
Magnet: A Novel Scheduling Policy for Power
Reduction in Cluster with Virtual Machines

Liting Hu, Hai Jin, Xiaofei Liao, Xianjie Xiong, Haikun Liu
Services Computing Technology and System Lab

Cluster and Grid Computing Lab
School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, 430074, China
hjin@hust.edu.cn

Abstract—The concept of green computing has attracted much
attention recently in cluster computing. However, previous local
approaches focused on saving the energy cost of the components
in a single workstation without a global vision on the whole
cluster, so it achieved undesirable power reduction effect. Other
cluster-wide energy saving techniques could only be applied to
homogeneous workstations and specific applications. This paper
describes the design and implementation of a novel approach
that uses live migration of virtual machines to transfer load
among the nodes on a multilayer ring-based overlay. This
scheme can reduce the power consumption greatly by regarding
all the cluster nodes as a whole. Plus, it can be applied to both
the homogeneous and heterogeneous servers. Experimental
measurements show that the new method can reduce the power
consumption by 74.8% over base at most with certain adjustably
acceptable overhead. The effectiveness and performance insights
are also analytically verified.

I. INTRODUCTION

Green computing has been a hot topic in cluster computing
for many years. Anecdotal evidence from data center
operators [1][9] indicates that a significant fraction of the
operation cost of these centers is due to power consumption
and cooling. In addition, most power-generation technologies
(such as nuclear and coal-based generation) are harmful to the
environment.

Previous work on energy savings of the cluster can be
divided into two groups, local techniques and cluster-wide
techniques. Local techniques have focused on reducing power
of the single workstation, by reducing the clock frequency,
the supplied voltage or by saving interconnect components,
including switches, network interface cards (NICs), and links
[3][13]. However, it is a pity that most of them focus on the
improvement of single node without a global vision of the
whole system. On the contrary, cluster-wide techniques
involve multiple servers. The basic idea of cluster-wide
techniques is to aggregate the system load and then to
determine the minimal set of servers which could handle the
load. The energy savings can be obtained by turning off the
redundant nodes. However, the cluster-wide approaches: 1)
can only be applied to specific applications (e.g. Web service)
in that its front-end has provided a good load balancing
algorithm to redirect connection states of the back-end nodes;
2) focus solely on homogeneous systems yet real-life clusters

are almost invariably heterogeneous; 3) fail to deal with run-
time reallocation of load.

Significant progresses have been made on both sides,
including local techniques and cluster-wide techniques.
However, it seems to reach the bottleneck already.
Fortunately, the emergence of the virtual machine (VM) gives
us a new horizon and thus we can look upon the problem at a
different angle. A virtual machine was originally defined by
Popek and Goldberg as an efficient, isolated duplicate of a
real machine. The VM used in our work is system VM
(sometimes called hardware VMs), which allows the
multiplexing of the underlying physical machine between
different VMs, each running its own operating system.

The virtual machine exhibits the unique advantages as
follows: first, it allows the separation of hardware and
software and thus addresses the problem caused by
heterogeneous computing platforms; second, live migration
[5][10] of VMs allows the workload of a node to transfer to
another node.

That is not to say, however, that we can make virtual
machines randomly migrate among all nodes. In fact, the
potential overhead caused by live migrations of VMs can not
be ignored, which may have serious negative effect on cluster
utilization, throughput and QoS issues. Therefore the
challenge is how to design a migration strategy to effectively
implement green computing and meanwhile influence little on
the performance of the cluster.

Our green computing algorithm tends to turn off the
redundant nodes to save the energy, provided that the system
performance is guaranteed by the left nodes. The reason is
that each node in our cluster consumes approximately 160
watts when idle and 280 watts when all resources are
stretched to the maximum. It means that: 1) there is a
difference in power consumption between an idle node and a
fully utilized node; 2) the penalty for keeping a node powered
on is high even if it is idle. Thus, turning a node off always
saves power, even if its load has to be transferred to one or
more other nodes.

We propose a policy, called Magnet, to implement green
computing in the cluster with VMs. Magnet keeps track of all
active nodes and organizes them into concentric, non-
overlapping rings in terms of gradually decreasing workload,

978-1-4244-2640-9/08/$25.00 © 2008 IEEE 2008 IEEE International Conference on Cluster Computing13

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

so it is easy to squeeze the existing running jobs which are
widely distributed among lightweight nodes and then deliver
them to a subset of current active nodes and it is also easy to
release the overweighted nodes, thereby 1) turning off the
redundant nodes to save energy when the system is in non-
intensive computing state; 2) transferring violating jobs or big
jobs to the free nodes when the system is in intensive
computing state to obtain performance gains.

