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ABSTRACT 
Bi-section bandwidth is a critical resource in today’s data centers 
because of the high cost and limited bandwidth of higher-level 
network switches and routers. This problem is aggravated in 
virtualized environments where a set of virtual machines, jointly 
implementing some service, may run across multiple L2 hops. 
Since data center administrators typically do not have visibility 
into such sets of communicating VMs, this can cause inter-VM 
traffic to traverse bottlenecked network paths. To address this 
problem, we present `Net-Cohort’, which offers lightweight 
system-level techniques to (1) discover VM ensembles and (2) 
collect information about intra-ensemble VM interactions. Net-
Cohort can dynamically identify ensembles to manipulate entire 
services/applications rather than individual VMs, and to support 
VM placement engines in co-locating communicating VMs in 
order to reduce the consumption of bi-section bandwidth. An 
implementation of Net-Cohort on a Xen-based system with 15 
hosts and 225 VMs shows that its methods can detect VM 
ensembles at low cost and with about 90.0% accuracy. 
Placements based on ensemble information provided by Net-
Cohort can result in an up to 385% improvement in application 
throughput for a RUBiS instance, a 56.4% improvement in 
application throughput for a Hadoop instance, and a 12.76 times 
improvement in quality of service for a SIPp instance. 

Categories and Subject Descriptors 
D.4.1 [Operating Systems]: Process Management – scheduling; 
D.4.7 [Operating Systems]: Organization and Design – 
distributed systems.  

General Terms 
Algorithms, Management, Design. 

Keywords 
Virtualization, Clustering, Dependency Analysis.  

1. INTRODUCTION 
Virtualization is being deployed in data centers at a rapid pace to 
consolidate workloads for improved server utilization, for ease of 
provisioning, configuration management, and more generally, for 

flexible use of data center resources. A typical application 
running in a virtualized environment consists of a set of virtual 
machines (VMs) – a VM ensemble – that cooperate and 
communicate to jointly provide a certain service or accomplish a 
task. A multi-tier web application, for instance, may be structured 
as an ensemble with certain VMs implementing its front end 
service, other VMs running application servers, and backend VMs 
running databases or network file systems. 

VM ensembles can be configured and mapped to data center 
machines to scale throughput by partitioning tasks across multiple 
machines, to obtain high availability by mapping VMs to different 
nodes or racks, or to improve power consumption by minimizing 
the number of machines used by an ensemble, while still meeting 
performance and reliability requirements [18]. 

 

 

Figure 1. VM ensemble consisting of a multi-tier application 
mapped across multiple hosts in a data center. 

Figure 1 shows one such configuration for a multi-tier e-
commerce web application represented by RUBiS. In this case, 
client requests arrive at the VM running the web server front end 
and are then forwarded to one of the VMs running application 
servers, which in turn may request data from a backend VM 
hosting a database.  

Bi-section bandwidth of the network infrastructure is a critical, 
scarce, and expensive resource in data centers today. Recent 
studies [11] [20] [21] have shown that servers in different racks 
have to share the up-links from top of rack switches (ToRs). Since 
these are typically 5:1 to 20:1 oversubscribed, this can result in a 
worst-case available bi-section bandwidth as low as 125Mbps 
[17]. Furthermore, higher level switches in the network topology 
cost much more, due to the amount of network bandwidth and 
numbers of ports they have to support. 
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Limited bi-section bandwidth places constraints on the 
mapping of VM ensembles to underlying hosts. As illustrated in 
Figure 2, an ensemble of frequently communicating, ‘chatty’ 
VMs is placed across multiple racks. Such a placement can 
negatively affect the services provided by the ensemble [26]. 
First, as the shared up-links from ToRs become saturated, intra-
ensemble communications may be delayed. Such delays can be 
further exacerbated by message retransmissions due to time-outs. 
Second, the use of scarce, shared bandwidth can affect other 
services and ensembles, as evident in applications like Hadoop 
that experience slowdown due to file system-level data 
reorganization. This is also demonstrated in one of our 
experiments, where a RUBiS benchmark experiences a 79.4% 
performance loss in application throughput when placed across a 
bandwidth-constrained set of machines (see Section 6). Finally, a 
link failure can cause severe imbalances across paths and may 
require relocation of some of the VMs in order to reduce over-
subscription.  

 

Figure 2. Example of shared up-links from TORs crash, 
causing performance degradation for many VMs. 

This paper presents ‘Net-Cohort’, a lightweight system that (1) 
continuously monitors a system to identify potential VM 
ensembles, (2) assesses the degree of ‘chattiness’ among the VMs 
in these potential ensembles, thereby (3) enabling optimized VM 
placement to reduce the stress on bi-section bandwidth of the data 
center’s network. ‘Net-Cohort’ has the following unique 
properties: 
 scalable – it accurately identifies ‘chatty’ VMs using 

commonly available runtime statistics and a two-step method 
for increased precision when needed;  

 actionable – insights derived from running Net-Cohort can 
help management software better co-locate VM ensembles on 
underlying hosts;  

 privacy-preserving – its black-box methods do not require any 
VM (guest-OS) level changes or any information about the 
VM ensemble being run from the user. 
Discovering VM ensembles and their inter-VM dependencies 

is quite challenging. A naïve method that continuously gathers 
statistics about all communicating VM-pairs is prohibitively 
expensive. First, it would require introspection of all packets sent 
and received by the VMs; this would induce notable CPU 
overheads and additional per packet latencies of the tens of 

microseconds. Second, additional memory resources would be 
required to maintain statistics for every pair of IP addresses. 

