
Live Migration of Virtual Machine Based on Full System
Trace and Replay

Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, Chen Yu

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

ABSTRACT
Live migration of virtual machines (VM) across distinct physical
hosts provides a significant new benefit for administrators of data
centers and clusters. Previous migration schemes focused on
transferring the run-time memory state of the VM. Those ap-
proaches employed memory pre-copy algorithm to synchronize
the migrating VM states, which make VM live migration cost
much network traffic and application downtime, especially for
memory-intensive workloads. This paper describes the design and
implementation of a novel approach CR/TR-Motion that adopts
checkpointing/recovery and trace/replay technology to provide
fast, transparent VM migration. With execution trace logged on
the source host, a synchronization algorithm is performed to or-
chestrate the running source and target VM until they get a con-
sistent state. We also give a formalized characterization about the
migration evaluation metrics and make a mathematical analysis
about our algorithm. Our scheme can greatly reduce the migration
downtime and network bandwidth consumption. Experimental
measurements show that our approach can drastically reduce mi-
gration overheads compared with pre-copy algorithm: up to
72.4% on application observed downtime, up to 31.5% on total
migration time and up to 95.9% on the data to synchronize the
VM state, while the application performance overhead due to mi-
gration is less than 8.54% on average.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Distrib-
uted System; C.4 [Performance of Systems]: Design studies

General Terms
Algorithm, Design, Measurement, Management, Performance

Keywords
Virtual Machine, Live Migration, Checkpoint, Trace, Replay

1. INTRODUCTION
The use of virtual machine (VM) migration technology for data

centers management has attracted significant attention in the re-
cent years [6, 7, 17, 23, 27]. The capability of migrating live vir-
tual machine among distinct physical hosts provides a significant
new benefit for multiple VM-based environments. Live migration
of virtual machines is an extremely powerful tool for cluster ad-
ministrators in many key scenarios:

1) Load balancing, VMs may be rearranged across physical
machines in a cluster to relieve load on congested hosts.

2) Online maintenance and proactive fault tolerance [16],
sometimes, a physical machine may need upgrade or servicing for
upcoming system faults, an administrator should migrate the run-
ning VMs to alternative machine(s), freeing the original machine
for maintenance. So live VM migration improves system service-
ability and availability.

3) Power management [18], usually, the load and throughput
of servers are uneven but statistically regular at different periods.
When some VMs resided in distributed hosts are running light-
load jobs, which can be consolidated into fewer hosts, the off-
loaded hosts may be decommissioned once migration is com-
pleted. This strategy helps corporations to reduce IT operation ex-
penses and benefit the natural environment.

In such situations, the combination of virtualization and migration
significantly improves manageability of data centers and clusters.
For the above requirements, there are many literatures that related
to implementing high performance migration methods [6, 7, 10,
17]. The most influential approaches are VMotion [17] and Xen-
Motion [7] which were shipped by VMware and XenSource as
parts of their products respectively. Their implementation mecha-
nism is similar, because they have the same applying scenarios (in
a LAN) and analogical scheme for migrating physical memory
and network connections.

In each solution, there are mainly three kinds of states that should
be migrated: the VM’s physical memory; the network connections
and virtual device state; the SCSI storage. The most intractable is-
sue is migrating physical memory, because it is the main factor
that affects the migration downtime, i.e., the time during which
the services on the VM are entirely unavailable. VMotion and
XenMotion adopted pre-copy algorithm [17, 7] to address this is-
sue. Although the memory pre-coping algorithm is able to de-
crease the best case downtime to the magnitude of millisecond,
there are still some unsolved issues which should be considered
further. First, when the rate that memory pages dirtied is faster
than the replication rate of pre-copy procedure, all pre-copy work
will be ineffectual and one should immediately stop the VM and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
HPDC’09, June 11–13, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-587-1/09/06…$5.00.

101

copy the entire memory pages to the target host. Some memory-
intensive workloads would get no benefit from pre-copy algo-
rithm and the downtime may rise to several seconds. This limita-
tion also makes the algorithm only applicable in high speed
LANs. Second, some para-virtualized optimization schemes, such
as stunning rogue processes and freeing unallocated pages that are
mentioned in XenMotion [7] may cause some negative effect to
users’ experience, especially for some latency sensitive interactive
services. At last, pre-copy algorithm does not recover the CPU’s
cache data. Although it may not lead to any mistake on the target
host, massive cache and TLB missing may cause performance
degradation once the VM takes over the service.

In this paper, we propose a novel live VM migration approach –
CR/TR-Motion. We implement our prototype based on a full sys-
tem trace and replay system – ReVirt [9]. Checkpointing/recovery
and trace/replay technology are adopted to provide fast, transpar-
ent VM migration in a LAN. A trace daemon continuously logs
the non-deterministic events of the VM while sacrificing very lit-
tle performance. The execution trace file logged at the source host
is iteratively transferred to the target host and used to synchronize
the migrated VM’s execution state. Experimental measurements
show that our approach can drastically reduce migration time and
network traffic compared to pre-copy algorithm.

The contributions of this paper are mainly listed as follows: 1) we
design and implement a novel approach that uses checkpoint-
ing/recovery and trace/replay technology to minimize the VM mi-
gration downtime and network traffic; 2) we implement a trans-
parent VM checkpoint with copy-on-write mechanism; 3) we
make a formalized characterization about the migration metrics
and give a mathematical analysis of the algorithm’s performance.

The remainder of the paper is organized as follows. Section 2
gives a brief introduction about our groundwork. Section 3 pre-
sents the design of our VM migration algorithm and gives a theo-
retical analysis about our approach’s performance. Section 4 de-
scribes the detail implementation of our approach. Section 5 pre-
sents the experiments undertaken and results obtained. Section 6
introduces the related work about VM migration. Finally, we con-
clude our work in section 7.