By conducting simulations from generated application
workload with different intensities in the cluster with VMs,
we show that our method can effectively reduce the power
consumption by 67.1%, 72.0%, 69.3%, 72.8% and 74.8% at
most for five application workload groups (light, moderate,
normal, moderately intensive, and highly intensive job
submission rates, respectively). Our method can increase the
cluster utilization to 41.9%, 35.44%, 36.57%, 45.17% and
50.61%, respectively. Our method can also increase the
quality-of-service for the heavyweight workload group. Plus,
we show that the total migration overhead is acceptable and
adjustable. The effectiveness and performance insights are
also demonstrated through a theoretical analysis.

The rest of this paper is organized as follows. Section II
discusses the related work. The Magnet policy is described in
Section III. Section IV demonstrates the effectiveness of
Magnet through theoretical analysis. Section V describes our
simulation methodology. Section VI presents the performance
evaluation. We conclude this work in Section VII.

II. RELATED WORKS

We divide previous work into two groups: local and
cluster-wide technique. Local techniques are implemented
independently by each server, whereas cluster-wide
techniques involve multiple servers.

A. Local Techniques
Most of the local techniques aiming at reducing power

consumption of a computing cluster focus on the
improvement of the single node, by reducing the clock
frequency, by reducing the supplied voltage or by saving
interconnect components in computer. For instance, the DVS
system dynamically reduces processors’ supply voltages while
guaranteeing proper operations. The DLS [12] project makes
use of an appropriate adaptive routing algorithm to shut down
links in a judicious way.

Elnozahy [16] proposed a new mechanism called request
batching, in which the incoming requests are accumulated in
memory by the network interface processor while the host
processor of the server is kept in a low-power state. The host
processor is awakened when an accumulated request has been
pending for longer than a batching timeout.

However, such schemes do not achieve the maximal
optimization as experimental results (SPECpower_ssj2008
[20]) confirm that the incremental energy savings from
slowing down all CPUs (and scaling down their voltage) are
far less than those from turning a machine off to reduce farm
capacity by the same amount. Plus, request batching trades off
system responsiveness to save energy, so it is not appropriate

to trade or e-commerce server in that a very slow server will
drive away customers.

B. Cluster-wide Techniques
Pinheiro [17] and Chase [4] concurrently proposed similar

strategies for managing energy in the context of front-end
server clusters. The basic idea of such approaches is to
leverage the aggregate system load and then determine the
minimal set of servers which could handle the load. Finally,
energy savings can be obtained by turning some machines on
or off. Elnozahy et al. [15] evaluated different combinations
of cluster reconfiguration and dynamic voltage scaling for
clusters in which the base power is relatively low, including
Independent Voltage Scaling (IVS), Coordinated Voltage
Scaling (CVS), Vary-On Vary-Off (VOVO), Combined Policy
(VOVO-IVS), and Coordinated Policy (VOVO-CVS).

Such approaches have drawbacks including that (1) it is
only applicable to specific applications (e.g. Web service) in
which the front-end has already provided a good load
balancing algorithm and the connection states of the back-end
node can be migrated across different nodes. In that sense, the
given load could be concentrated on a subset of all nodes in a
balance way, yet the strategy fails on most application servers;
(2) they focus solely on homogeneous systems. However,
real-life clusters are almost invariably heterogeneous in terms
of their operation systems, the performance, capacity and
power consumption of their hardware components; (3) most
of these approaches fail to deal with run-time reallocation of
the load.

III. MAGNET DESIGN

To achieve good performance in the cluster, Magnet faces
the following challenges: (1) how to design a framework to
run in the green computing way and meanwhile to influence
little on the performance; (2) how to decrease the overhead
caused by frequent live migrations of VMs; (3) how to
maintain the service continuity and stability (decreasing the
impact of interruption caused by the crash down of unknown
node). In this section, we discuss the situations which lead to
bad performance to the cluster computing first and then
introduce the design of Magnet.

