundle can provide customers with better bandwidth 
utilization and improved application quality of service through 
borrowing extra bandwidth when needed, at no additional cost 
in terms of the total resources allocated to the customer. 

Keywords-cloud computing; virtualization; v-bundle; bi-
section bandwidth; pastry overlay. 

I.  INTRODUCTION 
Recently, there has been a dramatic increase in the 

popularity of Infrastructure-as-a-Service (IaaS) clouds, 
including Amazon EC2 [1], Rackspace [6], Eucalyptus [3], 
Nebula [4], and Openstack [5]. Such systems provide 
compute resources on-demand, bill on a pay-as-you-go 
basis, and allow multiple customers to share a common pool 
of virtualized resources. Also provided is a variety of pre-
configured, templated images containing various operating 
systems and pre-installed software. The purchase of cloud 
resources proceeds as follows. (1) The customer estimates 
her application needs, using VM configuration parameters 
like the desired CPU and memory capacities and outbound 
network bandwidth; also specified are the operating systems 
and the numbers of required VMs (interchangeably called 
instances). (2) The customer finalizes the contracts with the 
cloud provider for some period of use, e.g., a one-year term. 
(1) and (2) fully define the resource package purchased by 
the customer. 

 

 
Figure 1.  Example of traditional resource provisioning & v-Bundle’s 

provisioning. 

IaaS providers, in turn, allocate virtual resources 
according to the customers’ settings, and such resources are 
billed regardless of hosted applications’ actual current needs. 
Therefore, when a customer’s applications experience 
dynamic variations lasting for longer periods of time, this 
may lead to inefficient or even unfair use of her cloud 
resources: the customer may pay for computing capacity she 
does not actually receive.

v-Bundle makes use of the dynamically changing 
requirements of multiple applications within the group of 
VMs purchased by a single customer. With v-Bundle’s 
resource trading service, each customer can independently 
optimize the use of her cloud resources. A simple example 
illustrates the v-Bundle approach and potential benefits. At 
the top of Figure 1, we depict a customer’s resource package 
with 6 VMs (instances) placed over 3 host physical 
machines (PMs) each with 2 VMs. The customer bought 3 
standard VMs with 100 bandwidth Mbps capacity and 3 
high I/O VMs with 200 Mbps bandwidth capacity, to match 
the typical requirements of her front-end vs. back-end 
services realized by these VMs. Suppose that each physical 
host only has a 400 Mbps network interface. When all 
application workloads are as light as 50 Mbps, all instances’ 
demands can be satisfied (see (a)). However, when 
workloads exceed per-VM capacity allocations (see VM3 
and VM4 in (b)), the de-facto standard cloud resource 
offering provides only a max of 500 Mbps out of the total 
900 Mbps total bandwidth available to the customer. As 
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shown in (c), v-Bundle-based discovery of available 
resources makes it possible to live migrate VMs to relocate 
over-loaded VMs to borrow unused CPU cycles, memory or 
bandwidth from lightly loaded ones, as long as all of those 
VMs belong to the same customer. In this case, VM3 is 
migrated to a lightly loaded server PM1 and borrows 
compute capacity from VM1 and VM2, thereby relieving the 
resource shortage of PM2. 

While it is apparent how the v-Bundle approach can be 
applied to CPU and memory resources, the networking 
resource presents unique challenges to the realization of the 
v-Bundle concept. This is because of currently prevalent 
hierarchical networks in datacenter systems, with switch 
infrastructures (starting with top of rack (ToR) switches) 
that are increasingly over-provisioned at layers above ToR 
(see Section 2). Those unique challenges are as follows: 

1) Bi-section Bandwidth: is a critical, scarce, and 
expensive resource. Recent studies [11] [16] [18] have 
shown that servers in different racks have to share the up-
links from top of rack switches (i.e., ToRs) that are typically 
1:5 to 1:20 oversubscribed. IaaS providers, however, are 
unaware of the hosted instances’ communication patterns. 
Thus, they use simple methods, like random or CPU-usage-
based placement, to map VM instances onto servers, as long 
as there are sufficient resources left. For customers, this may 
result in the undesirable outcome that they receive less 
resources than what they paid for. 

2) Decentralized Management: today’s IaaS offerings 
can span thousands of servers with VMs from thousands of 
customers. This presents challenges to centralized methods 
for resource management. For example, the time complexity 
for the load balancing step is O(#VMs ×#hosts), plus the 
time required for cost-benefit analysis. For a cluster 
containing 100 hosts and 10000 VMs, for instance, it takes 
nearly 10 minutes for a load-balancing algorithm to run [9]. 
For a cloud provider that needs to manage thousands of 
customers, it will be too costly to set up such a manager for 
each customer. 

v-Bundle is a novel multi-tenant virtualized datacenter 
resource scheduler. It has the following key attributes: 

- Bi-section bandwidth preserving: When booting up 
VMs, it leverages a peer-to-peer protocol, Pastry 
[16], to implement a topology-aware algorithm to 
place “chatting VMs” geographically close to each 
other. We assume that VMs from the same customer 
are more likely to communicate with each other 
than with others. 