2. DETERMINISTIC REPLAY WITH
EXECUTION TRACE
Checkpoint/recovery [4，8] and trace/replay [9, 11, 19, 26] tech-
nology are used widely for recovering system state. The basic
concept is straightforward: starting from a checkpoint of a prior
state, and then rolling forward using the log to reach the desired
state. Replaying a system requires logging the non-deterministic
events that affect the system’s computation. These log records
guide the system as it re-executes (rolls forward) from a check-
point. Most events are deterministic (e.g. arithmetic, memory,
branch instructions) and do not need to be logged; the process will
re-execute these events in the same way during replay as it did
during logging. Non-deterministic events fall into two categories:
time and external input. Time refers to the exact point in the exe-
cution stream at which an event takes place. External input refers
to data received from a user or another computer via a peripheral
device, such as a keyboard, mouse, or network interface card.
However, output to peripherals will be reconstructed during re-
play and hence need not be saved.

ReVirt is a typical full system logging and replay tool ported on
UMLinux [5, 12] and designed for intrusion detection. It logs
enough information to replay a long term execution of the virtual
machine instruction-by-instruction. ReVirt only logs asynchro-
nous virtual interrupts and sufficient information to re-deliver the
signal at the same point during replay. It plays back the original
asynchronous virtual interrupts using the combination of the
hardware counters and host kernel hooks that are used during log-
ging. Replay can be executed on any host with the same type of
processors as the source host. There is not any deviation gener-
ated during the replay process.

Moreover, ReVirt adds reasonable time and space overhead.
Overheads due to virtualization are imperceptible for interactive
use and CPU-bound workloads, and 13-58% for kernel-intensive
workloads. Logging adds only up to 8% performance overhead.
Workloads with little non-determinism (e.g. kernel-build) gener-
ate very little log traffic. Even the I/O intensive workloads (dy-
namic web applications) generate feasible log traffic at a rate of
hundreds of kilobyte per second. Log growth rates range from
0.04GB per day to 1.2GB per day for the related workloads [9].

The slow speed of log traffic growth and VM mobility inspires us
to achieve live VM migration with checkpoint and execution log
files. The strategy is straightforward: we first make a transparent
checkpoint of the running VM in a copy-on-write fashion; second,
the source VM continues running while the checkpoint is pushed
across the network to the target host, the generated log files dur-
ing the transmission interval must be iteratively sent to the target
host to ensure the consistency of the both side; finally, the source
VM is stopped, and the last log file is copied to the target VM,
then the migrated VM replays with this log file and takes over the
source VM’s service.

3. ALGORITHM DESIGN
This section describes our design of live VM migration scheme
based on checkpointing/recovery and trace/replay technology, we
name this scheme as CR/TR-Motion for short. A synchronization
protocol is detailedly introduced to show how we use execution
trace to orchestrate the migrating source VM and target VM until
they get a consistent state. We also give a formalized characteri-
zation about the evaluation metrics and make theoretic analysis
about the migration performance. It will help us to optimize the
migration algorithm in system implementation.

3.1 Design Objectives
Live virtual machine migration takes a running VM and moves it
from one physical machine to another. This process must be
transparent to the guest operating system, applications running on
the operating system, and remote clients of the virtual machine.
We address this issue and make tradeoffs among the following
performance evaluation metrics involved in local-area migration.

1) Downtime: the time when no CPU cycle is devoted to any
of the VM-resident applications, neither at the source nor at the
target system, it consists of the time necessary to suspend the VM
on the source, transfer the VM state to the destination, load the
device state, and activate the migrated VM on the remote host.

2) Total Migration Time: the duration between the time mi-
gration is initiated and the time the migrated VM gets a consistent
state with the original one, i.e., during which the state of two VMs
is synchronized.

102

3) Total Data Transmitted: the total data is transferred while
synchronizing the both VMs’ state.

When a VM is running a live service, it is necessary to make a
tradeoff to ensure that the migration occurs in a manner that may
minimize all the three metrics. Our motivation is to design a live
VM migration scheme with negligible downtime, lowest network
bandwidth consumption and reasonable total migration time. Fur-
thermore, we should ensure that the migration would not disrupt
other active services residing in the same host through resource
contention (e.g., CPU, network bandwidth).

3.2 Live Migration Process
This section describes the design of our live VM migration ap-
proach combining with instructions execution trace and replay.
Unlike memory pre-coping algorithms, our method employs the
target host’s computation capability to synchronize the migrated
VM’s state. What we copied is the execution log of the source
VM but not the dirty memory pages, and this may greatly de-
crease the amount of data transferred while synchronizing the two
VM’s running state. Our approach reduces the downtime by com-
bining a bounded iterative log transferring phase with a typically
short stop-and-copy phase. By iterative we mean that synchroni-
zation occurs in rounds, in which the log files to be transferred
during round n are those generated during round n-1 (the check-
point file is transferred in the first round). After several rounds of
iteration, the last log file transferred in the stop-and-copy phase is
reduced to a negligible size so that the downtime can be decreased
to an unperceived degree.

Like the limitation of pre-copy algorithm, the dirty memory pages
must be transferred faster than that they are dirtied, there are also
some prerequisites for our approach. It is obvious that the log
transfer rate should be faster than the log growth rate. Otherwise,
our algorithm would be useless because log files will quickly ac-
cumulate on the source host. Fortunately, the log data grows far
more slowly than it is transferred even when the source VM is
running an OS-intensive or I/O-intensive workload [9]. The same
outcome has also been presented in other analogical works [19,
26]. Our experiments also show the same conclusion for typical
server workloads presented in table 1. For most workloads, the
log growth rate is not more than 1MB/sec, which is much less
than the network transfer rate in a Gbit/s network. Another re-
quirement of our approach is that the log replay rate must be
faster than the log growth rate. If this condition is not satisfied,
the downtime may be even much longer than the elapsed time
transferring the checkpoint file from the source host to the desti-
nation. Generally, the replay speed can be faster than the original
execution with logging, because during normal execution a proc-
ess may block waiting for I/O events, while during replay all
events can be immediately replayed due to the ability of skipping
over the idle time of HLT instructions [9, 26]. We assume the two
above prerequisites are satisfied in the following description and
discussion.

Figure 1 shows the whole process migrating a running VM from
host A to host B. We view the migration process as a transactional
interaction between the two hosts involved the following phases:

1) Initialization: a target host with sufficient resources is se-
lected to guarantee the requirement of receiving migration. A
good choice may speed the upcoming migration and boost up the
server’s QoS.