Net-Cohort uses a two-step approach to limit runtime 
overheads in terms of metric collection and per packet analysis. 
The first step acquires VM-level statistics commonly available in 
virtualized systems, such as the total numbers of packet in/out 
over time. It then computes the correlation coefficients among 
these statistics and divides the corresponding VMs into subsets 
(also called ensembles) using correlation values and a hierarchical 
clustering algorithm.  

The second step uses a statistical packet sniffer only on the 
VMs identified as members of a misplaced ensemble, i.e., an 
ensemble with VMs placed across remote racks. The packet 
sniffer maintains information about outgoing packets, their 
destination IP addresses and corresponding counters, which are 
then used to determine the actual communication intensity among 
VMs. To optimize memory consumption, only the top-k 
destinations are tracked in an online manner using the statistical 
algorithm proposed by Lukasz and David in [16]. Finally, this 
information about VM level communications is used to drive new 
VM placement decisions. 

Determining a new placement of VMs to physical servers is 
similar to multi-dimensional bin-packing problem. Placement 
requires evaluation of multiple criteria such as balancing of CPU, 
memory and I/O resources on each host. Existing solutions like 
VMware DRS, use weighted mechanisms to combine the standard 
deviation across multiple dimensions. Different policies can also 
influence the placement. For example, power savings would give 
priority to consolidating VMs on fewer servers whereas load-
balancing would redistribute VMs across all servers. Net-Cohort 
can supplement any placement system by providing network 
communication cost as another dimension. However, designing a 
placement solution just based on network communication would 
not be very useful and designing a complete solution is out of 
scope of this paper. As suggested in the Section 4, Net-Cohort can 
suggest soft or hard affinity rules between VMs and the 
placement engine (e.g. VMware DRS) can enforce them during 
load-balancing.  

We have implemented Net-Cohort on Xen hypervisor, and 
evaluated its effectiveness on a virtualized infrastructure 
consisting of 15 hosts and 225 VMs. These VMs run a diverse 
mix of business, web, Internet services, and batch workloads. 
Experimental results show that Net-Cohort can identify VM 
ensembles with 90.0% accuracy, and improved placements due to 
its use can increase application performance in terms of 
throughput and latency. In particular, we observe an up to 385% 
improvement in application throughput for a RUBiS instance, a 
56.4% improvement in application throughput for a Hadoop 
instance, and a 12.76 times improvement in quality of service for 
a SIPp instance. 

The remainder of this paper is organized as follows. Section 2 
discusses background and related work. Section 3 describes the 
Net-Cohort design and implementation. Section 4 discusses the 
support and integration with VM placement engines. Sections 5 
and 6 present the experimental setup and performance evaluation, 
respectively. We conclude with some directions for future work in 
Section 7. 
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2. BACKGROUND AND RELATED WORK  
We first explain the dominant design pattern for today’s data 
centers [2] and why an inappropriate placement of VMs on data 
center machines can incur substantial performance penalties. We 
then discuss the related literature. 

2.1 Data Center Background 
As shown in Figure 2, data center networks are based on a proven 
layered approach, including a layer of servers in racks at the 
bottom (access layer), a layer of aggregation 10 Gigabit Ethernet 
switches at the middle (aggregation layer), and a layer of core 
routers at the top (core layer). There are typically 20 to 40 servers 
per rack, each singly connected to a Top of Rack (ToR) switch 
with a 1 Gbps link. ToRs connect to End of Row (EoR) switches 
via 1-4 of the available 10 GigE uplinks, and these switches 
manage traffic into and out of the rack. At the top of the 
hierarchy, core routers carry traffic between aggregation switches 
and manage traffic into and out of the data center.  

As traffic moves up through the layers of switches and routers, 
the over-subscription ratio, which is the ratio of the allocated 
bandwidth per host to the worst-case guaranteed bandwidth per 
host, increases rapidly. For example, for servers in the same rack, 
they can communicate at the full rate of their interfaces (e.g., 
1Gbps) with 1:1 over-subscription ratio. Unfortunately, servers in 
different racks have to share the up-links from ToRs, which are 
typically 5:1 to 20:1 oversubscribed, resulting in 125Mbps as the 
worst-case available bi-section bandwidth [17].  

Network latencies may not vary much, but the bandwidth 
available within a rack, across racks, and across rows can vary 
substantially. Therefore, inappropriate placement of VMs can 
have dire consequences. An example is the placement of heavily 
communicating VMs across multiple racks, thereby consuming 
the bandwidth available to a QoS-sensitive VM ensemble. Based 
on anecdotal evidence, users deploy multiple VMs in a public 
cloud to finally find a group with low ping latency between them 
and then hold on to them. Such scenarios motivate us to develop 
Net-Cohort’s runtime methods to identify VM ensembles, as once 
identified, they can better place VMs onto data center machines.  