- Scalability: For the second step, rebalancing VMs, 
v-Bundle leverages a multicast tree protocol, Scribe, 
to implement a decentralized resource discovery 
algorithm to shuffle workload, at VM granularity, 
between over-loaded and less-loaded servers. 

The Java Scribe/Pastry-based implementation of v-
Bundle is evaluated on a virtualized infrastructure consisting 
of 15 hosts and 225 VMs. These VMs run a mix of 
bandwidth-intensive workloads. Experimental results show 
that v-Bundle can scale well, optimally utilize the available 
bi-section bandwidth, and improve the applications’ QoS by 

taking advantage of workload variations belonging to the 
same customer. 

The remainder of this paper is organized as follows. 
Section 2 describes v-Bundle’s placement algorithm. 
Section 3 describes v-Bundle’s resource shuffling algorithm. 
Sections 4 and 5 evaluate v-Bundle with simulated 
experiments and real experiments, respectively. Section 6 
discusses related work. We conclude with directions for 
future work in Section 7. 

II. V-BUNDLE’ TOPOLOGY-AWARE PLACEMENT 
ALGORITHM 

Focusing on network resources, v-Bundle proposes a 
novel placement algorithm that uses a DHT-based routing 
protocol to guide initial VM placement. Using this network-
efficient method is a prerequisite for optimizing customers’ 
use of network resources. 

As illustrated in Figure 2, if wrongly placing an 
ensemble of frequently communicating “chatting” VMs 
across multiple racks, this can negatively affect the services 
provided by the application [15]. First, as the shared up-
links from ToRs become saturated, intra-ensemble 
communications may be delayed, and such delays can be 
further exacerbated by message retransmissions due to time-
outs. Second, the use of scarce, shared bandwidth can affect 
other services and ensembles, as evident in applications like 
Hadoop that experience slowdown due to file system-level 
data reorganization. Therefore, if v-Bundle wants to 
optimize the network resource usage for each customer, it 
must start by first making its best efforts to avoid allocating 
or relocating “chatting” VMs across multiple racks.  

A. Pastry’s Peer-to-Peer Overlay 
In Pastry [16], each participating node is assigned an 

identifier (nodeId) that is used to identify nodes and route 
messages. Given a message and a destination nodeId, Pastry 
routes the message to the node whose nodeId is numerically 
closest to the destination within limited O(logN) hops. 

1) Routing table: Each Pastry node has two routing 
structures, a routing table and a leaf set. The routing table 
consists of node characteristics (IP address, latency 
information, and Pastry ID) organized in rows by the length  

 

 
Figure 2.  Example of shared up-links from TORs crash, causing 

performance degradation for many VMs. 
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of common prefix. When routing a message, each node 
forwards it to the node in the routing table with the longest 
prefix in common with the destination nodeId. 

2) Leaf set: The leaf set for a node is a fixed number of 
nodes that have the numerically closest nodeId to that node. 
This assists nodes in the last step of routing messages and in 
rebuilding routing tables when nodes fail. 

B. “Topology-aware” Placement Algorithm 
Assume there are N servers in the cloud. As shown in 

Figure 3, first, a centralized certificate authority assigns 
each server with a unique Id from 2, 2128-1. Note that the 
nodeIds are assigned to reflect the physical proximity. 
Specifically, nodeIds are assigned branches to branches to 
be in accordance with the hierarchical structure of the data 
center. The numerically adjacent nodes are also physically 
close to each other. Second, when a new customer arrives, 
say IBM, the customer name will be hashed to be a key (e.g., 
hash(IBM)) and tagged to all of that customer’s VMs. Third, 
when preparing to boot up a new VM instance, a message is 
encapsulated with that new VM’s attributes, resulting in a 
query to the destination ID (which equals to hash(IBM)). 
The server whose nodeId is numerically close to the key 
would receive the query and check whether to boot up the 
new VM. If the target server fails to satisfy the request, the 
query will be forwarded to its neighbor set of servers. The 
neighbor set M contains the nodeIds and IP addresses of |M| 
nodes that are closest (according the proximity metric) to 
the local node. The process repeats until the query is 
satisfied. 

C. Benefits and Design Rationale 
Having described v-Bundle’s topology-aware algorithm, 

we now explain its benefits and rationale. 
1) Reducing the bi-section bandwidth bottleneck: The 

algorithm is based on the assumption that VMs from the 
same customer have a higher potential to communicate with 
each other than with others. Since such “chatting VMs” 
share the same key, they are more likely to be placed 
geographically close within the same server or rack. As a 
result, their inter-VM traffic is less likely to traverse  

 
Figure 3.  v-Bundle’s topology-aware VM Placement. 

bottleneck switches or routers. When new VMs arrive, their 
placement follows the same rule. 