2) Reservation: host A makes a request of migrating a VM to
host B. A VM container of the source VM’s size should be re-
served to guarantee the necessary resources are available on host
B.

3) Checkpointing: the VM on top of host A freezes, the sys-
tem state (virtual main memory, CPU registers, memory from ex-
ternal devices and virtual disk) at the current instant are saved to
an image file in a copy-on-write fashion. After checkpointing, the
source VM continues to run as though nothing had happened.

4) Iterative Log Transferring: during the first round of trans-
ferring, the checkpoint file is copied from host A to B, while the
VM on host A is continuously running and non-deterministic sys-
tem events are recorded in a log file. Subsequent iterations copy
the log file generated during the previous transfer round. At the
same time, host B is replaying with the received log files once it
had recovered from the checkpoint. As the log is transferred much
faster than the log generated, this iterative process is convergent.

5) Waiting-and-Chasing: after several rounds of iteration,
when the log file generated during the previous transfer round is
reduced to a specified size (we defined this threshold value as Vthd
in section 3.3 and set its default value as 1KB in our experiments),
host A inquires B whether the stop-and-copy phase can be exe-
cuted soon, if the resumed VM on host B does not replay fast
enough, i.e., the cumulative unused log file size on host B is still
larger than Vthd at this time, host B should inform host A to post-
pone the stop-and-copy phase until the log is used up on host B.
The iterative log transferring should be continuously performed
till the size of unconsumed log at host B is reduced to Vthd. As the
log replay speed on host B is faster than log generated speed on
host A, the migrating VM on host B would chase up the running
state of the source VM finally.

6) Stop-and-Copy: the source VM is suspended and the re-
maining log file is transferred to host B. After the last log file is
replayed, there is a consistent replica of the VM at both A and B.
The VM at A is still considered to be primary and may be re-
sumed in case of failure.

7) Commitment: host B informs A that it has successfully
synchronized their running states. Host A acknowledges this mes-
sage as commitment of the migration transaction, and then all its
network traffic is redirected to host B. Now the source VM may
be discarded.

8) Service Taking Over: the migrated VM on host B is acti-
vated now, and the new VM advertises its moved IP address. Host
B becomes the primary host and takes over host A’s service.

A B

checkpoint

generate log2

…

replay with log1

…

round 1

generate log1

round 2

recovering with

checkpoint

checkpoint

generate log3

transfering log1

transfering log2

round n
stop and copy

transfering log n

replay with log n

take over A

waiting and chasing …

dow
n

tim
e

total m
igration tim

e

Figure 1. Process of live VM migration

103

This approach should be a fault tolerant process. The source host
should remain a stable state no matter which sort of failure occurs
during migration. This guarantees the service continuously run-
ning on the source VM with no risk of failure until the migration
commits.

3.3 Algorithm analysis
In this section, we discuss the above algorithm in two scenarios
with formalized characterization, which would direct the further
system implementation and performance evolution. Some impor-
tant notations and their corresponding definitions are listed as fol-
lows:

Rlog: log growth rate, which denotes the average growth rate
of the source VM execution trace for a special workload.

Rtrans: log transfer rate, which mainly lies on the network
bandwidth between the two hosts. It is also an average value.

Rreplay: log replay rate, which denotes the average rate of re-
play with the log files on target host.

Vthd: the threshold value of log data size at which the iterative
log transfer procedure should be terminated.

We define the log file list transferred at each rounds as L=<log1,
log2… logn>, and their file size as

1 2
, , ,

nlog log logV V V V=< >L

correspondingly. The elapsed time sequence at each transferring
round is defined as T=<t0, t1, t2, …, tn>, while t0 presents the
elapsed time to transfer the checkpoint of the source VM and Vckpt
denotes the data size of the checkpoint file.

In the following analysis and experiments, the Vthd is set as default
value (1KB). To make our model simple, we deem that the Rtrans
in different transferring phase is a constant value. We mainly con-
cern the three performance evaluation metrics in two scenarios:
fast synchronization and slow synchronization with waiting-and-
chasing. The discriminate of the two scenarios is that there is an
additional waiting-and-chasing phase performed in the second
scenario compared with fast synchronization.

3.3.1 Fast Synchronization
In this scenario, the log replay rate is much higher than the log
growth rate (Rreplay>>Rlog). For instance, if the VM is running a
daily use workload, the Rreplay is 33 times larger than Rlog accord-
ing to the ReVirt’s experiment [9]. In this condition, the log file
size is reduced to the threshold Vthd soon in bounded rounds of it-
eration. Replay is executed on the target host so fast that there is
no need to perform the waiting-and-chasing phase. The detail mi-
gration process is shown in Figure 2. The log transfer rate and log
growth rate are the main factors affecting the process of migration.

Because Rtrans>Rlog, the iteration of log transferring process is
convergent. After several rounds of iteration, the last log file size
may reduce to the fixed value Vthd. The elapsed time in each round

can be calculated like this: ckpt
0

trans

V
t

R
= , 0log

1
trans

R t
t

R
= , …,

(1)
(1)

n
log n ckpt log

n n
trans trans

R t V R
t

R R

−
−= = , where t0 presents the time cost to

transfer the data of checkpoint, and tn presents the time cost to
transfer the log file generated during previous round. Let ϕ
(0<ϕ<1) denote the ratio of Rlog to Rtrans:

log / transR Rϕ = (1)

The elapsed time during the round n is presented as:
(1)

(1)
0

n
ckptn

n
trans

V
t t

R
ϕ

ϕ
−

−= = (2)

Then the total migration time (TMT) can be calculated as:
n

i=0

(1)
= =

(1)

n
ckpt

i
trans

V
TMT t

R
ϕ
ϕ

−

−∑ (3)

With equation (3), the total data transmitted (TDT) during a mi-
gration becomes:

1
log

(1)
= + = *

1i

nn
ckpt

ckpt trans
i

V
TDT V V TMT R

ϕ
ϕ=

−
=

−∑ (4)

