
Net-Cohort: Detecting and Managing VM Ensembles in
Virtualized Data Centers

Liting Hu1, Karsten Schwan1, Ajay Gulati2, Junjie Zhang1, Chengwei Wang1
1College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

{foxting, schwan, jjzhang,
flinter}@cc.gatech.edu

2Resource Management Team
VMware, Inc.

Palo Alto, CA 94304

agulati@vmware.com

ABSTRACT
Bi-section bandwidth is a critical resource in today’s data centers
because of the high cost and limited bandwidth of higher-level
network switches and routers. This problem is aggravated in
virtualized environments where a set of virtual machines, jointly
implementing some service, may run across multiple L2 hops.
Since data center administrators typically do not have visibility
into such sets of communicating VMs, this can cause inter-VM
traffic to traverse bottlenecked network paths. To address this
problem, we present `Net-Cohort’, which offers lightweight
system-level techniques to (1) discover VM ensembles and (2)
collect information about intra-ensemble VM interactions. Net-
Cohort can dynamically identify ensembles to manipulate entire
services/applications rather than individual VMs, and to support
VM placement engines in co-locating communicating VMs in
order to reduce the consumption of bi-section bandwidth. An
implementation of Net-Cohort on a Xen-based system with 15
hosts and 225 VMs shows that its methods can detect VM
ensembles at low cost and with about 90.0% accuracy.
Placements based on ensemble information provided by Net-
Cohort can result in an up to 385% improvement in application
throughput for a RUBiS instance, a 56.4% improvement in
application throughput for a Hadoop instance, and a 12.76 times
improvement in quality of service for a SIPp instance.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management – scheduling;
D.4.7 [Operating Systems]: Organization and Design –
distributed systems.

General Terms
Algorithms, Management, Design.

Keywords
Virtualization, Clustering, Dependency Analysis.

1. INTRODUCTION
Virtualization is being deployed in data centers at a rapid pace to
consolidate workloads for improved server utilization, for ease of
provisioning, configuration management, and more generally, for

flexible use of data center resources. A typical application
running in a virtualized environment consists of a set of virtual
machines (VMs) – a VM ensemble – that cooperate and
communicate to jointly provide a certain service or accomplish a
task. A multi-tier web application, for instance, may be structured
as an ensemble with certain VMs implementing its front end
service, other VMs running application servers, and backend VMs
running databases or network file systems.

VM ensembles can be configured and mapped to data center
machines to scale throughput by partitioning tasks across multiple
machines, to obtain high availability by mapping VMs to different
nodes or racks, or to improve power consumption by minimizing
the number of machines used by an ensemble, while still meeting
performance and reliability requirements [18].

Figure 1. VM ensemble consisting of a multi-tier application
mapped across multiple hosts in a data center.

Figure 1 shows one such configuration for a multi-tier e-
commerce web application represented by RUBiS. In this case,
client requests arrive at the VM running the web server front end
and are then forwarded to one of the VMs running application
servers, which in turn may request data from a backend VM
hosting a database.

Bi-section bandwidth of the network infrastructure is a critical,
scarce, and expensive resource in data centers today. Recent
studies [11] [20] [21] have shown that servers in different racks
have to share the up-links from top of rack switches (ToRs). Since
these are typically 5:1 to 20:1 oversubscribed, this can result in a
worst-case available bi-section bandwidth as low as 125Mbps
[17]. Furthermore, higher level switches in the network topology
cost much more, due to the amount of network bandwidth and
numbers of ports they have to support.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICAC’12, September 18–20, 2012, San Jose, California, USA.
Copyright 2012 ACM 978-1-4503-1520-3/12/09…$15.00.

3

Limited bi-section bandwidth places constraints on the
mapping of VM ensembles to underlying hosts. As illustrated in
Figure 2, an ensemble of frequently communicating, ‘chatty’
VMs is placed across multiple racks. Such a placement can
negatively affect the services provided by the ensemble [26].
First, as the shared up-links from ToRs become saturated, intra-
ensemble communications may be delayed. Such delays can be
further exacerbated by message retransmissions due to time-outs.
Second, the use of scarce, shared bandwidth can affect other
services and ensembles, as evident in applications like Hadoop
that experience slowdown due to file system-level data
reorganization. This is also demonstrated in one of our
experiments, where a RUBiS benchmark experiences a 79.4%
performance loss in application throughput when placed across a
bandwidth-constrained set of machines (see Section 6). Finally, a
link failure can cause severe imbalances across paths and may
require relocation of some of the VMs in order to reduce over-
subscription.

Figure 2. Example of shared up-links from TORs crash,
causing performance degradation for many VMs.

This paper presents ‘Net-Cohort’, a lightweight system that (1)
continuously monitors a system to identify potential VM
ensembles, (2) assesses the degree of ‘chattiness’ among the VMs
in these potential ensembles, thereby (3) enabling optimized VM
placement to reduce the stress on bi-section bandwidth of the data
center’s network. ‘Net-Cohort’ has the following unique
properties:
 scalable – it accurately identifies ‘chatty’ VMs using

commonly available runtime statistics and a two-step method
for increased precision when needed;

 actionable – insights derived from running Net-Cohort can
help management software better co-locate VM ensembles on
underlying hosts;

 privacy-preserving – its black-box methods do not require any
VM (guest-OS) level changes or any information about the
VM ensemble being run from the user.
Discovering VM ensembles and their inter-VM dependencies

is quite challenging. A naïve method that continuously gathers
statistics about all communicating VM-pairs is prohibitively
expensive. First, it would require introspection of all packets sent
and received by the VMs; this would induce notable CPU
overheads and additional per packet latencies of the tens of

microseconds. Second, additional memory resources would be
required to maintain statistics for every pair of IP addresses.