2.2 Related Work 
We classify related literature into four different categories: 
manual techniques, trace-based and middleware-based techniques, 
and techniques using explicit perturbation.  

2.2.1 Manual Techniques 
Some sophisticated network management systems, e.g., Mercury 
MAM [3] and Microsoft MOM [4], rely on application designers 
or owners to specify dependency models. This restricts these 
approaches to particular applications or vendors and requires 
significant updates or changes when applications evolve. This is 
not very practical both for public clouds like Amazon EC2 or for 
private cloud deployments to run the IT for large enterprises like 
those reported in a survey conducted by the Wall Street 
Journal’08, which states that a single company, Citigroup, 
operates over 10,000 line-of-business applications [15]. 

2.2.2 Trace-based Techniques 
Project5 [9] and WAP5 [23] infer causal path patterns from 
offline network traces, using messages at hosts recorded with both 
sent and received timestamps. Project5 infers causal relationships 
between two message streams by computing their cross 
correlation. WAP5 generates timelines and causal trees, based on 
the assumption that causal delays follow an exponential 
distribution. The project’s purpose is to isolate performance 
bottlenecks, e.g., to detect which nodes are sources of latency. 
Their primary concern, therefore, is to resolve which incoming 
message triggers which outgoing message. In contrast, Net-
Cohort operates at a larger scale and requires less information 
about the underlying system.  

E2Eprof [8] reconstructs causal paths based on kernel-level 
network tracing. Compared to Net-Cohort, E2EProf has higher 
runtime overheads due to capturing the end-to end latencies of all 
requests in multi-tier systems and applying cross correlation 
analysis to all network flows. 

Orion [15] discovers dependencies for enterprise applications 
by using the ‘time correlation’ of messages between different 
services, meaning that if service A depends on service B, the 
message delay between A and B should be close to a “typical” 
value. Applying this rule to VM platforms may be difficult, 
because a “typical” spike could be distorted by noise, e.g., the 
domain running service A or B may lose its processor and spend 
some uncertain amount of time waiting to be scheduled.  

Our earlier workshop paper [10], called LWT, is not 
sufficiently accurate or flexible: they are based only on CPU 
metrics; their use of k-means clustering requires parameters 
settings to be customized to the applications being run. 

Pinpoint [14] collects end-to-end traces of client requests 
travelling through a distributed system, by tagging each J2EE call 
with a unique request-ID. These traces enable automated 
statistical analyses. Pinpoint requires all distributed applications 
to run on homogeneous platforms with logging capabilities, but 
real-life large enterprise data centers are almost heterogeneous 
with a plethora of operating systems from different vendors. 

2.2.3 Middleware-Based Techniques 
vPath [24] provides path discovery by monitoring and recording 
thread and network activities at runtime, such as which thread 
performs a send or recv system call over certain TCP connection. 
vPath can be implemented in either the OS kernel or a virtual 
machine monitor (VMM). Although the implementation is 
agnostic to user-space code, it requires changes to the VMM code 
and the guest OS.  

Aurora [1] is targeted at flow-based network traffic analysis 
for large networks to provide anomaly and virus 
detection/mitigation, BGP/OSPF/RIP monitoring, and traffic 
network maps. It discovers communication dependencies among 
servers through detailed network traffic reports from NetFlow, 
which a network protocol developed by Cisco Systems. However, 
it requires an installation of a netflow collector and works 
specifically on Cisco routers. The cost and overhead of generating 
the traffic report can be quite high in large datacenters.  
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Figure 3. Workflow of Net-Cohort.  

2.2.4 Perturbation-Based Techniques 
Resource dependencies are uncovered using an active 
approach in [12] – using fault injection. In [13], cross-domain 
dependencies are identified by explicitly perturbing system 
components while monitoring the system’s response, e.g., by 
locking a particular database table to deny the queries from 
certain component. Pip [22] can obtain a high rate of accuracy for 
extracting causal paths by modifying, or at least recompiling the 
applications. The generality of all these approaches is limited by 
that fact that they require expert knowledge about the systems and 
applications being evaluated. 

3. NET-COHORT DESIGN 
Net-Cohort’s uses a three-step approach to discover VM 
ensembles and make use of them. These include (1) monitoring of 
some basic statistics, (2) computing potential ensembles using 
correlation techniques and creating hierarchical clusters, and (3) 
collecting more precise communication statistics between the 
VMs in each ensemble. Figure 3 shows these steps at a high level, 
with additional detail presented next. 

3.1 Data Collection 
The basic monitor module captures the following universally 
available system-level metrics about each VM: 
 CPU: CPU usage per second in percentage terms (%) 
 PacketOut: Packets transmitted per second (KByte/sec), 
 PacketIn: Packets received per second (KByte/sec) 

These periodic measurements result in three time series signals 
per VM. Before explaining the actual analysis being applied, we 
illustrate the utility of taking these measurements with a simple 
example. 