Now, we analyze the downtime caused in the whole migration
process. It is composed of three parts: tn, the time the last log file
(only 1KB or even less) is transferred during the stop-and-copy
phase, it is negligible in a high speed LAN; the time the last log
file is replayed on the target host; and other time are spent on
start-up and service switch overhead. All the three parts can be
done within a very short time interval. The total downtime can be
represented as:

ndowntime n log replay otherT t V R t= + + (5)

To evaluate the convergence rate of our algorithm, we can calcu-
late the total rounds of the iteration by the inequality (6):

(1)n log thdt R V− ≤ (6)

It is the condition when the iterative log transferring should be
terminated. Combining with equation (1) and (2), inequality (6)

can be transformed to (1)n
ckpt thdV Vϕ − ≤ , i.e., 1 log thd

ckpt

Vn
Vϕ≤ + ,

so the iteration round is:

1 log thd

ckpt

Vn
Vϕ

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎢ ⎥
 (7)

From the above equations, we can easily make the following con-
clusions: a smaller size of checkpoint file and faster network

Figure 2. Migration process of fast synchronization

Figure 3. The total migration time varied with log growth rate

104

transfer rate would greatly improve the convergence rate of our
algorithm, and also reduce the total migration time and the total
data transmitted; the log growth rate generates a little effect on the
iteration rounds. A simple instance shows that when the network
throughput is at a rate of 400Mbit/sec and the checkpoint file is
512MB, the iteration rounds is not more than 5 times even when
the log growth rate has risen to 10MB/sec. Figure 3 shows that the
total migration time only increases no more than 2.5 seconds
when the log growth rate increases from 10KB/sec to 10MB/sec,
and transferring the checkpoint file costs the most of migration
time (5.1sec, 7.5sec and 10.2sec for 256MB, 384MB and 512MB
checkpoint file, respectively). The results indicate that the log
growth rate has a little effect on the iteration rounds of log trans-
ferring phase, resulting much less network packages transmission
and shorter total migration time.

3.3.2 Synchronization with Waiting-and-Chasing
Here, all the steps executed are the same as the above scenario,
but appends a waiting-and-chasing phase after the log file size is
reduced to the threshold value Vthd. This synchronization process
makes it much more complicated in this case.

When the log file size has reduced to the specified value Vthd,
there is still much unused log that should be replayed on the target
host, so a waiting-and-chasing phase is needed to postpone the
stop-and-copy phase until the two VMs get a consistent state. Fig-
ure 4 shows the detail process of this scenario. The following ine-
quality presents this condition:

1 1i i

m m
ckpti i

log replay trans

log logV V V
R R R
= =− <=∑ ∑ (8)

As 1

m
logii

log

V
R

=∑ denotes the time cost when the log file is reduced

to the threshold value Vthd, it can also be presented with equation
(3), as log replay rate can be normalized to log growth rate:

Rreplay=∂ Rlog (9)
where ∂ denotes the ratio of log replay rate to log growth rate.
Combining with equation (3) and (9), inequality (8) can be trans-
formed to:

0
0

1(1)
m

i
i

t t
=

− <=
∂ ∑

 (10)

i.e., 1
1 1

mϕ
ϕ

− ∂
<=

− ∂ −
 (11)

By analyzing the whole process of migration from overall per-
spective, we can derive that the difference of the two VMs’ run-
time during the migration is just the time cost to transfer the
checkpoint file. This conclusion can be expressed as:

1 1i i

n n
ckpti i

log replay trans

log logV V V
R R R
= =− =∑ ∑ (12)

With equation (12) and (9), we can calculate the total data volume
of generated log files as:

1 1i

n

log ckpt
i

V Vϕ
=

∂
=
∂ −∑ (13)

So the total data transferred can be expressed as:

1

= + (1)
1i

n

ckpt ckpt
i

logTDT V V Vϕ
=

∂
= +

∂ −∑ (14)

Figure 5 shows that the total amount of data need to be transferred
while migrating a VM with 512MB checkpoint file in a high
speed LAN (400Mbit/sec bandwidth).
The total migration time can be calculated as:

1 1 ()
1

i

n
ckpti

trans replay trans

ckpt log logV V V V
TMT

R R R
ϕ=

+ ∂
= + = +

∂ −
∑ (15)

Note that we should not calculate the TMT with equation (3) or
simply using the expression TDT/Rtrans, because during the wait-
ing-and-chasing phase, the log files are not being transferred all
the time, but are being replayed on the target host all along.

4. SYSTEM IMPLEMENTATION
To demonstrate the utility of our scheme, we implement our pro-
totype based on acquirable log-and-replay tool – ReVirt [1]. The
system is implemented as a set of modifications to the host kernel
2.4.20 as ReVirt did. The following describes the details that we
apply ReVirt to implement live migration of virtual machine on
top of UMLinux for x86 platform.

Figure 6 shows our system structure with logging-and-replay
component of ReVirt. We split the logging and replay modules
into two parts and locate them on source and target host respec-
tively. The migration daemon on source host is responsible for
making transparent checkpoint of the guest OS, reserving required
resource for checkpoint and log data transmission, and communi-
cating with the migration receiver on target host. The migration
receiver is responsible for reserving necessary resources to re-
create the migrated VM, monitoring the log replay rate and or-
chestrating the migration progress with the source host.

In ReVirt system, log records are added and saved to disk in a
manner similar to that used by the Linux syslogd daemon. For our
migration strategy, we modify the logging module and redirect the

Figure 4. Migration process with a waiting-and-chasing syn-
chronization phase

Figure 5. The total data transferred with different parame-
ter values of ∂ and ϕ during a migration

105

logging data stream to the network interface card. The VMM ker-
nel module and kernel hooks add log records to a circular buffer
in host kernel memory, and a user-level daemon (rlogd) consumes
the buffer and transmits the data to the target host.