Net-Cohort uses a two-step approach to limit runtime
overheads in terms of metric collection and per packet analysis.
The first step acquires VM-level statistics commonly available in
virtualized systems, such as the total numbers of packet in/out
over time. It then computes the correlation coefficients among
these statistics and divides the corresponding VMs into subsets
(also called ensembles) using correlation values and a hierarchical
clustering algorithm.

The second step uses a statistical packet sniffer only on the
VMs identified as members of a misplaced ensemble, i.e., an
ensemble with VMs placed across remote racks. The packet
sniffer maintains information about outgoing packets, their
destination IP addresses and corresponding counters, which are
then used to determine the actual communication intensity among
VMs. To optimize memory consumption, only the top-k
destinations are tracked in an online manner using the statistical
algorithm proposed by Lukasz and David in [16]. Finally, this
information about VM level communications is used to drive new
VM placement decisions.

Determining a new placement of VMs to physical servers is
similar to multi-dimensional bin-packing problem. Placement
requires evaluation of multiple criteria such as balancing of CPU,
memory and I/O resources on each host. Existing solutions like
VMware DRS, use weighted mechanisms to combine the standard
deviation across multiple dimensions. Different policies can also
influence the placement. For example, power savings would give
priority to consolidating VMs on fewer servers whereas load-
balancing would redistribute VMs across all servers. Net-Cohort
can supplement any placement system by providing network
communication cost as another dimension. However, designing a
placement solution just based on network communication would
not be very useful and designing a complete solution is out of
scope of this paper. As suggested in the Section 4, Net-Cohort can
suggest soft or hard affinity rules between VMs and the
placement engine (e.g. VMware DRS) can enforce them during
load-balancing.

We have implemented Net-Cohort on Xen hypervisor, and
evaluated its effectiveness on a virtualized infrastructure
consisting of 15 hosts and 225 VMs. These VMs run a diverse
mix of business, web, Internet services, and batch workloads.
Experimental results show that Net-Cohort can identify VM
ensembles with 90.0% accuracy, and improved placements due to
its use can increase application performance in terms of
throughput and latency. In particular, we observe an up to 385%
improvement in application throughput for a RUBiS instance, a
56.4% improvement in application throughput for a Hadoop
instance, and a 12.76 times improvement in quality of service for
a SIPp instance.

The remainder of this paper is organized as follows. Section 2
discusses background and related work. Section 3 describes the
Net-Cohort design and implementation. Section 4 discusses the
support and integration with VM placement engines. Sections 5
and 6 present the experimental setup and performance evaluation,
respectively. We conclude with some directions for future work in
Section 7.

4

2. BACKGROUND AND RELATED WORK
We first explain the dominant design pattern for today’s data
centers [2] and why an inappropriate placement of VMs on data
center machines can incur substantial performance penalties. We
then discuss the related literature.

2.1 Data Center Background
As shown in Figure 2, data center networks are based on a proven
layered approach, including a layer of servers in racks at the
bottom (access layer), a layer of aggregation 10 Gigabit Ethernet
switches at the middle (aggregation layer), and a layer of core
routers at the top (core layer). There are typically 20 to 40 servers
per rack, each singly connected to a Top of Rack (ToR) switch
with a 1 Gbps link. ToRs connect to End of Row (EoR) switches
via 1-4 of the available 10 GigE uplinks, and these switches
manage traffic into and out of the rack. At the top of the
hierarchy, core routers carry traffic between aggregation switches
and manage traffic into and out of the data center.

As traffic moves up through the layers of switches and routers,
the over-subscription ratio, which is the ratio of the allocated
bandwidth per host to the worst-case guaranteed bandwidth per
host, increases rapidly. For example, for servers in the same rack,
they can communicate at the full rate of their interfaces (e.g.,
1Gbps) with 1:1 over-subscription ratio. Unfortunately, servers in
different racks have to share the up-links from ToRs, which are
typically 5:1 to 20:1 oversubscribed, resulting in 125Mbps as the
worst-case available bi-section bandwidth [17].

Network latencies may not vary much, but the bandwidth
available within a rack, across racks, and across rows can vary
substantially. Therefore, inappropriate placement of VMs can
have dire consequences. An example is the placement of heavily
communicating VMs across multiple racks, thereby consuming
the bandwidth available to a QoS-sensitive VM ensemble. Based
on anecdotal evidence, users deploy multiple VMs in a public
cloud to finally find a group with low ping latency between them
and then hold on to them. Such scenarios motivate us to develop
Net-Cohort’s runtime methods to identify VM ensembles, as once
identified, they can better place VMs onto data center machines.

2.2 Related Work
We classify related literature into four different categories:
manual techniques, trace-based and middleware-based techniques,
and techniques using explicit perturbation.

2.2.1 Manual Techniques
Some sophisticated network management systems, e.g., Mercury
MAM [3] and Microsoft MOM [4], rely on application designers
or owners to specify dependency models. This restricts these
approaches to particular applications or vendors and requires
significant updates or changes when applications evolve. This is
not very practical both for public clouds like Amazon EC2 or for
private cloud deployments to run the IT for large enterprises like
those reported in a survey conducted by the Wall Street
Journal’08, which states that a single company, Citigroup,
operates over 10,000 line-of-business applications [15].