Multi-tier applications (e.g., RUBiS) typically use a request-
response architecture, in which a client node sends a request to 
the front end (e.g., Apache), which does load balancing and 
assigns the work to an appropriate server (e.g., Tomcat) running 
the application logic. The application logic services the request by 
querying the backend (e.g., a database server like MySQL) to 
produce the necessary output, and sending the response back to 
the client.  

Therefore, given the nature of multitier applications, we can 
expect correlations between one or more of “CPU”, “PacketOut”, 
and “PacketIn” statistics for interacting nodes. Figure 4 shows 
these measurements for Client, Apache, Tomcat and MySQL 
VMs for one instance of RUBiS. Here we find that the “spikes” 
and “valleys” of their packet flows consistently occur together. 
The reason is that an instant rise of CPU usage or packet flow rate 

in one VM directly or indirectly triggers activities in other VMs, 
thereby creating the correlations among these statistics. 

 

Figure 4. Example of a multi-tier RUBiS application showing 
correlation on packet flowrate. 

Although “PacketOut” and “PacketIn” are more intuitive 
metrics to do correlation analysis among communicating VMs, 
we also used “CPU” metric for the analysis because it provides 
extra information in certain scenarios. For example, a bunch of 
VMs doing many-to-many but infrequent large data exchanges. It 
gets even harder to detect these using only packet-based metrics if 
the interval between exchanges is larger than the sampling 
window. In these cases, CPU correlation provided better results as 
compared to others. We found one such example during our 
evaluation as well (see Section 6.1, Figure 9). 

3.2 Distance Identification  
For each pair of VMs in the data center, we calculate the 
correlation coefficient value, denoted as corr(Vi, Vj), to identify 
the dependency strength between them. In statistics, the 
correlation coefficient indicates the strength and direction of a 
linear relationship between two random variables. We choose the 
pearson product-moment correlation coefficient (PMCC) to 
measure the degree of correlation, giving a value between +1 and 
−1 inclusive. 

Let 1 2{ , ,..., }nX X X X  and 1 2{ , ,..., }nY Y Y Y  be the vectors 
of two random variables, then the strength of the dependence 
between X and Y is: 

1

2 2

1 1

( )( )
( , )

( ) ( )

n

i ii

n n

ii i

X X Y Y
corr X Y

Xi X Y Y



 

 


 


 

……   ….. (1) 

Here X and Y denote the sample means of X and Y, 
respectively. We expect to see a large, positive correlation 
coefficient between certain statistics of the interacting VMs. 
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3.3 Compute Pair-wise Distance among VMs 
Let w  be the size of observation window in seconds. Let 

1 2{ , , ..., }NV VM VM VM be the set of all VMs in the data 
center. For each observation window, let 

1 2{ , , ..., }i w iCPU CPU CPU CPU denote the set of CPU usage 
readings collected for VMi; let 
PacketOut

i
{ PacketOut

1
, PacketOut

2
, ..., PacketOut

w
}

i be the set of 
PacketOut readings collected for VMi; let 

1 2{ , , ..., }i w iPacketIn PacketIn PacketIn PacketIn be the set of 
PacketIn readings collected for VMi.  

The readings interval is few seconds. For each pair of VMs 
(denoted as Vi, Vj), we calculate the correlation coefficients for 
the following three combinations of statistics using Equation (1):  
 corr

1
 corr(CPU

i
,CPU

j
)  

 corr
2
 corr(PacketOut

i
, PacketIn

j
)  

 corr
3
 corr(PacketIn

i
, PacketOut

j
)  

Next as illustrated in Figure 5, a N N correlation matrix for 
the set of all VMs is generated, in which the correlation 
coefficient between Vi and Vj, (denoted as corr(Vi, Vj)) is set as 
the maximum value of the three combinations, 
Max(corr

1
,corr

2
, corr

3
) . The above process is repeated for each 

observation window. Finally, we have  N N correlation 
matrices (  refers to the number of observation windows).  

 

 

Figure 5. Example of a N N  correlation matrix. 

Given the  observation windows, we need to handle the noise 
and outliers in incoming data. Two negative situations have to be 
excluded: (1) unrelated VMs showing “similar” resource usage 
features lasting for  observation windows (   ); (2) two 
correlated VMs showing “diverse” resource usage features lasting 
for  observation windows (   ). To avoid these abnormal 
samples from affecting our result, we calculate the average value 
for corr(Vi, Vj) based on  windows. We further define the 
distance between Vi and Vj as: 

1 / ( , ) ( , ) 0
( , )

( , ) 0
i j i j

i j
i j

corr V V if corr V V
Dist V V

if corr V V


 

 

The distance indicates the strength of dependency between 
two VMs, meaning that the closer the distance, the stronger the 
correlation. We then calculate a N N distance matrix for all 
VMs, which will be used in the next step. 