4.1 COW Checkpoint
ReVirt current implementation does not provide runtime check-
pointing function. It simply checkpoints the VM state by making
a copy of its virtual disk. Most of current checkpoint mechanism
should stop the VM for an amount of time linear in the amount of
memory configured. This overhead could be mitigated by marking
dirty pages as copy-on-write (COW) during checkpointing [8].
We use a standard COW mechanism to implement a transparent
checkpoint on UMLinux. The checkpoint is performed in the fol-
lowing steps: 1) When a checkpoint request is issued, the VM
should be suspended to record the VCPU state at the current in-
stant. Then all the VM memory pages are configured as read-only
mode. 2) The VM resumes and continues to run while all the
memory pages are replicated to a network transmit buffer and
then transmitted across the network. During this process, all the
memory writing access would trigger a page fault, and then the
pages to be dirtied should be copy to a COW buffer immediately.
The replication process could extract any pages marked as copied
from the COW buffer instead of reading them directly from the
guest OS. When it has finished replicating pages, their space in
the buffer could be marked for reuse. This COW mechanism en-
sures all the memory pages are at a globally consistent state and
greatly reduces the checkpointing downtime. 3) When all the
memory pages are replicated, all the buffered recorded data are
written out to the remote host.

4.2 Local Device Migration
A key challenge of migrating a running VM is how to hold the
connections to local device including SCSI disks and network in-
terfaces. There are different solutions to address such issues. The
remainder of this section describes the detail issues about migrat-
ing the two most important components.

SCSI Devices In a cluster environment, most modern data cen-
ters consolidate their storage requirements with network-attached
storage (NAS) or storage area networks (SAN). The NAS can be
accessed uniformly from all host machines in the cluster, and this
advantage avoids the need to migrate disk storage. Unfortunately,
it may cause some conflicts while synchronizing the migrated
VM’s execution state in our migration approach. For instance, the
source VM may first read a block of the disk and then write the
same block, if this process is replayed on the target host without

any intervention, this may cause some mistakes, because at this
time the reading data is what the source VM had written. We
should avoid such style of replay that can be named as WAR
(write after read) for short. There are two common approaches to
address this issue. The first is to track the disk changes in a
redo/undo log [11] during the synchronization phase, but it is very
difficult to cope with the time sequence of disk access, because
the logging and replay are performed synchronously that the two
VM may compete to read or write the same block at the same
time. Another approach is chosen to address this issue in our sys-
tem. All the disk read operation on the source VM are intercepted
and the bytes are recorded in a log file, during replay on the target
host, the disk read are prohibited and redirected to the log file. All
the disk writing operations are also prohibited during the replay
process because the writing does not change the file state. Al-
though this approach causes some space penalty and network
bandwidth consumption, but it works well and does not cause any
mistakes. Furthermore, to make the solution much more robust
and efficient in a high speed LAN, a little space and network traf-
fic is worthwhile.

Network Connections To ensure the transparency of VM migra-
tion, it is essential to guarantee all the network connections that
were opened before migration keeping open after the migration
finished. In a cluster environment, the network interfaces of the
source and target hosts typically attach to the same switched
LAN. VMware and Xen address this issue with similar mecha-
nism of ARP broadcasting [11, 3], and we adopt such analogous
method to keep ongoing network connections in a LAN.

5. PERFORMANCE EVALUATION
This section investigates the performance characteristics of the
VM migration scheme described above. It presents measurements
of migration downtime, total migration time and the total data
transferred when a VM is migrated in a LAN. With a variety of
workloads, our approach shows that VM migration can be fast and
transparent to applications and operating systems.

5.1 Experimental Setup
Our experiments are performed on identical hosts with AMD Ath-
lon 3500+ processor and 1GB DDR RAM. Storage is accessed via
iSCSI protocol from a NetApp F840 network attached storage
server. Each host has an Intel Pro/1000 Gbit/s NIC to transfer the
state of the VMs. To reduce the effect on other ongoing network
service hosted on the source host, the Linux traffic shaping inter-
face is used to limit network bandwidth to 500Mbit/sec for the
migration daemon. The guest OS is RHEL AS3 Linux with kernel
2.4.18 ported to UMLinux, and the host kernel for UMLinux is a
modified version of Linux 2.4.20. All the VMs are configured to
use 512MB of RAM.

The VM being migrated is the only VM running on the source
machine and there are no VMs running on the target machine. In
each experiment a single VM is migrated five times between two
physical hosts. The results reported are the average of the five tri-
als. The experiments use the following VM workloads:

1) Daily use: an idle Linux OS for daily use.
2) Kernel-build: the complete Linux 2.4.18 kernel compilation

is a system-call intensive workload, which is expensive to virtual-
ization. This is a balanced workload that tests CPU, memory and
disk performance.

Figure 6. CR/TR-Motion system structure

106

3) Static web application: we use the Apache 2.0.63 to meas-
ure static content web server performance. Both clients are con-
figured with 100 simultaneous connections and repetitively
downloading a 256KB file from the web server.

4) Dynamic web application: a more challenging Apache
workload is presented by SPECweb99, a complex application-
level benchmark for evaluating web servers and the systems that
host them. The workload is a complex mix of page requests: 30%
require dynamic content generation, 16% are HTTP POST opera-
tions, and 0.5% executes a CGI script. A number of client ma-
chines are used to generate the load for the server under test, with
each machine simulating a collection of users concurrently ac-
cessing the web site.

5) Unixbench [2]: it is a benchmark suite for Linux that inte-
grates CPU, file I/O, process spawning and other workloads. The
following tails are performed: Dhrystone2 using register vari-
ables, arithmetic, system call overhead, pipe throughput, pipe-
based context switching, process creation, execl throughput, file
system throughput, concurrent shell scripts, compiler throughput,
and recursion.

To compare CR/TR-Motion with previous migration schemes in
LAN environments, we port pre-copy algorithm implemented in
XenMotion to UMLinux and make the same experiment on the
above workloads. The test environment is the same as CR/TR-
Motion.

5.2 Logging and Replay Overheads
Our first concern is the log growth rate which represents the space
overhead that arises from logging the VM on the host machine.
Next we seek to quantify the time overhead of replay on the target
host. Table 1 shows the time and space overhead of logging and
replay on daily use, kernel-build, static web application, dynamic
web application, unixbench workloads. Log growth rate shows the
average rate of growth of the log during the workload. Log replay
rate is normalized to the log growth rate of the VM with logging.
It is denoted by the value of ∂. Workloads with little non-
determinism (e.g., kernel-build) generate very little log traffic.
The log growth rate for static web application and SPECweb99 is
higher because it needs to log the incoming network packets.
However, it is still small enough compared to the network trans-
mit rate in a Gbit/s LAN. The log replay rate for kernel-build and
unixbench is only a little faster than log growth rate because such
applications are compute intensive and generate little non-
determinism events.