Generally the performance of the cluster, such as
throughput, average job slowdown and QoS issues are likely
to be influenced by two problems, called as inner job blocking
problem and outer job blocking problem. The former is
caused by certain violating jobs with seriously fluctuant
resource requirements which lead to node thrashing. Previous
studies [22][24] focused on balancing the number of
jobs/tasks among the workstations, but the CPU or memory
requirement should be informed in advance. The latter
happens due to the coming of a big job with remarkable
working set requirement which can not be satisfied by the
current active workstations, resulting in the blocked working
flow of rest of the jobs. Towards outer job blocking problem,
existing schemes like backfilling scheduling [19] and gang
scheduling must consider the size of node needed by a job or
estimated runtimes [21].

14

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

The analysis above indicates us that if only we could
conserve the energy globally and meanwhile flexibly address
the job blocking problems, we can attain a win-win situation,
saving energy and improving performance.

A. Overview
As illustrated in Fig. 1, the basic workflow of Magnet is as

follows. First, the multilayer ring-based overlay is constructed
and new jobs arrive continuously and are submitted to the
service center. Second, a detector is employed to supervise the
evil states of the computing cluster which can be categorized
into four kinds: (1) saving energy state caused by the arrived
lightweight working flow which persists for a long time; (2)
inner job blocking state caused by node thrashing; (3) outer
job blocking state caused by violating or big jobs; (4) fault
tolerance state caused by certain nodes crashing down due to
physical or software malfunctions; Third, a controller is
employed to choose corresponding strategies to response the
evil states.

Detector

Controller

Magnet Ring

“Evil”
Signal

Strategies

Front End Processor (Job Submission)

Service Center

Fig. 1. The system diagram of Magnet

B. Multilayer Ring Based Overlay
Let degrad be the maximum acceptable weight a node

could suffer without performance degradation. degrad can be
given by the user expectation, the QoS requirement of the
application and the like. Under different situations, degrad is
different and we can not set a constant value. Let Max(vm) be
the maximum number of VM containers a node could have.
Max(vm) is also uncertain as it changes in accordance with
different configurations of the physical machine. Let violate
be the weight a node could suffer which leads to unacceptable
performance degradation. For example, let violate be 89%,
then the node which consumes the resource ratio exceeding
89% will be regarded as violating node and should be released.

In the first operation of Magnet, each node boots up one
VM and new jobs are submitted to these VMs. Then every
VM, with a unique ID, consumes resources of the physical
nodes at different rates (from 0% to 100%). Magnet keeps
track of all active nodes, and organizes them into concentric,
non-overlapping rings in accordance with decreasing resource
consumed ratios. Magnet maintains 3-layer rings, the
members of each ring suffer the workload that span the range
[0, degrad/2), [degrad/2, degrad), [degrad, 100%). Magnet
deals with the members of the outer ring by squeezing them to

the secondary ring. VMs on the secondary ring are not
recommended to merge together as the sum of their resource
consumption rates exceed the performance upper bound
(degrad).

In the second step, the leader takes the responsibility of
maintaining a stable Magnet ring-based overlay for the reason
that the memory and CPU demand of jobs may change
dynamically and the execution time may not know in advance.
The leader is the node who suffers the maximum load among
its ring members of the same layer.

Within each ring, the leader periodically updates his logical
links with his members. At regular intervals, the leader checks
whether the workload of his members is less than the
threshold of his layer. If not, he removes the node which does
not belong to his layer to the alternative appropriate layer.

Finally, Magnet system addresses the resilience issue of
Magnet ring-based overlay through the introduction of co-
leaders. Each leader recruits the co-leader at the time being
elected.

To detect unannounced departures, Magnet relies on
heartbeats exchanged among leaders and their crews.
Unreported nodes are given a fixed time interval before being
considered to be dead. If the failure node happens to be the
leader, the members of the leader’s ring regards co-leader as
the replacement leader. In that sense, co-leader improves the
resilience of the Magnet ring-based overlay by avoiding
dependencies on single nodes.

C. Squeeze Measure and Release Measure
In this section, we analyze the overhead caused by the

migrations of VMs and then introduce the squeeze and release
migration measures which decrease the overhead to the
maximum extent.

VM migration is the key in the energy saving method of
aggregating and redistributing the system load in the cluster
consisting of VMs. The most optimal effect can be achieved
by (1) calculating the overall load of the system and being
divided by the capacity of a single physical machine to get the
number of nodes which can handle the overall load; (2)
transferring the scattered load to the calculated minimal set of
servers by a sequence of live migrations. The challenge is
how to obtain the optimal effect meanwhile decrease the
overhead caused by VM migrations.