2) Simple and decentralized solution: v-Bundle uses a 
query-response model to alleviate the load on front end 
servers performing management. There is no need to ask 
them to periodically acquire a snapshot of the cloud, to 
check free resources or calculate the least loaded target 
servers. Instead, the new VMs’ boot-up query can be 
processed in parallel and in a distributed fashion. 

3) Flexible abstraction: v-Bundle offers cloud 
customers a flexible abstraction to express their expectation 
when placing VMs. For example, if a customer wishes to 
place VM group 1 and VM group 2 close to each other, she 
can simply ask the cloud provider to tag the two groups with 
the same key. 

III. V-BUNDLE’S DECENTRALIZED RESOURCE SHUFFLING 
ALGORITHM 

For the second step of cloud resource offering, resource 
shuffling between VMs, v-Bundle proposes a novel search 
and exchange algorithm, using Pastry’s any-cast facility to 
guide VM redistribution. The goal is to permit each 
customer to leverage the workload variations experienced 
by her multiple and different applications. Resource 
requirements are stated in terms of the minimal and 
maximal resources for each VM instance, and VM 
migration is used to deal with “cold” (lightly loaded) vs. 
“hot” (over- or heavily loaded) servers. Specifically, 
resource rebalancing under workload variation is enabled by 
creating VM groups whose members advertise some spare 
resource, e.g., bandwidth, and then give it away in response 
to the receipt of any-cast messages from servers that seeks 
to consume the bandwidth. Members leave the group when 
they no longer have extra bandwidth available or when their 
utilization exceed some threshold value (e.g., above group 
average). 

A. Background 
1) Scribe’s Group Management 
Scribe is an application-level group communication 

system built upon Pastry. Scribe manages groups and 
maintains a spanning tree containing the members of each 
group. All nodes join Pastry, and subsequently, nodes may 
join and leave groups. Scribe can handle group sizes varying 
from one to millions, and it efficiently supports rapid 
changes in group membership [12][22]. It uses a pseudo-
random Pastry key to name a group, called groupId. Usually, 
the groudId is the hash of the group’s textual name 
concatenated with its creator’s name. To create a group, a 
Scribe node asks Pastry to route a CREATE message using 
the groupId as the key. The node responsible for that key 
becomes the root of the group’s tree. 

Scribe leverages the existing proximity-aware Pastry 
overlay. To join a group, a node routes a JOIN message 
towards the groupId. The message will continue to be 
routed till it reaches a node in that tree. The route traversed 
by the message to the group multicast tree would be added. 
As a result, Scribe can efficiently support large numbers of 

408



groups, arbitrary numbers of group members, and groups 
with highly dynamic membership. 

2) Multicast and Anycast 
Scribe supports two important properties: multicast and 

any-cast. Multicast can be used to develop a hierarchical 
aggregation tree: a fundamental abstraction for scalability. 
Any-cast can be used to perform distributed resource 
discovery. 

• Multicast: Any node in the overlay can create a 
group; other nodes can join the group and then 
multicast message to all members of the group. 
Multicast messages are disseminated from the 
rendezvous point along the multicast tree. 

• Any-cast: this is implemented using a distributed 
depth-first search of the group tree. Any node in the 
overlay can any-cast to a Scribe group by routing 
the message towards the groupId. Pastry’s local 
route convergence ensures that the message reaches 
a group member near the message’s sender with 
high probability. 

B. VM’s Attributes: Reservation and Limit 
Amazon EC2 sets a static attribute tuple for each VM 

instance, e.g., a High-CPU instance with 
configuration 1.7 , 5 2 ,1GB Mem EC ComputeUnits GB Bandwidth< > . 
The cloud provider guarantees that the specified CPU, 
memory, and bandwidth are always available for the 
instance. However, VMs are not allowed to use more 
resources than the specified value. As shown in this paper, 
as a result, the customer might waste idle resources she 
actually bought. 

Therefore, unlike Amazon EC2, v-Bundle’s VMs 
specify reservations and limits for CPU, memory, or 
bandwidth resources, to express their demands for the cloud. 
Reservation specifies a minimal guaranteed amount of  a 
resource. The VM is only allowed to power on if the 
reservation is available and that amount of CPU, memory, 
or bandwidth can be guaranteed even when the server is 
over-loaded. Limit specifies an upper bound for CPU, 
memory, or bandwidth for a VM instance. That is, more 
resources can be allocated to a VM than the reservation 
amount if the application workload changes. However, the 
allocated resources will never exceed the specified limit. 

C. Decentralized Resource Management 
The workflow of v-Bundle’s resource rebalancing is as 

follows. (1) Each server self-identifies its status as load 
shedder or load receiver (here, we use the term “load” and 
“utilization” interchangeably). The baseline is the average 
utilization of corresponding resource plus a threshold. (2) 
After self-identification, the load shedder initiates a query 
including the hosted over-loaded VMs’ information to find k 
nearby receivers. 