5.3 Migration Time
We mostly concern about the downtime during which the VM is
unavailable. This interval must be short enough to avoid any no-
ticeable delay from the VM.

To compare the migration downtime of our scheme (CR/TR-
Motion) with pre-copy scheme, the same workloads are migrated
in a high speed LAN. The test result in figure 7 shows that our
approach gets much less downtime than pre-copy algorithm. For
the above workloads, it reduced the migration downtime by
62.7%, 76.5%, 75.2%, 65.2%, and 82.1% respectively, an average
of 72.4%.

We also pay attention to the total migration time during which
machine resources are consumed to perform the migration. Figure
8 shows the total migration time is less than one minute for vari-
ous workloads while migrating in a fast LAN with our scheme,
while pre-copy algorithm takes much more time for the same
workloads. Our approach reduces the total migration time by
10.1%, 20.4%, 53.6%, 42.9%, 30.3%, an average of 31.5%. This
improvement may give a great benefit for cluster administrators.
The total migration time for Linux kernel-building seems a little
longer than other workloads in our approach. The reason is that
the log replay rate is more close to the log growth rate for this
workload, so our algorithm executes many rounds of iterations to
perform the waiting-and-chasing phase, which cost much longer
migration time.

5.4 Network Throughput of Migration
Figure 9 shows our migration approach gets less network
throughput than pre-copy algorithm in a LAN for different work-
loads. As the VM is configured to use 512MB RAM, both
CR/TR-Motion and pre-copy approaches should transmit those
memory pages to the target host when the VM is migrated. The
other data are that should be transferred to synchronize the mi-

0

50

100

150

200

250

300

Daily use Kernel-build Static web
app

Dynamic
web app

UnixBench

D
ow

nt
im

e(
m

s)

CR/TR-Motion
Pre-copy

Figure 7. The downtime of CR/TR-Motion and Pre-copy for
different workloads

0

10

20

30

40

50

60

70

80

90

100

Daily use Kernel-build Static web
app

Dynamic
web app

UnixBench
To

ta
l m

ig
ra

tio
n

tim
e(

s)

CR/TR-Motion

Pre-copy

Figure 8. Total migration time of CR/TR-Motion and Pre-
copy for different workloads

Table 1. Time and space overhead of logging and replay
Workloads Log growth

rate (KB/sec)
∂ (Replay rate Nor-
malized to logging)

daily use 10.3 36.8
kernel-build 2.2 1.05

static web app 247 1.63
dynamic web app 722 1.24

unixbench 61.4 1.18

107

grated VM state after the memory image has been replicated. In
our approach, the total data transmitted is not more than 550MB,
most of which are the checkpoint file, and the other data are the
negligible logging data. For pre-copy approach, the synchroniza-
tion data are the dirtied memory pages which are usually consid-
ered to be coarse-granularity and bandwidth consumptive. To
make a distinctly comparison with pre-copy algorithm, we only
show the data need to synchronize the migrated VM state in Table
2. Each result is the mean of 5 trials, with the standard deviation
in parentheses. The last list shows our approach drastically re-
duces the synchronization data compared with pre-copy approach.
CR/TR-Motion reduces synchronization traffic by at least 87.4%
(dynamic web application) and at most 99.6% (kernel-build), an
average of 95.9%. This improvement may provide great benefit if
our migration scheme is applied in low-bandwidth wide area net-
works (WAN).

Figure 10 and 11 show the network throughput of migration in
fast and slow synchronization scenarios. We can find that the
source host achieves a consistent throughput of approximate
400Mbit/sec when the checkpoint file is being transmitted, and
then iterative log transferring phase is executed, resulting in the
network throughput dropping to only 25Mbit/sec. During the
waiting-and-chasing phase, the bandwidth even drops to approxi-
mate 4Mbit/sec. Those results demonstrate that the migrations for
those workloads cause reasonable network traffic and bandwidth
consumption.

5.5 Migration Overhead
Figure 12 illustrates the performance overhead during VM migra-
tion. As the selected workloads are macro and may run thousands
of seconds at most, while the migration process can be finished in
only tens of seconds, we only show the overhead which are

caused by transparent checkpointing and logging during the total
migration time. For all cases the overhead is low (less than 8.54%
on average).

To monitor the effect of resource reserving during VM migration,
the source physical machine is loaded with 5 CPU-bound virtual
machines, and the time to migrate the 512MB Linux VM is meas-
ured under different resource reservations. Figure 13 shows that
reserving about 30% of a CPU for migration minimizes the total
migration time. This implies that it takes about 30% of a CPU to
attain the maximum network throughput over the gigabit link. We
also discover that even though the total migration time increased
when insufficient CPU is reserved for the migration, the migration
downtime remains small regardless of the amount of reserved
CPU. Because it only requires little CPU time to stop the VM and
transfer the remainder state during the stop-and-copy phase.

6. RELATED WORK
Recent virtual machine management tools allow live migration of
servers within a local area network environment. These technolo-
gies have proven to be a very effective tool to enable data center
management in a non-disruptive fashion. Pre-copying algorithm is
widely used for VM live migration in a memory-to-memory ap-
proach [7, 17]. During migration, physical memory pages are
pushed across network to the new destination while the source
host continues running. Pages modified during the replication

0 1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

300

350

400

450
Daily Use

Th
ro

ug
ht

pu
t (

M
bi

t/s
ec

)

Elapsed time (seconds)

Stop-and-copy

Iterative log
transferring

transferring checkpoint

Figure 10. Network throughput of Migrating daily use work-
load in fast synchronization scenario

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

450

Stop-and-copy
Iterative log
transferring

Th
ro

ug
ht

pu
t (

M
bi

t/s
ec

)

Elapsed time (seconds)

transferring checkpoint

Waiting-and-Chasing

Dynamic Web Application

Figure 11. Network throughput of Migrating dynamic web
application in slow synchronization scenario

0

100

200

300

400

500

600

700

800

900

Daily use Kernel-build Static web
app

Dynamic web
app

UnixBench

To
ta

l D
at

a
Tr

an
sf

er
re

d
 (M

B
)

CR/TR-Motion
Pre-copy

Figure 9. Total data transferred with CR/TR-Motion and Pre-
copy for different workloads

Table 2. The data should be transferred to synchronize the mi-
grated VM state for different workloads and migration scheme.