3.4 Hierarchical Clustering 
Given a set of N VMs with a N N  distance matrix, Net-Cohort 
uses an unobtrusive black-box approach to cluster them into 
ensembles. The black-box clustering requires only VM-level’s 
external observations like CPU usage over time, packet 

transmitted over time, to indicate which VMs may be interacting 
with each other. Such observations are commonly available from 
any data center’s monitoring system or hypervisors and thus 
collecting the source data is easy and lightweight.  

Two commonly used clustering algorithms are hierarchical 
clustering and k-means clustering. Net-cohort uses hierarchical 
clustering for the following reasons: 
 Hierarchical clustering does not require the number of clusters 

in advance. 
 It works well with both globular and non-globular clusters, 

while k-means fails to handle non-globular data. 
 k-means clustering is sensitive to initial centroids. If the user 

does not have adequate knowledge about the data set, this may 
lead to erroneous results. 
The process of hierarchical clustering is shown in Figure 6:  

 

Figure 6. Example of hierarchical clustering. 

 Step 1: initially assign each VM to a cluster, so that there are 
N initial cluster for N VMs. 

 Step 2: find the closest (most similar) pair of clusters and 
merge them into a single cluster. 

 Step 3: compute distances (similarities) between the new 
cluster and each of the old clusters. 

 Step 4: repeat Steps 2 and Step 3 until all items are clustered 
into a single cluster of size N. 
Concerning Step 4, of course, there is no point in having all N 

items grouped into a single cluster, but doing so results in the 
construction of the complete hierarchical tree, which can be used 
to obtain k clusters by just cutting its k-1 longest links. K can be 
based on the number racks in the datacenter, or it can be chosen to 
make the inter-cluster distance is less than a certain threshold.  

3.5 Statistical Packet Sniffing 
Based on the ensembles information from Section 3.3 and the 
initial known VM/PM mappings, Net-Cohort detects the ensemble 
whose components might be misplaced, e.g., a RUBiS ensemble 
but its components (Apache, Tomcat, Database) are placed across 
remote racks. Then packet sniffing is enabled only on such 
misplaced VMs to determine the actual communication intensity 
among them. Calculating the communication intensity is 
important because a bunch of VMs that do frequent, synchronized 
exchanges would appear to be an ensemble by the first step, but 
their communication volume transferred might be trivial and will 
have little impact on bi-section bandwidth. 

Net-cohort uses a lightweight packet sniffer inside domain0 to 
log the destination IPs and communication frequency for a VM. 
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Note that not all VMs with high correlation are suitable for being 
placed close to each other. Informally, the VMs whose 
communication exceed a certain threshold and occur for a 
"sustained" period are better candidates for co-location. After all, 
there is no need to co-locate VMs that have only lightweight 
"ping pong" packet communications. However, the hierarchical 
clustering tree lacks information about how much data has been 
exchanged between dependent VMs. By contrast, the packet 
sniffer can provide a better estimate of data transmission. 

In order to make the data collection more efficient, only top-K 
destinations in terms of network communication are collected. 
Consider a data center with large number of VMs, the overhead 
for maintaining data structures of all distinct IP addresses might 
be costly. We therefore adapt well-known techniques from data 
mining, as proposed by Lukasz and David in [16], to compute 
top-K destination IP addresses and an approximate packet count. 
This algorithm identifies frequent items in sliding windows 
defined over real-time packet streams with limited memory. More 
details can be found in [16]. Packet sniffer is not completely 
transparent and introduces some CPU and memory overhead (see 
Section 6.3), so we only apply it to the misplaced ensembles and 
run it for a short period.  

4. SUPPORT FOR PLACEMENT ENGINE 
Based on VM ensemble discovery and fine-grained statistics, Net-
Cohort can supplement any VM placement engine to identify 
collocation opportunities for VM that are communicating heavily. 

A VM placement engine is responsible for managing the 
mappings of VMs onto physical machines (PMs) in accordance 
with criteria specified by users or administrators. For example, if 
the optimization criterion is to minimize power usage, the VM 
placement engine might consolidate VMs onto fewer hosts and 
power off unneeded hosts during periods of low resource 
utilization (e.g., VMware DPM); if the optimization criterion is to 
achieve high levels of QoS, VM placement engine might perform 
load-balancing of VMs between physical hosts when specific 
thresholds are exceeded, such as transactions per second, CPU 
utilization, etc. (e.g., Microsoft’s Performance and Resource 
Optimization (PRO) [5], VMware DRS and DPM [7]). 

With Net-Cohort, a VM placement engine can be enhanced to 
consider VM level communication in its decisions. One way for 
Net-Cohort to interact with a placement engine is to provide it 
with a list of candidates for VM movement, ranked by the 
potential benefits accrued in terms of reduced use of network bi-
section bandwidth. The engine, then, considers those facts along 
with other migration criteria, such as load balancing and VM 
migration costs, to make migration decisions. Another alternative 
is to set soft affinity rules among VMs that are communicating 
heavily, which is then considered by the placement engine when 
it decides on VM relocations. If the VM level communications are 
known in advance or from historical records, the VM placement 
engine can co-locate them from the very beginning. 

Regardless of how an engine leverages Net-Cohort’s 
information, however, it is the engine’s task to resolve conflicts 
between different rules and the movements they suggest. 