Overhead. Previous work [5][23] have conducted a series
of experiments to measure the overhead for migrating a
number of running VMs from one physical host to another.
The results show that, the overhead of VM migrations is
reflected in two aspects, the time cost for all the migrations
and the throughput loss of the competitive VMs on the target
node.

Let r be a fixed remote execution cost in second; B be the
bandwidth; D be the amount of data in bits (OS image) to be
transferred in the job migration; N be the times of all VM
migrations. The time cost for all the migrations can be given
by:

15

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

(()) ()� � �
DOverhead Time s r N
B

 (1)

Second, the throughput loss is caused by the VMs’
competition for the shared cache although the VMs have been
already isolated in terms of CPU and memory. It has been
shown that page faults frequently occur in some heavily
loaded nodes but a few memory accesses or no memory
accesses are requested on some lightly loaded nodes or idle
nodes [2]. Therefore, in order to decrease the total throughput
loss, it is recommended to merge lightly loaded VMs together
on the physical host and avoid transferring one heavily loaded
VM to the host inside which there is another heavily loaded
VM running.

Squeeze Measure. The above analysis gives us the
directions for minimizing the overhead: the less D, N, and
probability of allocating heavily loaded VMs together, the less
overhead will be achieved. While in energy saving state or
outer job blocking state, Magnet will take squeeze measure to
migrate a sequence of VMs on the outer layer ring, which is
similar to the process of constructing an optimal tree. The
difference lies in that the process will stop if the sum of load
of VMs on a physical host exceeds the upper bound load of
their layer (degrad/2). Fig.2(a) presents the detail squeeze
steps. Let the number inside the VM be the amount of load in
terms of a percentage and 33% be the upper bound of the
cluster P1 consisting of outer layer ring nodes (degrad=66%).
The physical host which contains 4 VMs (4%, 6%, 10%, and
26%) will be removed to the secondary layer ring. Each step
of squeeze measure merges two lightest loaded VMs together
and thus guarantees the minimal D and minimal probability of
the mergence of heavily loaded VMs. Moreover, the process
of constructing the optimal tree leads a relatively smaller
value of N.

Fig. 2. (a) The squeeze steps in detail (b) The release steps in detail

Release Measure. While in inner job blocking state,
Magnet will take release measure to the VM whose host
machine consumes the resource ratio exceeding the upper
bound (violate). Release measure is the inverse process of
Squeeze measure and the disjointed violating VMs will be
transferred to the free nodes on the lightly loaded nodes of the
outer layer ring. Fig.2(b) presents the detail release steps, in
which the VM (26%) mutates to be a violating VM (66%) due
to some unknown reasons, e.g. its jobs’ fluctuant demand of a
large memory space. Consequently, the physical machine of

the VM (66%) becomes a violating node (suppose violate is
80%) and then it is released.

D. The Rationale of Our Solutions
In this section, we separately discuss our solutions to the

four common evil system states and the rationale behinds
them.

In saving energy state, Magnet virtually reconfigures the
cluster system to further utilize resources by taking squeeze
measure on outer layer nodes (see Fig.3). At next step,
Magnet switches the high-power state of the released nodes to
the low-power state. You may question why we do not submit
these lightweight jobs to certain nodes from the very
beginning and thus save trouble and overhead of all these
migrations. Actually, a situation is ignored, that jobs on
cluster may change dynamically, heavily loaded nodes could
become lightly loaded when its jobs are completed or
terminated that we do not know in advance. Therefore, saving
energy is not so much a predetermined strategy as a feedback-
driven process.

Fig. 3. Magnet reconfiguration in saving energy state

In inner job blocking state, it is necessary to make the
violating job migrate to the node which can provide enough
memory space or CPU resource. More importantly,
experiments have shown that a large job is likely to be a large
job with long lifetime [6][11]. In the sense, the candidate node
should not be a heavyweight node as it is likely to be the same
for a long time and thus causes another inner job blocking
state.

Magnet takes release measure on the violating VMs.
Magnet maintains a multilayer ring-based overlay among
which the lightweight workload nodes are organized on the
outer layer ring, so it is easy to find the candidate nodes by
requesting the corresponding outer layer leader for the list of
his members and then choosing one from them, as illustrated
in Fig.4.

In outer job blocking state, a new job is coming, which
demands large memory space and CPU resource.
Unfortunately, the available space of each individual node is
not large enough to serve it and thus the following
submissions to the workstation will be blocked. However, if

16

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

the idle memory spaces of all individual nodes can be
accumulated, then the sum may fit the large job. Magnet takes
squeeze measure on outer layer nodes to release the resources.