Synchronization data volume (MB)Workloads CR/TR-Motion Pre-copy
Reduction

ratio
daily use 0.48 (0.04) 38.54 (2.1) 98.8%

kernel-build 0.53 (0.06) 152.44 (8.2) 99.6%
static web app 8.34 (0.21) 228.99 (9.4) 96.4%
dynamic web

app 36.4 (0.96) 288.05 (12.2) 87.4%

unixbench 2.59 (0.22) 113.38 (6.4) 97.7%

108

must be re-sent to ensure consistency. After a bounded iterative
push phase, a very short stop-and-copy phase is executed to trans-
fer the remaining dirty pages. This COW (copy-on-write) mecha-
nism achieves very short best-case migration downtimes, but for
memory intensive workloads, the downtime may evidently in-
crease to several seconds. To greatly reduce memory replication
during migration, a high performance VM migration scheme is
proposed [10] by using RDMA (Remote Direct Memory Access),
which is a feature provided by many modern high speed intercon-
nects (InfiniBand). Their approaches drastically reduce the VM
migration overheads.

In a LAN environment, since the migrated virtual machine retains
the same network address as before, any ongoing network level
interactions are not disrupted. Similarly, storage requirements are
normally met via either network attached storage (NAS) or stor-
age area network (SAN), which is still reachable from the mi-
grated VM location to allow continuous storage access. Unfortu-
nately, in a WAN environment, live VM migration is not as easily
achievable for intractable network connectivity holding and bulk
storage replication. Current virtual machine software with a sus-
pend and resume feature can be used to support WAN migration
includes Collective [21], Internet Suspend/Resume [13] and µDe-
nali [24], but those projects have explored migration over longer
time spans by stopping the source VM and then transferring the
VM image file and local block devices to the target host. To ar-
chive live migration of virtual machine across WANs, recent ap-
proaches using dynDNS [25] and IP tunnels to guarantee network
connections is demonstrated [6, 23], where an IP tunnel between
the source and target host is set up to transparently forward pack-
ets to and from the client applications. But the edge router’s sup-
port is required for those approaches. To replicate the large size of
local disk storage with less disruption, a block level solution com-
bining pre-coping with write throttling is described [6].

To optimize the transfer of large amounts of disk and memory
state during migration, a solution based on opportunistic replay is
proposed [22], which captures user interactions with applications
at the GUI level, resulting in very small replay logs that econo-
mize network utilization. This approach is somewhat similar with
our mechanism, but its applicable scenario requires that the target
hosts should have initially identical replica of a suspended VM
with source host before the source VM is migrated to the same
host again. Another difference with our approach is that it imple-
ments logging-and-replay only at the GUI level but not full sys-
tem, thus results in divergent VM state that should be dealt with

cryptographic hashing techniques. Moreover, their VM migration
scheme is not implemented in a live fashion.

Transparent and efficient access to I/O devices during VM migra-
tion needs dynamically change the mappings of virtual to physical
devices. Netchannel [14] presents a VMM-level abstraction that
transparently handles pending I/O transactions, thus provides a
novel mechanism for continuous and seamless device access dur-
ing VM migration and device hot-swapping for networked as well
as locally attached devices. VTL [15] is a framework for packet
modification and creation. Its purpose is to modify network traffic
to and from a VM transparently so as to enable connection persis-
tence during long duration VM migration and hibernation.

7. CONCLUSION
In this paper we present the design, implementation, and evalua-
tion of a novel approach for live VM migration. It shows how we
adopt checkpointing/recovery and trace/replay technology to pro-
vide fast, transparent VM migration. This approach makes unper-
ceived VM migration downtime and reasonable network band-
width consumption. Experimental measurements show our
scheme get better average performance compared with pre-copy
approaches: up to 72.4% on application observed downtime, up to
31.5% on total migration time and up to 95.9% on the data to syn-
chronize the VM state, while the application performance over-
head due to migration is less than 8.54% on average.

However, in multi-processor (or multi-core) environment, as ex-
pensive memory race among different VCPUs must be recorded
and replayed, this make an inherent difficult for our approach to
migrate SMP guest OS. VCPU hot plug technique may address
this issue by dynamically configuring the migrated VM to use
only one VCPU before migration, and give back the VCPUs after
the migration is finished. Although this makes some performance
degradation during migration for a short time, it is desirable com-
pared with the overheads of logging and replaying multiprocessor
VMs. We will further study this issue and make a tradeoff be-
tween pre-copy and our approach for multiprocessor VMs migra-
tion.

8. ACKNOWLEDGMENTS
This work is supported by National 973 Basic Research Program
of China under grant No.2007CB310900. We are grateful to the
researchers of ReVirt group for sharing their work with us.

0

10

20

30

40

50

60

70

Kernel-build Static web app Dynamic web app UnixBench

El
ap

se
 ti

m
e

(s
ec

on
ds

)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

M
ig

ra
tio

n
ov

er
he

ad

stand-alone runtime without migration
runtime during migration
migration overhead

Figure 12. Migration overhead for different workloads

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

110

To
ta

l m
ia

gr
at

io
n

tim
e

(s
ec

on
d)

% CPU Reversed

 Daily use
 Kernel-build
 Static web app
 Dynamic web app
 UnixBench

Figure 13. Effect of CPU reservation on migration from a
heavily loaded source physical machine

109

9. REFERENCES
[1] http://www.eecs.umich.edu/virtual/software.html
[2] http://www.tux.org/pub/tux/benchmarks/system/unixbench/
[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the nineteenth ACM sympo-
sium on Operating Systems Principles (SOSP’03), October
19-22, 2003, Lake George, New York, USA, pp.164-177