To clarify, we next describe sample scenarios. Assume 
there are 42 VM instances in one customer’s resource 
package, hosted over 7 servers, in which 3 of them are 
bandwidth over-loaded (assume bandwidth is the only 
bottleneck resource and each VM instance consumes 10% 
server’s bandwidth).  

The first step would be to calculate the average 
bandwidth utilization. As shown in Figure 4, we create two 
aggregation trees, rooted at two rendezvous points, to 
disseminate messages containing the aggregated 
information. These two trees are the BW_Capacity tree and 
the BW_Demand tree. All servers subscribe to them. The 
server with nodeId numerically closest to the topicId acts as 
the rendezvous point for the associated multicast tree. For 
example, if hash(BW_Demand) equals to 1100, the node 
with the same identifier or closest identifier like 1101 or 
1099 will be the root of BW_Demand tree. 

Each server has local data stored as a set of 
(attributeName, value), such as (BW_Capacity, 10). 
Periodically, the leaf node updates its local state/value and 
passes the update to its parent, and then each successive 
enclosing subtree updates its aggregate value and passes the 
new value to its parent. The system then computes the 
desired aggregate value at each layer up the tree until the 
root holds the desired value. Finally, the root sends the 
result down the tree to all members. 

 

 
Figure 4.  v-Bundle’s aggregation trees. 

After each server has obtained the cluster level 
information, including the current bandwidth demand and 
the total bandwidth capacity through publishing, it can 
calculate the average utilization at its own end, and can 
identify itself as shedder or receiver. In our example, the 
average utilization line would be 42/70=60%, as shown in 
Figure 5. 

 
Figure 5.  Self-identification as load shedder or load receiver. 
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Figure 6.  Self-identification as load shedder or load receiver. 

The second step would be reliable resource rebalancing. 
As shown in Figure 6, to do so, it will subscribe to a new 
any-cast tree, called the Less-Loaded tree. Suppose a load 
shedder wants to evacuate its VMs to loader receivers. Let’s 
now look at how workload exchange happens: 

• Step1: The load shedder periodically sends a load-
balance query towards the less-loaded tree. The 
query contains its evacuated VMs’ information like 
the bandwidth requirement.  

• Step2: The query is encapsulated as an any-cast 
message and forwarded to an any-cast address with 
groupId equal to hash(less-loaded), which means 
that at least one of the servers can accept messages 
for that any-cast address. v-Bundle prefers 
topologically closest candidates among the target 
candidates to receive the query first so as to 
maintain the bisectional bandwidth preserving 
placement. 

• Step 3: The first load receiver that receives the 
query will check (1) if it has sufficient reserved 
bandwidth to accept the new VM; (2) after 
accepting the new VM, if the server’s updated 
bandwidth utilization is still under the cluster mean 
plus a threshold, which avoids possible oscillation 
for back-and-forth shedding/receiving. If both 
checks pass, this server sends a response back and 
hold part of its bandwidth waiting for the new VM, 
else it forward the query to other members.  

• Step 4: If the load shedder receives an 
acknowledgement from the load receiver indicating 
acceptance, the shedder initiates that VM’s 
migration. Meanwhile, the load shedder updates its 
bandwidth utilization periodically; it stops sending 
load-balance query if its bandwidth utilization drops 
down the average line. 

D. Implementation Highlights 
The implementation includes two parts: (i) a hypervisor-

based controller that shapes the resource usage of each 
running instance; (ii) a cross-hypervisor interface that define 
a new aggregation abstraction, which paves the way for 
utilizing the DHT system’s internal trees for aggregation 
and for achieving scalability.  

Focusing on network bandwidth, v-Bundle uses control 
groups combined with Linux traffic shaping (TC) to control 

the volume of traffic being sent into a network by each VM 
in a specified period. v-Bundle uses TC to set rate and ceil. 
Rate means the guaranteed bandwidth available for a given 
VM and ceil is short for ceiling, which indicates the 
maximum bandwidth that VM is allowed to consume. 

The cross-hypervisor interface aims at providing each 
participating server with a summary view of global 
information. We define a new aggregation abstraction, 
which is across all servers in the system. Each server can 
show interest in one or more topics and subscribe to one or 
more aggregation trees correspondingly. Each physical 
server has local data stored as a set of (topic, attributeName, 
value) tuples such as (configuration, numCPUs, 16). We 
associate an aggregation function with each topic. For each 
level-i subtree, the root of the subtree calculates the 
aggregated value of its children’s data and sends updates to 
its parent. 

Each node has one or more topic managers that keep 
track of the topics in which it is interested. Each topic 
manager maintains the linkages to its ancestor and 
descendants. We refer to a store of (ChildNodehandle, value) 
tuples as an information base. Each intermediate node 
contains its children’s reduction information base. These 
values and parent-children structures changes as new node 
updates, joins and leaves. Each node periodically retrieves 
the children’s updated reduction information bases and the 
root node publishes the result. 