Fig. 4. Magnet reconfiguration in inner job blocking state

More importantly, Magnet can provide both the centralized
and distributed job scheduling approaches in the cluster.
Previous FEP emphasizes a lot on the characteristics of jobs
by adjusting its scheduling strategies in accordance with job
types, such as rigid jobs and moldable jobs. Undoubtedly, the
centralized management has many advantages. However,
when the scalability is restricted or high fault tolerance is
required, distributed management is an alternative scheme.
Magnet can transfer the responsibilities of the FEP to the
workstations in cluster, making the workstations themselves
decide which node to run certain task. In other words, the
computing cluster acts like a black box which is transparent to
the user and the FEP.

IV. ANALYSIS

A. Energy Saving Modelling
Let V be the set of all workstations, t be the given interval

for Magnet reconfiguration, SM(t)�V be the set of the active
workstations during t, � be the average watt of electricity
consumed by one workstation per second,

� �MV S tE �	 � �
 � representing the energy saved during t.
Assuming that node Ni follows Poisson distribution

requiring Ki percentage of resource (0<Ki<100) with the mean
rate �i (intensity of workload) [24], hence the probability
density of resource consumption of Ni can be calculated as

() / !� �	� � i ik
i i i iP X k e k .

As the sum of N independent Poisson distributions still
follows Poisson distribution, at time t, the sum of workload on
all the workstations follows Poisson distribution. Suppose that
the mean workload of the outer layer ring, the secondary ring
and the inner layer ring is 1 1[0,)load k� , 2 1 2[,)load k k� and

3 2[,100]load k� , respectively.

Assuming the percentage of workstations suffering 1load ,
2load , 3load is P1, P2 and P3, respectively, so there are 1V P ,

2V P , and 3V P workstations on the outer ring, the secondary
ring and the inner ring, where:

1

1
0 !

k reP dr
r

��	

�
 ,
2

2
1 !

k r

k

eP dr
r

��	

�
 ,
100

3
2 !

r

k

eP dr
r

	

�

��

P1+P2+P3=1
Before reconfiguration: MS V�

After reconfiguration: The load on the outer ring and the
secondary ring will be partially squeezed or transferred.
Magnet only deals with the members of the outer ring by
squeezing them to the secondary ring, then:

1
1 2 3

2
M

LoadS V P V P V P
Load

� � � , and then

MV S	 = V 	
1

1 2 3
2

LoadV P V P V P
Load

� � = 1
1

2
(1)LoadV P

Load
	

Thus, the saved energy can be given by

� �MV S tE �	 � �
 � = 1
1

2
(1)LoadV P t

Load
�	 � �

 =
1

1

20

(1)
!

k re LoadV dr t
r Load

�� �
	� �

	 � �� �� �
� �

 (2)

We have 1 2load load� , so
E>0.
The above model gives conditions for the Magnet

reconfiguration to reduce the total electricity. A key condition
for performance gains is from k1, � and variance between

1load and 2load . The more k1, the less � and the larger
difference between 1load and 2load , the more energy will be
saved.

B. Quality of Service Modelling
The total execution time of job i in a workload for i=1, 2,...

n, texe(i) is expressed as texe(i)=tcpu(i)+tpage(i)+tque(i), where
tcpu(i), tpage(i), and tque(i) are the CPU service time, the paging
time for page faults, the queuing time waiting in a job queue.

1 1 1
() () ()

n n n

exe cpu page que cpu page que
i i i

T t i t i t i T T T
� � �

� � � � � �� � �
After Magnet reconfiguration, with the equation (1), we

have
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ()� � � � � � � � � �exe cpu page que mig cpu page que

DT T T T T T T T r N
B

The jobs demand identical CPU service on both cluster
environments, so that ˆ

cpu cpuT T� .
For inner job blocking problem, the paging time reduction

(Tpage 	 ˆ
pageT) can be achieved by making jobs with large

memory demands migrate to the nodes of the outer ring which
has enough resources. The inner job blocking problem
happens during the running process of the system, so that

q̂ue queT T� .
In that sense,

17

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

ˆ ˆ ˆ()exe exe page page migT T T T T T
 � 	 � 	 	 ˆ() ()� 	 	 � �page page
DT T r N
B