2.2.2 Trace-based Techniques
Project5 [9] and WAP5 [23] infer causal path patterns from
offline network traces, using messages at hosts recorded with both
sent and received timestamps. Project5 infers causal relationships
between two message streams by computing their cross
correlation. WAP5 generates timelines and causal trees, based on
the assumption that causal delays follow an exponential
distribution. The project’s purpose is to isolate performance
bottlenecks, e.g., to detect which nodes are sources of latency.
Their primary concern, therefore, is to resolve which incoming
message triggers which outgoing message. In contrast, Net-
Cohort operates at a larger scale and requires less information
about the underlying system.

E2Eprof [8] reconstructs causal paths based on kernel-level
network tracing. Compared to Net-Cohort, E2EProf has higher
runtime overheads due to capturing the end-to end latencies of all
requests in multi-tier systems and applying cross correlation
analysis to all network flows.

Orion [15] discovers dependencies for enterprise applications
by using the ‘time correlation’ of messages between different
services, meaning that if service A depends on service B, the
message delay between A and B should be close to a “typical”
value. Applying this rule to VM platforms may be difficult,
because a “typical” spike could be distorted by noise, e.g., the
domain running service A or B may lose its processor and spend
some uncertain amount of time waiting to be scheduled.

Our earlier workshop paper [10], called LWT, is not
sufficiently accurate or flexible: they are based only on CPU
metrics; their use of k-means clustering requires parameters
settings to be customized to the applications being run.

Pinpoint [14] collects end-to-end traces of client requests
travelling through a distributed system, by tagging each J2EE call
with a unique request-ID. These traces enable automated
statistical analyses. Pinpoint requires all distributed applications
to run on homogeneous platforms with logging capabilities, but
real-life large enterprise data centers are almost heterogeneous
with a plethora of operating systems from different vendors.

2.2.3 Middleware-Based Techniques
vPath [24] provides path discovery by monitoring and recording
thread and network activities at runtime, such as which thread
performs a send or recv system call over certain TCP connection.
vPath can be implemented in either the OS kernel or a virtual
machine monitor (VMM). Although the implementation is
agnostic to user-space code, it requires changes to the VMM code
and the guest OS.

Aurora [1] is targeted at flow-based network traffic analysis
for large networks to provide anomaly and virus
detection/mitigation, BGP/OSPF/RIP monitoring, and traffic
network maps. It discovers communication dependencies among
servers through detailed network traffic reports from NetFlow,
which a network protocol developed by Cisco Systems. However,
it requires an installation of a netflow collector and works
specifically on Cisco routers. The cost and overhead of generating
the traffic report can be quite high in large datacenters.

5

N N

Figure 3. Workflow of Net-Cohort.

2.2.4 Perturbation-Based Techniques
Resource dependencies are uncovered using an active
approach in [12] – using fault injection. In [13], cross-domain
dependencies are identified by explicitly perturbing system
components while monitoring the system’s response, e.g., by
locking a particular database table to deny the queries from
certain component. Pip [22] can obtain a high rate of accuracy for
extracting causal paths by modifying, or at least recompiling the
applications. The generality of all these approaches is limited by
that fact that they require expert knowledge about the systems and
applications being evaluated.

3. NET-COHORT DESIGN
Net-Cohort’s uses a three-step approach to discover VM
ensembles and make use of them. These include (1) monitoring of
some basic statistics, (2) computing potential ensembles using
correlation techniques and creating hierarchical clusters, and (3)
collecting more precise communication statistics between the
VMs in each ensemble. Figure 3 shows these steps at a high level,
with additional detail presented next.

3.1 Data Collection
The basic monitor module captures the following universally
available system-level metrics about each VM:
 CPU: CPU usage per second in percentage terms (%)
 PacketOut: Packets transmitted per second (KByte/sec),
 PacketIn: Packets received per second (KByte/sec)

These periodic measurements result in three time series signals
per VM. Before explaining the actual analysis being applied, we
illustrate the utility of taking these measurements with a simple
example.

Multi-tier applications (e.g., RUBiS) typically use a request-
response architecture, in which a client node sends a request to
the front end (e.g., Apache), which does load balancing and
assigns the work to an appropriate server (e.g., Tomcat) running
the application logic. The application logic services the request by
querying the backend (e.g., a database server like MySQL) to
produce the necessary output, and sending the response back to
the client.

Therefore, given the nature of multitier applications, we can
expect correlations between one or more of “CPU”, “PacketOut”,
and “PacketIn” statistics for interacting nodes. Figure 4 shows
these measurements for Client, Apache, Tomcat and MySQL
VMs for one instance of RUBiS. Here we find that the “spikes”
and “valleys” of their packet flows consistently occur together.
The reason is that an instant rise of CPU usage or packet flow rate

in one VM directly or indirectly triggers activities in other VMs,
thereby creating the correlations among these statistics.

Figure 4. Example of a multi-tier RUBiS application showing
correlation on packet flowrate.

Although “PacketOut” and “PacketIn” are more intuitive
metrics to do correlation analysis among communicating VMs,
we also used “CPU” metric for the analysis because it provides
extra information in certain scenarios. For example, a bunch of
VMs doing many-to-many but infrequent large data exchanges. It
gets even harder to detect these using only packet-based metrics if
the interval between exchanges is larger than the sampling
window. In these cases, CPU correlation provided better results as
compared to others. We found one such example during our
evaluation as well (see Section 6.1, Figure 9).