E. Benefits and Design Rationale 
First, v-Bundle enables flexible resource shuffling 

between VM instances by setting thresholds. For example, if 
the hosted application is a VoIP-like bandwidth aggressive 
instance, the threshold should be small in order to provide 
timely relief  to “hot” servers.  

Second, the load shedder can exploit Scribe’s any-cast 
facility to discover and manage free bandwidth at small time 
scales. The any-cast tree is self-organizing and self-
repairing, and any-cast completes after visiting a small 
number of nodes (O(log(n)), where n is the number of 
servers in the datacenter. This means that the cost for 
discovering any load receiver is limited to O(log(n)) hops. 

Third, similar to the placement algorithm, the resource 
rebalancing algorithm is also simple and decentralized, 
avoiding the need for a central manager that could become a 
performance bottleneck and single point of failure. 

IV. SIMULATED EXPERIMENT EVALUATION 
Our experimental setup is limited to 15 servers. These 

servers are 15 dual-core dual-socket, each with two Intel 
Xeon 5150 processors, 16GB of memory, and 80GB hard 
drives. They are distributed across 4 edge switches, with 4, 
4, 4 and 3 servers/switch. All switch and NIC ports run at 
1Gbps. Switches are connected to each other and the 
oversubscription ratio is set to be 8:1.  

The limited size of this setup prompts us to create a 
larger-scale simulation in order to evaluate v-Bundle’s DHT 
decentralized management. Specifically, using one JVM to 
represent one node, we emulate up to H=3000 servers and 
V=5000~10000 VMs for 5 customers. 
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Figure 7.  VM/PM mappings when instanciating 
5000 VMs on top of 3000 servers for 5 customers 
using v-Bundle’s approach:  

a, black dot: customer<Accolade>’s VM;  
b, red dot: customer<Beenox>’s VM;  
c, green dot: customer<Crystal>’s VM;  
d, pink dot: customer<Deck13>’s VM;  
e, orange dot: customer<Epyx>’s VM.  

Figure 8.  (a) v-Bundle: After 5000 VMs, 
another 5000 new VMs are instanciated on the 
same 3000 servers for the same 5 customers 
using v-Bundle’s approach:  

a, black dot: customer<Accolade>’s VM;  
b, red dot: customer<Beenox>’s VM;  
c, green dot: customer<Crystal>’s VM;  
d, pink dot: customer<Deck13>’s VM;  
e, orange dot: customer<Epyx>’s VM.  

 

Figure 8. (b) Greedy: After 5000 VMs, another 
5000 new VMs are instanciated on the same 
3000 servers for the same 5 customers using 
greedy-based’s approach:  

a, black dot: customer<Accolade>’s VM;  
b, red dot: customer<Beenox>’s VM;  
c, green dot: customer<Crystal>’s VM;  
d, pink dot: customer<Deck13>’s VM;  
e, orange dot: customer<Epyx>’s VM.  

A. DHT-based Placement Evaluation  
Figure 7 shows the snapshot of v-Bundle’s datacenter in 

terms of virtual to physical machine mappings, where the X-
axis represents all racks in the datacenter, the Y-axis 
represents the servers in order within one rack, and the 
crossing point is a VM’s position. The adjacent servers 
across racks will be assigned remote nodeIds so as to avoid 
VMs belonging to the same customer to happen to be placed 
on them. The graph clearly demonstrates that the VMs 
belonging to the same customer are placed geographically 
close to each other. The VMs belonging to different 
customers are dispersed evenly across the whole data center. 
Therefore, the inter-VM traffic traversing the bottleneck 
switch or router is minimized. 

Another 5000 new VMs are provisioned for each 
customer. Figure 8(a) shows the updated snapshot of v-
Bundle in the datacenter. It is shown that although the 
number of VMs is doubled for each customer, VMs sharing 
the same key are still placed together to the greatest extent 
within the same rack or server. The reason lies in that keys 
are chosen randomly and mapped to geographically diverse 
servers, so peers who are adjacent in keys have space to 
grow or shrink. 

For comparison, a greedy placement’s snapshot is 
displayed in Figure 8(b). The greedy algorithm makes 
decisions on the basis of information at hand without 
considering the effects these decisions may have in the 
future. It places the new coming VMs on the first server it 
finds with enough resources. As a result, the initial snapshot 
looks like Figure 8(b), in which newcomer VMs fail to find 
a place adjacent to the VMs with which they collaborate and 
have to traverse long paths to communicate with each other. 

B. Decentralized Resource Rebalancing Evaluation  
To evaluate v-Bundle’s resource rebalancing, we create 

a scenario in which most of the servers hosting VMs for a 

given customer show load imbalance. The reason might be 
that some of the customer VMs’ resource demands achieve 
their peak while some other VMs have low demand. When 
using v-Bundle, we expect to see that the hot servers are 
relieved, ending with a more balanced snapshot. 