(3)
For outer job blocking problem, we can conclude that

Tque> q̂ueT as Magnet helps keep the workflow smooth. It is
under the assumption that the total resource can suffice the
jobs, so Tpage= ˆ

pageT . Then we have:

ˆ ˆ ˆ()exe exe que que migT T T T T T
 � 	 � 	 	 ˆ() ()� 	 	 � �que que
DT T r N
B

 (4)

The above model gives conditions for the Magnet
reconfiguration to reduce the total execution time of jobs. The
equation (3) and (4) tell us that the more Magnet reconfigures
the nodes to maintain the stable overlay, the more difference
of Tpage and ˆ

pageT or Tque and q̂ueT will be obtained. However,
the migration times N will increase too, so
T is not always
positive. Certainly, less D (data amount) and less B
(bandwidth) will lead to smaller time cost for migrations.

V. EXPERIMENTAL ENVIRONMENT

A. A Simulated Cluster with VMs
We have simulated a cluster with 64 homogeneous hosts,

each of which has an AMD Athlon 3500+ processor and 1GB
DDR RAM. Storage is accessed via iSCSI protocol from a
NetApp F840 network attached storage server (NAS).
Moreover, each host has an Intel Pro/1000 NIC to transfer the
images of the VMs with 1000 Mbps network bandwidth. We
used Xen 3.10 as the virtual machine monitor on each host in
all cases and the host kernel for XenLinux is a modified
version of Linux 2.6.18.

In the simulation of the cluster, the virtual machine is
configured to use 512MB of RAM, the memory page size is
4KB, page fault service time is 10ms, and the context switch
time is 0.1ms. The remote submission/execution cost, r, is
0.01s for 1000 Mbps network. Each host maintains a
dynamically changed load index file which contains CPU,
memory, and I/O load status information. Magnet periodically
collects the load information among the workstations.

B. Application Workload
In order to effectively conduct Magnet policy with

unknown CPU or memory demands, we need to select
different benchmark programs which are representing
different types of jobs and then we mix them together to
generate the application workload at different submission
rates.

The large scientific and system programs we use are from
[7], which are representative CPU-intensive, memory-
intensive, and/or I/O-active jobs: bit-reversals (bit-r), merge-
sort (m-sort), matrix multiplication (m-m), a trace-driven
simulation (t-sim), partitioning meshes (metis), cell-
projection volume rendering for a sphere (r-sphere), and cell-
projection volume rendering for flow of an aircraft wing (r-
wing). Chen [7] have measured the execution performance of
each program and monitored their memory performance in a

dedicated computing environment. Table I [7] presents the
results of all the seven programs, where the data size is the
number of entries of the input data, the working set gives a
range of the memory space demand during the execution, the
lifetime is the total execution time of each program.

TABLE I
EXECUTION PERFORMANCE AND MEMORY RELATED DATA OF THE SEVEN

APPLICATION PROGRAMS

Programs Data Size Working Set (MB) Lifetime (s)

bit-r 223 64.22 192.26
m-sort 223 64.27 82.76
m-m 1,7002 66.37 4902.29
t-sim 31,061 4.64 41.63
metis 1M-4M 1.37-4.30 124.41
r-sphere 150,000 36.84-39.66 318.64
r-wing 500,000 19.53-23.39 72.28

TABLE II
BENCHMARK RESULT SUMMARY

Performance Power
Target
Load

Actual
Load

ssj_ops Average
Power

100% 99.2% 40,852 336
90% 89.1% 36,677 308
80% 80.7% 33,235 288
70% 69.0% 28,398 263
60% 58.7% 24,157 241
50% 49.8% 20,512 225
40% 39.5% 16,281 207
30% 30.0% 12,337 194
20% 20.0% 8,237 181
10% 10.1% 4,142 170

Active Idle 0 159

SPECpower_ssj2008 [20] shows the relationship between
the workload and the power consumptions (Table II), which
have been formulized by us to calculate the power
consumption under certain target load. The results are applied
as input file.

The application workload consisting of different types of
jobs is randomly submitted to the cluster. Each job has a
header item recording the submission time, the job ID, and its
lifetime measure in the dedicated environment. Following the
header item, the execution activities of the jobs are recorded
in a time interval of every 100ms including CPU cycles, the
memory allocation demand and the details of its VM
migrations including its VM container ID, the source and
destination node, the start and the end time. Thus, the power
consumption can be calculated by the closely monitored CPU
and memory utilization rates with Table II. Meanwhile, the
total execution time, the average slowdown and the time cost
of migrations can be given by the logs.