[4] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P.
Stodghill. Recent Advances in Checkpoint/Recovery Systems.
In Proceedings of 20th International Parallel and Distributed
Processing Symposium (IPDPS’06), April 25-29, 2006

[5] K. Buchacker and V. Sieh. Framework for Testing the Fault-
Tolerance of Systems Including OS and Network Aspects, In
Proceedings of 6th IEEE International High Assurance Sys-
tems Engineering Symposium (HASE’01), October 22-24,
2001, pp.95-105

[6] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioeberg.
Live Wide-Area Migration of Virtual Machines Including Lo-
cal Persistent State. In Proceedings of the third International
Conference on Virtual Execution Environments (VEE’07),
ACM Press, June 13-15, 2007, San Diego, California, USA,
pp.169-179

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Lim-
pach, I. Pratt, and A. Warfield. Live Migration of Virtual Ma-
chines. In Proceedings of 2nd Symposium on Networked Sys-
tems Design and Implementation (NSDI’05), May 2-4, 2005,
Boston, MA, USA, pp.273-286

[8] B. Cully, G. Lefebvre, D. T. Meyer, A. Karollil, M. J. Feeley,
N. C. Hutchinson, and A. Warfield. Remus: High Availability
via Asynchronous Virtual Machine Replication. In Proceed-
ings of 5th Symposium on Networked Systems Design and Im-
plementation (NSDI’08), April 16-18, 2008, San Francisco,
CA, USA

[9] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M.
Chen. ReVirt: Enabling Intrusion Analysis through Virtual-
Machine Logging and Replay. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation
(OSDI’02), ACM Press, December 8-11, 2002, Boston, MA,
USA, pp.211-224

[10] W. Huang, Q. Gao, J. Liu, and D. K. Panda. High Perform-
ance Virtual Machine Migration with RDMA over Modern In-
terconnects. In Proceedings of IEEE International Conference
on Cluster Computing (Cluster'07), September 17-20, 2007,
Austin, Texas, USA

[11] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging Oper-
ating Systems with Time-Traveling Virtual Machines. In Pro-
ceedings of the USENIX Annual Technical Conference
(USENIX’05), April 10-15, 2005, Anaheim, CA, USA

[12] S. T. King. Operating System Extensions to Support Host-
Based Virtual Machines. Technical Report CSE-TR-465-02,
University of Michigan, September 2002

[13] M. Kozuch and M. Satyanarayanan. Internet Suspend/Resume.
In Proceedings of the IEEE Workshop on Mobile Computing
Systems and Applications (HotMobile’02), June 20-21, 2002,
Callicoon, NY, USA, p.40

[14] S. Kumar and K. Schwan. Netchannel: A VMM-level Mecha-
nism for Continuous, Transparent Device Access During VM
Migration. In Proceedings of the 2008 International Confer-
ence on Virtual Execution Environments (VEE’08), March 5-
7, 2008, Seattle, WA, USA, pp.31-40

[15] J. R. Lange and P. A. Dinda. Transparent Network Services
via a Virtual Traffic Layer for Virtual Machines. In Proceed-
ings of the 16th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC’07), June 27-29,
2007, Monterey Bay, California, USA

[16] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott.
Proactive Fault Tolerance for HPC with Xen Virtualization. In
Proceedings of 21st ACM International Conference on Super-
computing (ICS’07), June 16-20, 2007, Seattle, WA, USA,
pp.23-32

[17] M. Nelson, B. H. Lim, and G. Hutchins. Fast Transparent Mi-
gration for Virtual Machines. In Proceedings of USENIX An-
nual Technical Conference (USENIX’05), April 10-15, 2005,
Marriott Anaheim, Anaheim, CA, USA, pp.391-394

[18] R. Nathuji and K. Schwan. Virtual Power: Coordinated Power
Management in Virtualized Enterprise Systems. In Proceed-
ings of the 22nd ACM Symposium on Operating Systems Prin-
ciples (SOSP’07), October 14-17, 2007, Skamania Lodge Ste-
venson, WA

[19] D. A. S. de Oliveira, J. R. Crandall, G. Wassermann, S. F.
Wu, Z. Su, and F. T. Chong. ExecRecorder: VM-Based Full-
System Replay for Attack Analysis and System Recovery. In
Proceedings of The 9th Asian Symposium on Information Dis-
play (ASID’06), October 21, 2006, San Jose, California, USA,
pp.66-71

[20] C. Perkins, IP Encapsulation within IP, RFC 2003, 1996
[21] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,

and M. Rosenblum. Optimizing the Migration of Virtual
Computers. In Proceedings of the 5th Symposium on Operat-
ing Systems Design and Implementation (OSDI’02), Decem-
ber 8-11, 2002, Boston, MA, USA

[22] A. Surie, H. A. Lagar-Cavilla, E. de Lara, and M. Satyanara-
yanan. Low-Bandwidth VM Migration via Opportunistic Re-
play. In Proceedings of the Ninth Workshop on Mobile Com-
puting Systems and Applications (HotMobile’08), February
25-26, 2008, Napa Valley, CA, USA

[23] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J.
Mambretti, I. Monga, B. van Oudenaarde, S. Raghunath, and
P. Wang, Seamless Live Migration of Virtual Machines Over
the MAN/WAN, Future Generations Computer Systems,
Vol.22, No.8, October 2006

[24] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble. Con-
structing Services with Interposable Virtual Hardware. In
Proceedings of the First Symposium on Networked Systems
Design and Implementation (NSDI’04), March 29-31, 2004,
San Francisco, USA, pp.169-182

[25] B. Wellington. Secure DNS Dynamic Update, RFC 3007
[26] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B.

Weissman. ReTrace: Collecting Execution Trace with Virtual
Machine Deterministic Replay. In Proceedings of the Third
Annual Workshop on Modeling, Benchmarking and Simula-
tion, June 10, 2007, California, USA

[27] M. Zhao and R. J. Figueiredo. Experimental Study of Virtual
Machine Migration in Support of Reservation of Cluster Re-
sources. In Proceedings of the 2nd International Workshop on
Virtualization Technologies in Distributed Computing
(VTDC’07), November 12, 2007, Reno, NV, USA

110

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