The threshold is the margin added to the average 
utilization line. If a server’s utilization is greater than the 
average line by a certain margin, it self-identifies as a load 
shedder. Otherwise, if it is smaller than the average line by a 
certain margin, it self-identifies as a load receiver. The 
balancing happens as a result of servers making VM 
exchanges among each other in order to take advantage of 
workload variations and thus maximize the utilization of the 
resources purchased by the customer. The goal of load 
balancing is to ensure that all servers are within range 0 to 
mean+threshold. Once satisfied, resource rebalancing will 
stop. Of course, if the average line is really low, the 
resource rebalancing will not be triggered. The threshold 
value and tolerance level may be set up jointly by data 
center administrators and customers. 

 
Figure 9.  Initial snapshot and after snapshot of 3000 servers (75000 
VMs) with different resource utilizations: a, gray dot: servers’ status 
before rebalancing; b, red dot: servers’ status after rebalancing. 
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Figure 9 shows the bandwidth utilization’s snapshot of 
3000 servers before and after the v-Bundle rebalancing 
process, where the X-axis represents servers in order, and 
the Y-axis represents the resource utilization in percentage 
terms. The average utilization line is 0.6226. From Figure 9, 
we can see that before v-Bundle rebalancing takes effect, 
about half of the servers are overloaded. When the threshold 
equals 0.3, the servers over 90% utlization experience relief 
(see Figure 9(a)). When the threshold equals 0.1, the servers 
over 70% experience relief (see Figure 9(b)). This 
demonstrates that the smaller the threshold, the more servers 
may be involved in rebalancing, resulting in more 
exchanges among over-loaded and less-loaded servers. 

To demonstrate that v-Bundle can make rebalancing 
decisions quickly with increasing numbers of servers, 
Figure 10 shows the instance rebalancing process for 30 
servers and 3000 servers, where the X-axis represents the 
time in minutes, and the Y-axis represents the standard 
deviation (SD) of all servers’ utilizations. To simplify the 
result, we ignore that migration itself consumes bandwidth. 
Between about 32 minutes and 60 minutes, two sharp 
decreases in utilization are observed, separated by a 
rebalancing interval of 25 minutes. We can see that, when 
setting the same default threshold (0.183), 3000 servers and 
30 servers use similar time to reach stable snapshots. The 
reason lies in that shedding load requests are initiated 
spontaneously by each individual server and VMs’ 
exchanges happen in parallel within the resource bundle. 
The decision is made locally and thus, the time cost does not 
increase linearly or exponentially with the total number of 
servers. 
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Figure 10.  Instance rebalancing process for 3000 servers (75350 VMs) 
and 30 servers (794 VMs).  

Figure 11 shows performance gains due to v-Bundle’s 
instance rebalancing, where the X-axis represents the time 
in minutes, and the Y-axis represents the sum of bandwidth 
resource in Mbps. It is found that between 0~33 minutes, 
there is an obvious difference between the resource demand 
in total and the actual satisfied resource in total. Because 
some VMs’ demands reach the peak value but are bounded 
by the hardware limits of the underlying servers, other 
VMs’ demands decrease to some low value and end up  
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Figure 11.  Resource gains during Instance rebalancing for 3000 servers 
(75350 VMs) 

wasting the underlying server's resources, Between 34~61 
minutes, v-Bundle takes effect. v-Bundle initiates 2 rounds 
of load shedding at about minutes 33 and 57. We can see 
that the actual satisfied resource in total is approaching the 
resource demand in total due to v-Bundle moving unfairly 
treated VMs to free servers, and thus taking advantage of 
customer-level workload variations. After 62 minutes, all 
VMs' demands are satisfied. It is only at this time that the 
customer paying for some level of QoS actually receives it. 

V. REAL EXPERIMENT EVALUATION 
We have asserted that v-Bundle can help improve the 

QoS of applications belonging to one customer, by taking 
advantage of workload variations. In this section, we 
evaluate v-Bundle on a real virtualized environment 
consisting of 15 servers and 225~300 VMs.  

We instantiate 255~300 virtual machines in total, each 
of which is configured to use 128MB of RAM. Xen 3.1.2 is 
the virtual machine monitor on each host for all 
experiments, and the host kernel for XenLinux is a modified 
version of Linux 2.6.18. 

A. Workload and Metrics 
A mix of bandwidth-aggressive applications is chosen to 

create the bandwidth bottleneck and unbalanced scenario: 
SIPp [7] is a traffic generator for the SIP protocol. It can 

establish real client and server sessions and initiate/release 
thousands of calls with a given rate. It can also send media 
(RTP) traffic through RTP echo and RTP/pcap replay. 
Media can be audio and video. Call rate (calls per seconds) 
starts from 800, increases by 10 every second, with the 
maximum rate set to 3000 and total calls to 1000K. The 
following statistics are gathered to measure SIPp’s 
execution performance: the ratio of failed call and 
application’s response time partition. 