C. Job Submission Rate Generations
In order to implement our policy across a broad range of

workload intensities, we have conducted our experiment at
different submission rates respectively. Similar to [7], we

18

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

have also generated the job submission rates by the lognormal
function:

2

2
(ln)

21 0() 2
0 0

t

in
e tR t

t

�
�

��

	 	�
� ���
� ��

 (5)

where Rin(t) is the lognormal arrival rate function, t is the time
duration for job submissions in a unit of seconds, and the
values of � and � adjust the degree of the submission rate.
The lognormal job submission rate has been observed in
several practical studies [6][18]. Five application workload
groups with different arrival rates are illustrated in Table III,
where APP-1, APP-2, APP-3, APP-4, APP-5 represents light,
moderate, normal, moderately intensive and highly intensive
submission rate, respectively, Submission Duration is the time
duration for job submissions in a unit of seconds.

TABLE III
JOB SUBMISSION RATES OF THE APPLICATION WORKLOAD

Application
Workload

� � Amount
of Jobs

Submission
Duration (s)

APP-1 3.9 3.9 318 5,499
APP-2 4.1 4.1 450 5,503
APP-3 4.3 4.3 565 5,497
APP-4 4.5 4.5 707 5,510
APP-5 4.6 4.6 993 5,498

D. Migration Cost Estimation
The approach we propose is a continual optimization

approach, where we dynamically make the VMs migrate from
one physical server to another in order to minimize the total
power consumption. The migration process between the two
hosts involved the following stages: pre-migration,
reservation, iterative pre-copy, stop-and-copy, commitment
and activation [21], which requires creation of a checkpoint
on secondary storage and retrieval of the VM image on the
target server, so applications can continue running during the
migration. However, the performance of applications may be
influenced in the transition because of cache misses (hardware
caches are not migrated) and potential application quiescence.
Thus, it is necessary to estimate the time cost for one-time
migration of the VM on which the seven benchmark programs
(Table II) runs and study the parameters that affect the cost
for the further MT/ET (section VI) calculation.

Generally speaking, the time cost for the one-time VM
migration contains the shutdown delay, the migration duration
and the startup delay. As the VM is shut down after being
migrated, the shutdown delay is irrelevant to the execution
time of jobs running on the VM; As the booting of a new VM
is informed in advance, the startup delay is irrelevant to
execution time of jobs running on the VM neither. Therefore,
we disregard the shutdown delay and startup delay of the
512MB VM in our simulation.

We have measured the migration cost of a VM with
512MB of RAM under different background load, as
illustrated in Fig.5. The physical machine is a 3.6GHz
Pentium PC with 1GB main memory and a swap space of

1GB, running Linux version 2.6.9. The background load is
the mix of the seven application programs as mentioned above.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

M
ig

ra
tio

n
C

os
t (

s)

% Background Load on the 512M VM

 Migration Cost

Fig. 5. Migration cost in second of a 512MB VM at a time while under
different background load

We observe that the cost of migration is independent of the
background load and depends only on the VM characteristics.
However, it is based on the premise that the network is idle.
Once the task execution environment is communication
intensive, the bandwidth will be partially occupied and thus
the result is not likely the same.

VI. PERFORMANCE EVALUATION

A. Measured Metrics and Reconfiguration Parameters
To better evaluate the performance of Magnet, we use the

metrics as follows: (1) Power savings over base is defined as
the ratio of the saved electricity to the total electricity during
the entire lifetime of the application workload in percentage
terms. (2) Cluster utilization is defined as the average ratio
between the amounts of consumed memory volume to all
memory space of active workstations (rule out the shut down
nodes) during the entire lifetime of the application workload
in percentage terms. (3) Total execution time is defined as the
sum of the total CPU service time, the total paging time for
page faults, the total queuing time waiting in a job queue and
the total migration time. (4) Job slowdown is defined as the
average ratio between its wall-clock execution time and its
CPU execution time of all nodes. Plus, we also use the metric
(5) MT/ET which is defined as the average ratio between the
cumulative Magnet reconfiguration time and its total
execution time to evaluate the overhead of Magnet.