Placement engine design and details are beyond the scope of this 
paper, for our analysis we assume that we have enough resources 
in terms of CPU and memory to do collocation of VMs based on 
their communication intensity and there is not interfering rule 
regarding separating them for higher availability. 

5. EXPERIMENTAL SETUP 
This section validates Net-Cohort with experiments performed 
with representative applications in a virtualized infrastructure.  

5.1 Testbed 
Experiments are run on 15 dual-core dual-socket servers, each of 
which has two Intel Xeon 5150 processors, 16GB of memory, and 
80GB hard drives. The 15 servers are distributed across 4 edge 
switches, with 4, 4, 4, and 3 servers/switch. All switch and NIC 
ports run at 1Gbps. Switches are connected to each other, with an 
oversubscription ratio of at most 4:1.  

Applications are embedded in a total of 225 virtual machines, 
each of which is configured to use 128MB of RAM. Xen 3.1.2 is 
used as the virtual machine monitor on each host, and the host 
kernel for XenoLinux is a modified version of Linux 2.6.18. 

5.2 Workload and Metrics 
Experiments employ 6 instances of RUBiS (24 VMs), 3 instances 
of Hadoop (48 VMs), 6 instances of Iperf (12 VMs), 6 instances 
of N-bench (6 VMs), 6 instances of SIPp (12 VMs) and 3 instance 
of MalGen (123VMs), resulting in a total of 225 VMs running a 
mix of business, internet services, and batch workloads. 

RUBiS is an eBay-like benchmark. We use a PHP-based 
configuration of RUBiS, with a web server front end (Apache) 
and an application server (Tomcat) connected to a database 
backend (MySQL). Workload generation uses a fourth client VM. 

SIPp is a traffic generator for the SIP protocol. It can establish 
actual client and server sessions and initiate/release thousands of 
calls with given rate. We use call rates (calls per second) starting 
from 800, increased by 10 every second, and a maximum rate of 
3000, with total calls set to 1000K.  

Hadoop is a Map/Reduce-like framework in which the 
application is divided into many small fragments of work, each of 
which may be executed or re-executed on any node in the cluster.  

N-bench is a CPU benchmark measuring CPU performance, 
such as integer operations and floating point arithmetic.  

Iperf is a commonly used network workload generation tool. 
We continuously run Iperf pairs to generate interference traffic, 
thereby causing the bandwidth bottleneck. 

MalGen is a set of scripts that generate a large, distributed 
data set across multiple nodes in a cluster. One MalGen instance 
consists of one seed and a dozen workers. 

6. EXPERIMENTAL EVALUATION 
We first evaluate the basic functionality of Net-cohort (Section 
6.1) in finding the right set of ensembles. We then evaluate the 
benefit of these findings for better VM placement on hosts 
through the comparison of application throughput and response 
time between initial VM placement and final VM placement 
(Section 6.2). Finally we evaluate the overhead, if any, induced 
by Net-Cohort (Section 6.3). 
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Figure 7. VM ensemble identification 
accuracy (in percentage) over 225 VMs 

with an increasing window size. 

Figure 8 . Intra-cluster/Inter-cluster correlation coefficient among RUBiS2-Client 
and other VMs.  

6.1 Net-Cohort’s Functionality Evaluation 
The following metrics are used to evaluate Net-Cohort’s 
functionality: (1) true positive rate (TPR) and true negative rate 
(TNR). TPR is defined as the ratio of the VMs that have been 
grouped into the right ensembles to the total set of VMs, denoted 
as TPV V . TNR is defined as the ratio of the VMs that have not 
been grouped into the wrong ensemble to the total set of VMs, 
denoted as NPV V . (2) The intra-cluster correlation coefficient 
is defined as the representative correlation coefficient value for 
pairs of VMs within one particular ensemble. The (3) hierarchical 
tree structure is comprised of the VM ensembles determined by 
the hierarchical clustering algorithm. 

Figure 7 presents the accuracy of VM ensemble identification 
by Net-Cohort over 225 VMs with an increasing window size. 
The TPRs are 87.5%, 90.0%, 90.0%, 90.0%, and 87.5% for 
window sizes 30 seconds, 60 seconds, 90 seconds, 180 seconds, 
and 360 seconds, respectively. The TNRs are 90.0%, 92.5%, 
90.0%, 90.0%, and 90.0% for window sizes 30 seconds, 60 
seconds, 90 seconds, 180 seconds, and 360 seconds, respectively. 

The results shows that: (1) without relying on any knowledge 
of the configuration of the test system, Net-Cohort can correctly 
classify around 90% of virtual machines; (2) there is not much 
difference between the results for different window sizes, 
indicating that Net-Cohort is relatively insensitive to the size of 
the observation window and thus user-friendly for system 
administrators to set its parameters. 