SiPp is the application requiring QoS and we want to 
provide it with “efficient” use of purchased group resource, 
and in order to generate resource contention, we run Iperf 
[8]. Iperf is a commonly used network workload generation 
tool that can create TCP and UDP data streams and measure 
the throughput of the network carrying them. Iperf includes 
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client and server functionality, and can measure the 
throughput between the two ends, either unidirectionally or 
bi-directionally. We continuously run Iperf pairs to generate 
interference traffic and thus introduce the bandwidth 
bottleneck. 

B. Experiment Methodology and Results 
After evaluating the decentralized management of v-

Bundle using simulation, we next evaluate the benefit of v-
Bundle for optimizing resource usage and thereby 
improving the QoS of applications. In the first step, a mix of 
bandwidth aggressive applications is booted unevenly on 

the hosts and run with an increasing workload. After a while, 
when the bandwidth becomes the major bottleneck and the 
unbalancing scenario is detected, v-Bundle will create the 
less-loaded anycast tree and start the VM/PM rebalancing 
process. Cost-benefit analysis is applied before any actual 
migrations are performed. 

Migration may be either live or cold, with the distinction 
based on whether the instance is running at the time of 
migration. In live migration, the instance continues to run 
during its transfer, whereas with cold migration, the VM is 
paused, saved, and sent to another physical server. 
Migration is possible only if administrators choose 
appropriate storage solutions (e.g., SAN, NAS, etc.) to 
ensure that guest OS file systems are also available on their 
destination servers. In our example, we use live migration 
and export a shared storage for guest domains via NFS. 

Figure 12 shows SIPp's performance gains in terms of 
number of failed calls due to v-Bundle's instance 
rebalancing, where the X-axis represents time in seconds, 
and the Y-axis represents the number of failed calls. It is 
found that before the 300th second, since Iperf VM and 
SIPp VM are co-located on the same server, when their 
demands achieve peak value, they are bounded by hardware 
limits. As a bandwidth sensitive application, SIPp 
experiences performance loss in terms of numbers of failed 
calls. Between the 300th second and the 375th second, v-
Bundle takes effect by initiating VMs relocations. After the 
375th second, the SIPp application's quality of service is 
improved greatly. 
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Figure 12.  Number of failed calls of SIPp application before 

rebalancing versus after reblancing. 
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Figure 13.  Cumulative distribution function of response time of SIPp 
application before rebalancing versus after reblancing. 

Figure 13 shows the SIPp's performance gains in terms 
of the cumulative distribution of response time due to v-
Bundle's instance rebalancing. Before rebalancing, only 
10% of the calls have a response time of less than 10 
milliseconds. After rebalancing, the response time of 90% 
of the calls is less than 10 milliseconds. 

C. Overhead Analysis 
As undue numbers of tree reconfigurations and 

migrations will cause unexpected overheads, it is important 
to make sure that the overall QoS cost is not exceeding the 
overall QoS benefit. 

We analytically estimate the computation time for all 
pub-sub operations: subscriptions, unsubscriptions, and 
publications. We also measure the aggregation time for a 
message that is sent by a subscriber till it is received by the 
root/publisher, and the per host communication overheads in 
terms of messages/round. All times are measured using the 
nanoTime method in J2SE 1.6.0 and averaged over 1000 
measurements on 3 Dell PowerEdge 1950 compute servers 
containing Intel Xeon 5150 processors using Java 1.6.0. 
Table 1 summarizes the overhead for v-Bundle operations. 

TABLE I.  COMPUTATION OVERHEAD FOR V-BUNDLE OPERATIONS 

 

Figure 14 shows the aggregation latency of v-Bundle by 
tracking a message from the time it is sent by each 
subscriber till the message is aggregated to the publisher. 
Note that the message is sent periodically by each subscriber 
with an interval of 5 minutes, so we show two lines in 
which the blue line represents the time cost without adding 
an updating interval, and the red line calculates the total 
time cost for pushing the message from leaves to root. 

Observe that the latency increases linearly as the number 
of nodes increases exponentially. The reason lies in that, as 
the number of nodes increases, the height of the 
aggregation/dissemination tree also increases. For example, 
the height of the tree is bound to 3 layers for 256 nodes and  
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Figure 14.  Latency of aggregating info from leaves to root versus the 
number of nodes for v-Bundle. 

increases to 3 layers for 1024 nodes. An increase in height 
by one incurs an additional latency of 10ms (local-area 
network latency), thereby increasing the overall latency. 
However, within the overall latency, the time added at every 
node due to v-Bundle is quite small (about 1-2 ms). 

We also measure overhead per host in terms of 
messages/round. We instantiate a FreePastry ring with 
different numbers of servers and compute the number of 
messages sent for each server. We break the overall 
overhead into two categories: overall communication 
needed for maintaining aggregation framework and for 
running v-Bundle on top. Figure 15 shows the cumulative 
distribution function (CDF) of the total overhead for 512 
and 1024 servers. Note that for 90% of the servers, the 
overall overhead is less than 40 KB/round and 140 
msg/round for the 1024 host setup. Furthermore, the 
overhead grows organically, in a very logarithmic fashion, 
and even for 100K nodes, it should only go to 80 KB/round 
based on the projection. 
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Figure 15.  Cumulative distribution function of message per round for hosts. 