3.2 Distance Identification
For each pair of VMs in the data center, we calculate the
correlation coefficient value, denoted as corr(Vi, Vj), to identify
the dependency strength between them. In statistics, the
correlation coefficient indicates the strength and direction of a
linear relationship between two random variables. We choose the
pearson product-moment correlation coefficient (PMCC) to
measure the degree of correlation, giving a value between +1 and
−1 inclusive.

Let 1 2{ , ,..., }nX X X X and 1 2{ , ,..., }nY Y Y Y be the vectors
of two random variables, then the strength of the dependence
between X and Y is:

1

2 2

1 1

()()
(,)

() ()

n

i ii

n n

ii i

X X Y Y
corr X Y

Xi X Y Y



 

 


 


 

…… ….. (1)

Here X and Y denote the sample means of X and Y,
respectively. We expect to see a large, positive correlation
coefficient between certain statistics of the interacting VMs.

6

3.3 Compute Pair-wise Distance among VMs
Let w be the size of observation window in seconds. Let

1 2{ , , ..., }NV VM VM VM be the set of all VMs in the data
center. For each observation window, let

1 2{ , , ..., }i w iCPU CPU CPU CPU denote the set of CPU usage
readings collected for VMi; let
PacketOut

i
{ PacketOut

1
, PacketOut

2
, ..., PacketOut

w
}

i be the set of
PacketOut readings collected for VMi; let

1 2{ , , ..., }i w iPacketIn PacketIn PacketIn PacketIn be the set of
PacketIn readings collected for VMi.

The readings interval is few seconds. For each pair of VMs
(denoted as Vi, Vj), we calculate the correlation coefficients for
the following three combinations of statistics using Equation (1):
 corr

1
 corr(CPU

i
,CPU

j
)

 corr
2
 corr(PacketOut

i
, PacketIn

j
)

 corr
3
 corr(PacketIn

i
, PacketOut

j
)

Next as illustrated in Figure 5, a N N correlation matrix for
the set of all VMs is generated, in which the correlation
coefficient between Vi and Vj, (denoted as corr(Vi, Vj)) is set as
the maximum value of the three combinations,
Max(corr

1
,corr

2
, corr

3
) . The above process is repeated for each

observation window. Finally, we have  N N correlation
matrices ( refers to the number of observation windows).

Figure 5. Example of a N N correlation matrix.

Given the  observation windows, we need to handle the noise
and outliers in incoming data. Two negative situations have to be
excluded: (1) unrelated VMs showing “similar” resource usage
features lasting for  observation windows ( ); (2) two
correlated VMs showing “diverse” resource usage features lasting
for  observation windows ( ). To avoid these abnormal
samples from affecting our result, we calculate the average value
for corr(Vi, Vj) based on  windows. We further define the
distance between Vi and Vj as:

1 / (,) (,) 0
(,)

(,) 0
i j i j

i j
i j

corr V V if corr V V
Dist V V

if corr V V


 

The distance indicates the strength of dependency between
two VMs, meaning that the closer the distance, the stronger the
correlation. We then calculate a N N distance matrix for all
VMs, which will be used in the next step.

3.4 Hierarchical Clustering
Given a set of N VMs with a N N distance matrix, Net-Cohort
uses an unobtrusive black-box approach to cluster them into
ensembles. The black-box clustering requires only VM-level’s
external observations like CPU usage over time, packet

transmitted over time, to indicate which VMs may be interacting
with each other. Such observations are commonly available from
any data center’s monitoring system or hypervisors and thus
collecting the source data is easy and lightweight.

Two commonly used clustering algorithms are hierarchical
clustering and k-means clustering. Net-cohort uses hierarchical
clustering for the following reasons:
 Hierarchical clustering does not require the number of clusters

in advance.
 It works well with both globular and non-globular clusters,

while k-means fails to handle non-globular data.
 k-means clustering is sensitive to initial centroids. If the user

does not have adequate knowledge about the data set, this may
lead to erroneous results.
The process of hierarchical clustering is shown in Figure 6:

Figure 6. Example of hierarchical clustering.

 Step 1: initially assign each VM to a cluster, so that there are
N initial cluster for N VMs.

 Step 2: find the closest (most similar) pair of clusters and
merge them into a single cluster.

 Step 3: compute distances (similarities) between the new
cluster and each of the old clusters.

 Step 4: repeat Steps 2 and Step 3 until all items are clustered
into a single cluster of size N.
Concerning Step 4, of course, there is no point in having all N

items grouped into a single cluster, but doing so results in the
construction of the complete hierarchical tree, which can be used
to obtain k clusters by just cutting its k-1 longest links. K can be
based on the number racks in the datacenter, or it can be chosen to
make the inter-cluster distance is less than a certain threshold.

3.5 Statistical Packet Sniffing
Based on the ensembles information from Section 3.3 and the
initial known VM/PM mappings, Net-Cohort detects the ensemble
whose components might be misplaced, e.g., a RUBiS ensemble
but its components (Apache, Tomcat, Database) are placed across
remote racks. Then packet sniffing is enabled only on such
misplaced VMs to determine the actual communication intensity
among them. Calculating the communication intensity is
important because a bunch of VMs that do frequent, synchronized
exchanges would appear to be an ensemble by the first step, but
their communication volume transferred might be trivial and will
have little impact on bi-section bandwidth.