To better understand the above results, we look at correlation 
coefficients among various VMs within and across ensembles that 
are calculated by Net-Cohort. For the sake of clarity, we have 
selected a few representative VMs and presented their correlation 
with a random subset of all the 225 VMs. The subset includes 7 
instances ((N-bench1, N-bench2, Iperf1, Iperf2, RUBiS1, RUBiS2 
and Hadoop) out of all 30 instances, where N-bench1 denotes the 
first instance of N-bench, Iperf2 denotes the second instance of 
Iperf, etc. The figures show the intra-cluster/inter-cluster 
correlation coefficient for a representative VM and 17 VMs, 
where X-axis represents certain VM’s name and Y-axis represents 
PMCC value between the representative VM and that VM. We 

find that the VMs belonging to the same application have 
relatively strong correlations and thus shorter distances. 

Figure 8 shows the correlation coefficient between among 
RUBiS2-Client and RUBiS2-Apache, RUBiS2-Tomcat, RUBiS2-
Sql. Note that the intra-cluster correlation coefficients among 
RUBiS2-Client and RUBiS2-Apache, RUBiS2-Tomcat, RUBiS2-
Sql are all close to 1.0, while the inter-cluster correlation 
coefficients between RUBiS2-Client and other VMs are less than 
0.2. We have evaluated the correlation values for window sizes of 
30, 60, and 90. These results demonstrate that the correlation 
detection mechanism based on the three metrics of CPU 
utilization, PacketsIn and PacketsOut can correctly identify VM 
groups that communicate with each other. 

Net-Cohort is also able to differentiate the same classes of 
instances that run different tasks. This is because different tasks 
typically show different resource usage patterns which can then 
be used by Net-Cohort to identify the intra-cluster correlations 
within the ensemble and the inter-cluster correlations outside of 
the ensemble. For example, Figure 9 (a) and (b) show the CPU 
usage patterns of two Hadoop instances respectively. The first 
Hadoop instance reads text files and counts how often words 
occur. The second Hadoop instance computes exact binary digits 
of the mathematical constant π. From Figure 9 (a) and (b), we 
learn that the “CPU spikes” and “CPU valleys” of the slaves that 
belongs to the same ensemble consistently occur together, thereby 
creating the correlations needed by Net-Cohort. 

For intuition about the ensemble identification process, we 
also look at how the correlation-based hierarchical tree is built by 
Net-Cohort.  

Figure 10 shows the hierarchical trees constructed using the 
decreasing level of dependency strength. We first determine 
a N N correlation strength matrix, and then run the hierarchical 
clustering algorithm over the distance matrix for the cases without 
packet sniffing. The hierarchical trees generated by R [6], which 
shows the calculated dependent links between the VMs being 
observed. This demonstrates that Net-Cohort can effectively 
expose most of the underlying dependencies between the VMs 
within our testbed. 
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Figure 9 (a). CPU pattern of Hadoop 
instance of word 

Figure 9 (b). CPU pattern of Hadoop 
instance of computing PI. 

Figure 10. Hierarchical tree generated by R 
with window size = 90. 

6.2 Net-Cohort Benefit Evaluation 
After determining the VM ensembles and hierarchical clustering 
of VM groups, we next evaluate the benefit of these inputs for 
better VM placement on hosts. In doing so, we first look into the 
impact of available bi-section bandwidth on applications. To 
study this impact, we set the crossover bandwidth among RUBiS 
components from 1Mbps to 100Mbps to reveal how bandwidth 
changes influence RUBiS performance.  

Figure 11 (a) reports the throughput in requests per second as a 
function of available bandwidth among components. Bandwidth is 
varied from 1Mbps to 100Mbps. Every RUBiS workload includes 
three stages: up ramp, runtime session, and down ramp. This 
shows that the throughput of all three stages of RUBiS are quite 
sensitive to the available bandwidth, since the throughput 
corresponding to 100Mbps bandwidth is more than that of the 
1Mbps available network bandwidth by about 20 times. Figure 11 
(b) reports the response time in millisecond per request as the 
available bandwidth among components. Bandwidth is varied 
from 1Mbps to 100Mbps. It shows that as bandwidth increases, 
the average response time of all three stages of RUBiS is 
significantly reduced by over 1000 times. 

To test VM placement, we deploy the RUBiS components 
(Apache server, Tomcat server, database server and client), SIPp 
components (SIPp server, SIPp client) to domains with 100Mbps 
limited bi-section bandwidth. The incoming and outgoing 
bandwidth is capped by Linux control groups and traffic shaping 
tools at VMM’s layer. To aggravate competition for bi-section 
bandwidth, we simultaneously run the Iperf instance, the mapping 
of VMs to hosts and racks is shown in Figure 12. We apply Net-
Cohort black-box methods to determine the VM ensembles, use 
that input to come up with the moves through VM placement 
engine, and remap VMs onto hosts. We then compare application 
performance results for initial and final placements. Here, we 
assume that CPU and memory resources are not a bottleneck.  

Figure 13(a) shows that RUBiS throughput increases from 27 
request/second, 20 request/second, and 19 request/second to 68 
request/second, 97 request/second, and 41 request/second for up 
ramp, runtime session, and down ramp, respectively. Figure 13(b) 
shows that RUBiS response time per request decreases from 6787 
millisecond, 15245 millisecond, and 28037 millisecond to 468 

millisecond, 31 millisecond, and 25 millisecond for up ramp, 
runtime session, and down ramp, respectively. 