VI. RELATED WORK 
To the best of our knowledge, we are the first to provide 

a cloud-level service for customers to efficiently use their 
purchased cloud resources combination. Further, by 
avoiding performance bottlenecks due to limited bi-section 
bandwidth, we offer a path to cloud providers for 
transitioning from current hierarchical to future ‘flat’ 
datacenter networks. In this section, we compare and 
contrast the approach presented in this paper with related 
work in the literature. 

A. Cloud Resource Offering   
Based on Xen virtualization technology for Linux and 

XenServer for Windows, Rackspace Cloud [6] and Amazon 
EC2 [1] support customers to easily boot up an instance an 
instance automatically, and scalable image repositories 
make it possible to configure and boot up 1 to 50 VMs in 
minutes. While the providers can consolidate customer 
VMs, no support is given to customers to better manage the 
cloud resources they have purchased. If a customer buys 10 
instances with 100GB bandwidth total, to run some 
application, then, even when 9 of those instances only use 
1GB bandwidth during demand lulls, the customer cannot 
shed the redundant instances in favor of her 10th instance, 
forcing her to pay for the wasted 90GB bandwidth while 
one instance may still starve. 

B. Dedicated Physical Severs Offering  
Given a private data center consisting of dedicated 

physical servers, VMware DRS [9] continuously monitors 
utilization across all servers in the resource poll, and 
intelligently allocates available resources among VMs. 
Unlike Amazon EC2 or Rackspace, VMs are not tied to the 
booting server on which they are started. When a VM 
experiences increased load due to its hosted applications, 
VMware DRS will work with VMware VMotion [10] and 
use live migration to redistribute VMs and re-balance 
workload across physical servers. A central manager is used 
to monitor each server’s utilization and track each VM’s 
resource demand. This is feasible for small private clouds, 
but fails to serve large public clouds running on hundreds or 
thousands of servers. In addition, it does not support to 
“exchange” resource deficit and surplus across VMs of the 
same customer.  

C. Techniques to improve hosted applications’ QoS  
Q-Clouds [17] tunes resource allocations to mitigate 

performance interference effects. It transparently provisions 
additional resources when deploying VMs. The additional 
resources (“head room”) can be used for compensating for 
performance interference between VMs, the goal being to 
prevent or ameliorate the effects of consolidation and 
sharing seen by applications. As there is little control over 
how tenants share the network, to avoid starved VMs, 
Seawall [20] uses an edge-based rate controller to achieve 
max-min fairness across tenant VMs by sending traffic 
through congestion-controlled hypervisor-to-hypervisor 
tunnels. The rate controller takes as input the packets 
received and sent by the compute node and congestion 
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feedback from the network and recipient. Similar to 
Seawall, SoftUDC [14] uses hypervisor rate limiters to 
control the network utilization of different tenants within a 
shared datacenter.  

The difference between the above techniques and v-
Bundle lies in that v-Bundle rebalances the VMs via live 
migrations among “hot” servers and “cold” servers so as to 
borrow the unused resources from the customer’s own 
instances. In contrast, Q-Cloud asks for additional resources 
(“head room”) from the cloud provider to make better QoS 
guarantees to resource starved applications. Seawall and 
SoftUDC choose to hold back or set a limit on those 
aggressive applications and thus leave space for those that 
suffer.  

VII. CONCLUSIONS AND FUTURE WORK 
Focusing on the network bandwidth resource, v-Bundle 

presents a set of light-weight, non-intrusive and 
decentralized methods for optimizing the resource usage for 
each customer by enabling computing capacity switching 
among her VMs, improving their applications’ quality of 
service, meanwhile helping the cloud provider save the 
critical bi-section network bandwidth. 

v-Bundle benefits cloud customers and cloud providers 
in several ways. In general, it provides the customers a new 
offering, called virtual resource bundle, in which their 
instances are no longer “fixed size” and always being 
allocated with full resources even when they do not need 
them. Instead, VMs belonging to the same customer can 
shuffle their compute capacity using VM migration. At the 
same time, the cloud provider obtains a proactive way to 
optimize the usage of critical bi-section datacenter network 
bandwidth. The VMs that are more likely to communicate 
are placed geographically close to each other by using DHT-
based routing protocols, thus preserving scarce bi-section 
bandwidth and reducing potential ill effects on other 
bandwidth-sensitive services. v-Bundle’s simple design can 
be realized in a scalable fashion, without requiring changes 
to datacenter facilities. 

v-Bundle’s methods are fully implemented, but 
additional work is required for using it to continuously 
monitor and manage data center systems at scale [21]. This 
includes improving the decentralized resource shuffling 
algorithm by considering multiple metrics like CPU, 
memory, and bandwidth. Moreover, we are working on a 
cost-benefit module that is capable of predicting the 
overhead due to live migrations and the benefit from 
resource shuffling.  
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