Net-cohort uses a lightweight packet sniffer inside domain0 to
log the destination IPs and communication frequency for a VM.

7

Note that not all VMs with high correlation are suitable for being
placed close to each other. Informally, the VMs whose
communication exceed a certain threshold and occur for a
"sustained" period are better candidates for co-location. After all,
there is no need to co-locate VMs that have only lightweight
"ping pong" packet communications. However, the hierarchical
clustering tree lacks information about how much data has been
exchanged between dependent VMs. By contrast, the packet
sniffer can provide a better estimate of data transmission.

In order to make the data collection more efficient, only top-K
destinations in terms of network communication are collected.
Consider a data center with large number of VMs, the overhead
for maintaining data structures of all distinct IP addresses might
be costly. We therefore adapt well-known techniques from data
mining, as proposed by Lukasz and David in [16], to compute
top-K destination IP addresses and an approximate packet count.
This algorithm identifies frequent items in sliding windows
defined over real-time packet streams with limited memory. More
details can be found in [16]. Packet sniffer is not completely
transparent and introduces some CPU and memory overhead (see
Section 6.3), so we only apply it to the misplaced ensembles and
run it for a short period.

4. SUPPORT FOR PLACEMENT ENGINE
Based on VM ensemble discovery and fine-grained statistics, Net-
Cohort can supplement any VM placement engine to identify
collocation opportunities for VM that are communicating heavily.

A VM placement engine is responsible for managing the
mappings of VMs onto physical machines (PMs) in accordance
with criteria specified by users or administrators. For example, if
the optimization criterion is to minimize power usage, the VM
placement engine might consolidate VMs onto fewer hosts and
power off unneeded hosts during periods of low resource
utilization (e.g., VMware DPM); if the optimization criterion is to
achieve high levels of QoS, VM placement engine might perform
load-balancing of VMs between physical hosts when specific
thresholds are exceeded, such as transactions per second, CPU
utilization, etc. (e.g., Microsoft’s Performance and Resource
Optimization (PRO) [5], VMware DRS and DPM [7]).

With Net-Cohort, a VM placement engine can be enhanced to
consider VM level communication in its decisions. One way for
Net-Cohort to interact with a placement engine is to provide it
with a list of candidates for VM movement, ranked by the
potential benefits accrued in terms of reduced use of network bi-
section bandwidth. The engine, then, considers those facts along
with other migration criteria, such as load balancing and VM
migration costs, to make migration decisions. Another alternative
is to set soft affinity rules among VMs that are communicating
heavily, which is then considered by the placement engine when
it decides on VM relocations. If the VM level communications are
known in advance or from historical records, the VM placement
engine can co-locate them from the very beginning.

Regardless of how an engine leverages Net-Cohort’s
information, however, it is the engine’s task to resolve conflicts
between different rules and the movements they suggest.

Placement engine design and details are beyond the scope of this
paper, for our analysis we assume that we have enough resources
in terms of CPU and memory to do collocation of VMs based on
their communication intensity and there is not interfering rule
regarding separating them for higher availability.

5. EXPERIMENTAL SETUP
This section validates Net-Cohort with experiments performed
with representative applications in a virtualized infrastructure.

5.1 Testbed
Experiments are run on 15 dual-core dual-socket servers, each of
which has two Intel Xeon 5150 processors, 16GB of memory, and
80GB hard drives. The 15 servers are distributed across 4 edge
switches, with 4, 4, 4, and 3 servers/switch. All switch and NIC
ports run at 1Gbps. Switches are connected to each other, with an
oversubscription ratio of at most 4:1.

Applications are embedded in a total of 225 virtual machines,
each of which is configured to use 128MB of RAM. Xen 3.1.2 is
used as the virtual machine monitor on each host, and the host
kernel for XenoLinux is a modified version of Linux 2.6.18.

5.2 Workload and Metrics
Experiments employ 6 instances of RUBiS (24 VMs), 3 instances
of Hadoop (48 VMs), 6 instances of Iperf (12 VMs), 6 instances
of N-bench (6 VMs), 6 instances of SIPp (12 VMs) and 3 instance
of MalGen (123VMs), resulting in a total of 225 VMs running a
mix of business, internet services, and batch workloads.

RUBiS is an eBay-like benchmark. We use a PHP-based
configuration of RUBiS, with a web server front end (Apache)
and an application server (Tomcat) connected to a database
backend (MySQL). Workload generation uses a fourth client VM.

SIPp is a traffic generator for the SIP protocol. It can establish
actual client and server sessions and initiate/release thousands of
calls with given rate. We use call rates (calls per second) starting
from 800, increased by 10 every second, and a maximum rate of
3000, with total calls set to 1000K.

Hadoop is a Map/Reduce-like framework in which the
application is divided into many small fragments of work, each of
which may be executed or re-executed on any node in the cluster.

N-bench is a CPU benchmark measuring CPU performance,
such as integer operations and floating point arithmetic.

Iperf is a commonly used network workload generation tool.
We continuously run Iperf pairs to generate interference traffic,
thereby causing the bandwidth bottleneck.

MalGen is a set of scripts that generate a large, distributed
data set across multiple nodes in a cluster. One MalGen instance
consists of one seed and a dozen workers.