Figure 14 shows that compared to the initial placement, the 
throughput of the first Hadoop instance increases from 735.5 
Kbyte/second to 1103.3 Kbyte/second, and the throughput of the 
second Hadoop instance increases from 1180.5 Kbyte/second to 
1609.9 byte/second. 

Figure 15 shows that SIPp’s quality of service in terms of 
number of failed calls is improved significantly. Calls failed due 
to the co-located VMs saturate the limited bandwidth. The 
average number of failed calls decreases from 250.62 to 19.64. 

 

Figure 15. Comparison of SIPp performance in number of 
failed calls for initial vs final VM placements. 

Experimental results clearly indicate the benefits of 
bandwidth-aware VM placement, thereby demonstrating that 
information obtained using Net-Cohort can help improve 
placement and migration actions while reducing utilization of 
network resources in virtualized data centers. These potential 
improvements are motivation for future work in which we are 
integrating Net-cohort with existing management utilities. (e.g., 
see vManage [19]). 

6.3 Packet Sniffer Overheads 
The first phase of correlation detection has no extra overhead 
because basic VM level statistics are already reported by 
management systems. The second phase of distance identification 
has a complexity of 2( )N  where N equals to number of VMs, 
costing several seconds. The third phase of clustering has a 
complexity of 2( )N  costing several seconds. Packet sniffing is 
turned on a very selective set of hosts and VMs.  
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Figure 11 (a). RUBiS throughput 
changes as a function of available 

bandwidth. 

Figure 11 (b). RUBiS response time 
changes as a function of available 

bandwidth.  

Figure 12. Before and after VM/PM 
mappings. 

Figure 13 (a). Comparison of RUBiS 
throughput for initial vs. final VM 

placements. 

Figure 13 (b). Comparison of RUBiS 
response time for initial vs. final VM 

placements. 

Figure 14. Comparison of Hadoop 
throughput for initial vs. final VM 

placements. 

We empirically estimate the CPU and memory overheads due 
to the packet sniffer running in Domain0. Figure 16 shows the 
additional CPU usage when using the packet sniffer for 5VMs and 
10VMs as a function of time. Note that the CPU overhead can be 
negligible if the transferred traffic is not heavy and the number of 
VMs monitored is small. However, the packet sniffing technique 
may trigger irregular fluctuations in CPU usage when capturing 
large amount of packets, switching among interfaces or 
periodically flushing I/O buffers of logs to disks. Effects would 
worsen for larger numbers of VMs on a host or when moving 
from 1Gbps to 10 Gbps NICs. Latency per packet would also be 
higher if the packet sniffer is being run in a separate VM due to 
multiple context switches. 

 

Figure 16. CPU overhead of packet sniffer when sniffing 
different number of VMs. 

In summary, since the packet sniffer is not transparent to users 
in that its use may introduce heavy CPU overheads, we apply it 
only when the black-box methods require additional information 
to accurately cluster VMs.  

7. CONCLUSIONS 
Net-Cohort presents a set of lightweight, non-intrusive techniques 
for identifying communicating VMs so as to enable VM 
placements and migrations that reduce the pressure on bi-section 
bandwidth in consolidated data centers. 

Net-Cohort benefits data center administrators in several ways. 
In general, it informs them about the VM ensembles currently 
being run in the data center, thereby enabling them to manage 
their systems for entire applications rather than individual VMs. 
More specifically, it makes it possible to place communicating 
VMs in ways that preserve scarce bi-section bandwidth, which 
can improve application performance and reduce effects on other 
bandwidth-sensitive services. Net-cohort’s simple design can be 
realized with available statistics and in a scalable fashion, without 
requiring changes to data center facilities. It has three unique 
characteristics:  
 It does not require knowledge about application semantics, the 

implementation of the platform, or a priori information about 
communication paths. 

 There is no need to modify applications, middleware, 
workloads, or platforms. 

 It has extremely low impact on system performance. 
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Net-Cohort’s methods are fully implemented, but additional 
work is required for using it to continuously monitor and manage 
data center systems at scale [25]. This includes practical steps like 
the efficient correction for time series correlation calculation due 
to potential lack of synchronization among VMs’ clocks, and the 
efficient runtime construction and deployment of monitoring and 
analysis ‘overlays’ with data center systems and applications. 
Moreover, we are working on a pre-clustering module that is 
capable of filtering out background traffic (i.e., management 
traffic), since such traffic might otherwise be interpreted as intra-
ensemble communications. Further, it would be interesting to 
understand how methods like Net-Cohort can be integrated with 
management solutions like VMware’s DRS and Hyper-V’s PRO. 
Finally, we note that future ‘flat’ data center networks, like those 
developed by companies like Brocade, HP, and Juniper Networks, 
may shift the utility of Net-Cohort from providing a means to 
reducing the use of network bi-section bandwidth to instead, 
serving as a management tool that enables administrators to 
recognize and manipulate entire applications or properties rather 
than individual VMs. 
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