6. EXPERIMENTAL EVALUATION
We first evaluate the basic functionality of Net-cohort (Section
6.1) in finding the right set of ensembles. We then evaluate the
benefit of these findings for better VM placement on hosts
through the comparison of application throughput and response
time between initial VM placement and final VM placement
(Section 6.2). Finally we evaluate the overhead, if any, induced
by Net-Cohort (Section 6.3).

8

Figure 7. VM ensemble identification
accuracy (in percentage) over 225 VMs

with an increasing window size.

Figure 8 . Intra-cluster/Inter-cluster correlation coefficient among RUBiS2-Client
and other VMs.

6.1 Net-Cohort’s Functionality Evaluation
The following metrics are used to evaluate Net-Cohort’s
functionality: (1) true positive rate (TPR) and true negative rate
(TNR). TPR is defined as the ratio of the VMs that have been
grouped into the right ensembles to the total set of VMs, denoted
as TPV V . TNR is defined as the ratio of the VMs that have not
been grouped into the wrong ensemble to the total set of VMs,
denoted as NPV V . (2) The intra-cluster correlation coefficient
is defined as the representative correlation coefficient value for
pairs of VMs within one particular ensemble. The (3) hierarchical
tree structure is comprised of the VM ensembles determined by
the hierarchical clustering algorithm.

Figure 7 presents the accuracy of VM ensemble identification
by Net-Cohort over 225 VMs with an increasing window size.
The TPRs are 87.5%, 90.0%, 90.0%, 90.0%, and 87.5% for
window sizes 30 seconds, 60 seconds, 90 seconds, 180 seconds,
and 360 seconds, respectively. The TNRs are 90.0%, 92.5%,
90.0%, 90.0%, and 90.0% for window sizes 30 seconds, 60
seconds, 90 seconds, 180 seconds, and 360 seconds, respectively.

The results shows that: (1) without relying on any knowledge
of the configuration of the test system, Net-Cohort can correctly
classify around 90% of virtual machines; (2) there is not much
difference between the results for different window sizes,
indicating that Net-Cohort is relatively insensitive to the size of
the observation window and thus user-friendly for system
administrators to set its parameters.

To better understand the above results, we look at correlation
coefficients among various VMs within and across ensembles that
are calculated by Net-Cohort. For the sake of clarity, we have
selected a few representative VMs and presented their correlation
with a random subset of all the 225 VMs. The subset includes 7
instances ((N-bench1, N-bench2, Iperf1, Iperf2, RUBiS1, RUBiS2
and Hadoop) out of all 30 instances, where N-bench1 denotes the
first instance of N-bench, Iperf2 denotes the second instance of
Iperf, etc. The figures show the intra-cluster/inter-cluster
correlation coefficient for a representative VM and 17 VMs,
where X-axis represents certain VM’s name and Y-axis represents
PMCC value between the representative VM and that VM. We

find that the VMs belonging to the same application have
relatively strong correlations and thus shorter distances.

Figure 8 shows the correlation coefficient between among
RUBiS2-Client and RUBiS2-Apache, RUBiS2-Tomcat, RUBiS2-
Sql. Note that the intra-cluster correlation coefficients among
RUBiS2-Client and RUBiS2-Apache, RUBiS2-Tomcat, RUBiS2-
Sql are all close to 1.0, while the inter-cluster correlation
coefficients between RUBiS2-Client and other VMs are less than
0.2. We have evaluated the correlation values for window sizes of
30, 60, and 90. These results demonstrate that the correlation
detection mechanism based on the three metrics of CPU
utilization, PacketsIn and PacketsOut can correctly identify VM
groups that communicate with each other.

Net-Cohort is also able to differentiate the same classes of
instances that run different tasks. This is because different tasks
typically show different resource usage patterns which can then
be used by Net-Cohort to identify the intra-cluster correlations
within the ensemble and the inter-cluster correlations outside of
the ensemble. For example, Figure 9 (a) and (b) show the CPU
usage patterns of two Hadoop instances respectively. The first
Hadoop instance reads text files and counts how often words
occur. The second Hadoop instance computes exact binary digits
of the mathematical constant π. From Figure 9 (a) and (b), we
learn that the “CPU spikes” and “CPU valleys” of the slaves that
belongs to the same ensemble consistently occur together, thereby
creating the correlations needed by Net-Cohort.

For intuition about the ensemble identification process, we
also look at how the correlation-based hierarchical tree is built by
Net-Cohort.

Figure 10 shows the hierarchical trees constructed using the
decreasing level of dependency strength. We first determine
a N N correlation strength matrix, and then run the hierarchical
clustering algorithm over the distance matrix for the cases without
packet sniffing. The hierarchical trees generated by R [6], which
shows the calculated dependent links between the VMs being
observed. This demonstrates that Net-Cohort can effectively
expose most of the underlying dependencies between the VMs
within our testbed.

9

Figure 9 (a). CPU pattern of Hadoop
instance of word

Figure 9 (b). CPU pattern of Hadoop
instance of computing PI.

Figure 10. Hierarchical tree generated by R
with window size = 90.

6.2 Net-Cohort Benefit Evaluation
After determining the VM ensembles and hierarchical clustering
of VM groups, we next evaluate the benefit of these inputs for
better VM placement on hosts. In doing so, we first look into the
impact of available bi-section bandwidth on applications. To
study this impact, we set the crossover bandwidth among RUBiS
components from 1Mbps to 100Mbps to reveal how bandwidth
changes influence RUBiS performance.

Figure 11 (a) reports the throughput in requests per second as a
function of available bandwidth among components. Bandwidth is
varied from 1Mbps to 100Mbps. Every RUBiS workload includes
three stages: up ramp, runtime session, and down ramp. This
shows that the throughput of all three stages of RUBiS are quite
sensitive to the available bandwidth, since the throughput
corresponding to 100Mbps bandwidth is more than that of the
1Mbps available network bandwidth by about 20 times. Figure 11
(b) reports the response time in millisecond per request as the
available bandwidth among components. Bandwidth is varied
from 1Mbps to 100Mbps. It shows that as bandwidth increases,
the average response time of all three stages of RUBiS is
significantly reduced by over 1000 times.

To test VM placement, we deploy the RUBiS components
(Apache server, Tomcat server, database server and client), SIPp
components (SIPp server, SIPp client) to domains with 100Mbps
limited bi-section bandwidth. The incoming and outgoing
bandwidth is capped by Linux control groups and traffic shaping
tools at VMM’s layer. To aggravate competition for bi-section
bandwidth, we simultaneously run the Iperf instance, the mapping
of VMs to hosts and racks is shown in Figure 12. We apply Net-
Cohort black-box methods to determine the VM ensembles, use
that input to come up with the moves through VM placement
engine, and remap VMs onto hosts. We then compare application
performance results for initial and final placements. Here, we
assume that CPU and memory resources are not a bottleneck.

Figure 13(a) shows that RUBiS throughput increases from 27
request/second, 20 request/second, and 19 request/second to 68
request/second, 97 request/second, and 41 request/second for up
ramp, runtime session, and down ramp, respectively. Figure 13(b)
shows that RUBiS response time per request decreases from 6787
millisecond, 15245 millisecond, and 28037 millisecond to 468

millisecond, 31 millisecond, and 25 millisecond for up ramp,
runtime session, and down ramp, respectively.

Figure 14 shows that compared to the initial placement, the
throughput of the first Hadoop instance increases from 735.5
Kbyte/second to 1103.3 Kbyte/second, and the throughput of the
second Hadoop instance increases from 1180.5 Kbyte/second to
1609.9 byte/second.

Figure 15 shows that SIPp’s quality of service in terms of
number of failed calls is improved significantly. Calls failed due
to the co-located VMs saturate the limited bandwidth. The
average number of failed calls decreases from 250.62 to 19.64.

Figure 15. Comparison of SIPp performance in number of
failed calls for initial vs final VM placements.

Experimental results clearly indicate the benefits of
bandwidth-aware VM placement, thereby demonstrating that
information obtained using Net-Cohort can help improve
placement and migration actions while reducing utilization of
network resources in virtualized data centers. These potential
improvements are motivation for future work in which we are
integrating Net-cohort with existing management utilities. (e.g.,
see vManage [19]).

6.3 Packet Sniffer Overheads
The first phase of correlation detection has no extra overhead
because basic VM level statistics are already reported by
management systems. The second phase of distance identification
has a complexity of 2()N where N equals to number of VMs,
costing several seconds. The third phase of clustering has a
complexity of 2()N costing several seconds. Packet sniffing is
turned on a very selective set of hosts and VMs.

10

Figure 11 (a). RUBiS throughput
changes as a function of available

bandwidth.

Figure 11 (b). RUBiS response time
changes as a function of available

bandwidth.

Figure 12. Before and after VM/PM
mappings.

Figure 13 (a). Comparison of RUBiS
throughput for initial vs. final VM

placements.

Figure 13 (b). Comparison of RUBiS
response time for initial vs. final VM

placements.

Figure 14. Comparison of Hadoop
throughput for initial vs. final VM

placements.

We empirically estimate the CPU and memory overheads due
to the packet sniffer running in Domain0. Figure 16 shows the
additional CPU usage when using the packet sniffer for 5VMs and
10VMs as a function of time. Note that the CPU overhead can be
negligible if the transferred traffic is not heavy and the number of
VMs monitored is small. However, the packet sniffing technique
may trigger irregular fluctuations in CPU usage when capturing
large amount of packets, switching among interfaces or
periodically flushing I/O buffers of logs to disks. Effects would
worsen for larger numbers of VMs on a host or when moving
from 1Gbps to 10 Gbps NICs. Latency per packet would also be
higher if the packet sniffer is being run in a separate VM due to
multiple context switches.

Figure 16. CPU overhead of packet sniffer when sniffing
different number of VMs.

In summary, since the packet sniffer is not transparent to users
in that its use may introduce heavy CPU overheads, we apply it
only when the black-box methods require additional information
to accurately cluster VMs.

7. CONCLUSIONS
Net-Cohort presents a set of lightweight, non-intrusive techniques
for identifying communicating VMs so as to enable VM
placements and migrations that reduce the pressure on bi-section
bandwidth in consolidated data centers.

Net-Cohort benefits data center administrators in several ways.
In general, it informs them about the VM ensembles currently
being run in the data center, thereby enabling them to manage
their systems for entire applications rather than individual VMs.
More specifically, it makes it possible to place communicating
VMs in ways that preserve scarce bi-section bandwidth, which
can improve application performance and reduce effects on other
bandwidth-sensitive services. Net-cohort’s simple design can be
realized with available statistics and in a scalable fashion, without
requiring changes to data center facilities. It has three unique
characteristics:
 It does not require knowledge about application semantics, the

implementation of the platform, or a priori information about
communication paths.

 There is no need to modify applications, middleware,
workloads, or platforms.

 It has extremely low impact on system performance.

11

Net-Cohort’s methods are fully implemented, but additional
work is required for using it to continuously monitor and manage
data center systems at scale [25]. This includes practical steps like
the efficient correction for time series correlation calculation due
to potential lack of synchronization among VMs’ clocks, and the
efficient runtime construction and deployment of monitoring and
analysis ‘overlays’ with data center systems and applications.
Moreover, we are working on a pre-clustering module that is
capable of filtering out background traffic (i.e., management
traffic), since such traffic might otherwise be interpreted as intra-
ensemble communications. Further, it would be interesting to
understand how methods like Net-Cohort can be integrated with
management solutions like VMware’s DRS and Hyper-V’s PRO.
Finally, we note that future ‘flat’ data center networks, like those
developed by companies like Brocade, HP, and Juniper Networks,
may shift the utility of Net-Cohort from providing a means to
reducing the use of network bi-section bandwidth to instead,
serving as a management tool that enables administrators to
recognize and manipulate entire applications or properties rather
than individual VMs.

8. REFERENCES
[1] Aurora. http://www.zurich.ibm.com/aurora/.
[2] Cisco Data Center Infrastructure 2.5 Design Guide.

www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c6
49/ccmigration_09186a008073377d.pdf.

[3] Mercury MAM.
http://www.mercury.com/us/products/business-availability-
center/application-mapping.

[4] Microsoft MOM. http://technet.microsoft.com/en-
us/systemcenter/om/bb498244.aspx.

[5] Microsoft’s Performance and Resource Optimization (PRO).
http://technet.microsoft.com/en-us/library/cc764283.aspx.

[6] R Project. http://www.r-project.org/.
[7] VMware Distributed Resource Scheduler (DRS).

http://www.vmware.com/products/drs/.
[8] S. Agarwala, F. Alegre, K. Schwan, J. Mehalingham,

“E2EProf: Automated End-to-End Performance
Management for Enterprise Systems”, In the 37th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN'07), June 2007.

[9] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen, “Performance Debugging for
Distributed Systems of Black Boxes,” In Proceedings of
SOSP, 2003.

[10] R. Apte, L. Hu, K. Schwan, A. Ghosh, “Look Who’s Talking:
Discovering Dependencies between Virtual Machines Using
CPU Utilization,” In the 2nd USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud' 10), June 2010.

[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat. “Hedera: Dynamic Flow Scheduling for
Data Center Networks,” In USENIX NSDI, April 2010.

[12] S. Bagchi, G. Kar, and J. L. Hellerstein, “Dependency
analysis in distributed systems using fault injection:
Application to problem determination in an e-commerce
environment,” In Proc. 12th Intl. Workshop on Distributed
Systems: Operations & Management, Nancy, France, Oct.
2001.

[13] A. Brown, G. Kar, and A. Keller, “An active approach to
characterizing dynamic dependencies for problem

determination in a distributed environment,” In Proc. 7th
IFIP/IEEE Intl. Symp. on Integrated Network Management,
Seattle,WA, May 2001.

[14] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem determination in large, dynamic
systems,” In Proc. 2002 Intl. Conf. on Dependable Systems
and Networks, pages 595–604, Washington, DC, June 2002.

[15] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Automating
network application dependency discovery: Experiences,
limitations, and new solutions,” In OSDI, San Diego,
California, Dec. 2008.

[16] L. Golab, D. DeHaan, E. D. Demaine, “Identifying.
Frequent Items in Sliding Window over On-line Packet
Streams,” Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement (IMC '03), Florida,
USA.

[17] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, S. Sengupta, “VL2: A
Scalable and Flexible Data Center Network,” ACM
SIGCOMM 2009, August 2009.

[18] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu.
“Performance and Availability Aware Regeneration for
Cloud Based Multitier Applications,” In the 40th IEEE/IFIP
International Conference on Dependable Systems and
Network (DSN 2010) Performance and Dependability
Symposium, Illinois, Chicago, June 2010.

[19] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, K.
Schwan: “vManage: loosely coupled platform and
virtualization management in data centers,” ICAC 2009,
127-136.

[20] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J.C. Mogul,
“SPAIN: COTS Data center Ethernet for Multipathing over
Arbitrary Topologies,” In Proc. NSDI, 2010, pp.265-280.

[21] S. Radhakrishnan, H. Bazzaz, V. Subramanya, Y. Fainman,
G. Papen, and A. Vahdat, “Helios: A Hybrid
Electrical/Optical Switch Architecture for Modular Data
Centers”, In Proceedings of the ACM SIGCOMM
Conference, New Delhi, India, August 2010.

[22] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat, “Pip: Detecting the unexpected in
distributed systems,” In Proc. NSDI, San Jose, CA, May
2006.

[23] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and
A. Vahdat, “WAP5: black-box performance debugging for
widearea systems,” In WWW, 2006.

[24] B.C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar,
and R. N. Chang, “vPath: Precise Discovery of Request
Processing Paths from Black-Box Observations of Thread
and Network Activities,” In USENIX ATC, 2009.

[25] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, M.
Wolf, “A Flexible Architecture Integrating Monitoring and
Analytics for Managing Large-Scale Data Centers,” In
ICAC, 2011.

[26] Y. Zhang, A. Su and G. Jiang, “Understanding Data Center
Network Architectures in Virtualized Environments: A View
from Multi-Tier Applications,” Elsevier Computer Networks,
Vol. 55, No. 9, 2011.

12