For our experiment, we refer to the time interval between
reconfigurations as the elapse parameter. Let degrad=80%
and Max(vm)=3 .The workload of each layer ranges from
0~40%, 40%~80%, 80%~100%, respectively, of the base
resource. To guarantee the QoS of the tasks, the number of
the active nodes should not be less than one third of the
number of the shut down nodes and for our experiment, the
threshold is eight. The threshold changes according to the
different QoS requirements of the services.

Finally, towards each metric, we compare the following
policies:

19

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

 APP-1 APP-2 APP-3 APP-4 APP-5

 Expected-Magnet (theoretical)
 Magnet (parctical)
 Combined (DVS+Batching)
 Disk-Intense - DVS
 Disk-Intense - Batching

 APP-1 APP-2 APP-3 APP-4 APP-5

%
 S

av
in

gs
 O

ve
r B

as
e

(a) elapse=250s
Five Application Workload Groups with Increasing Intensities

 Expected-Magnet (theoretical)
 Magnet (parctical)
 Combined (DVS+Batching)
 Disk-Intense - DVS
 Disk-Intense - Batching

%
 S

av
in

gs
 O

ve
r B

as
e

(b) elapse=500s

 APP-1 APP-2 APP-3 APP-4 APP-5
Five Application Workload Groups with Increasing Intensities

%
 S

av
in

gs
 O

ve
r B

as
e

(c) elapse=1000s

 Expected-Magnet (theoretical)
 Magnet (parctical)
 Combined (DVS+Batching)
 Disk-Intense - DVS
 Disk-Intense - Batching

Five Application Workload Groups with Increasing Intensities

Fig. 6. Energy savings for Magnet, Expected-Magnet and current methods (a) elapse = 250 seconds (b) elapse=500 seconds (c) elapse=1000 seconds

� Basic method without any virtual reconfiguration
(Base)

� Current methods (Combined DVS and Batching,
Disk Intense Batching and Disk Intense DVS [16])

� Magnet method with expected results deduced by
mathematical analysis (Expected-Magnet)

� Magnet method with practical results (Magnet)
The Expected-Magnet results can be calculated with

equation (2),
1

1

20

(1)
!

k re LoadV dr t
r Load

E
�� �

	� �
	 � �� �� �

� �

 �
 , where

V =64, 1

2

Load
Load

=(1+0.4)/(1+0.8). Since the selected

application workload tends to be lightweight,
1

0 !

k re dr
r

��	

 is set

to 1, and � is set to 170 watts (average power from
SPECpower_ssj2008).

B. Improving Power Consumption
Fig.6 presents the energy savings (in percentage) for the

Magnet policy over five application workload groups with
an increasingly elapse, 250s, 500s and 1000s. Compared to
Combined (DVS+Batching), Disk-intensive-DVS and Disk-
intensive-Batching methods, Magnet policy exhibits much
more power savings.

From Fig.6(a), it can be seen that Magnet method, under
the reconfiguration elapse of 250s, significantly reduced
power consumptions. The figure shows that power
consumptions are reduced by 67.09%, 72.02%, 67.55%,
72.77% and 74.81% for light, moderate, normal, moderately
intensive and highly intensive job submissions, respectively
(APP-1, 2, 3, 4, 5).

From Fig.6(b) and 6(c), regarding an increasingly Magnet
reconfiguration elapse (500s and 1000s), the power
consumption are reduced by 67.36%, 69.53%, 69.28%,
70.79%, 70.67% and 61.81%, 63.69%, 63.68%, 69.90%,
68.28%. Note that when elapse is 1000s, Magnet performs
worse than that of 250s and 500s in the energy saving. This
suggests that Magnet performs better while its ring-based
overlay is maintained more frequently, for the reason that
the less interval time between Magnet reconfigurations, the
more redundant workstations can switch to shut down state.

Meanwhile, from Fig.6(a), 6(b) and 6(c), we can see that the
less elapse is, the closer the practical Magnet results come to
the theoretical Magnet results.

C. Improving Cluster Utilization
We have also observed the average total consumed

memory volumes during the lifetime of job executions in
each workload group. Fig.7 presents the comparative
average cluster utilization during lifetimes of five workload
groups using Magnet scheme and basic scheme.

0

10

20

30

40

50
%

 A
ve

ra
ge

 C
lu

st
er

 U
til

iz
at

io
n

(ru
le

 o
ut

 s
le

ep
 n

od
es

)
 Magnet
 Base

Five Application Workload Groups with Increasing Elapse

 APP-1,2,3,4,5
 elapse=1000s

 APP-1,2,3,4,5
 elapse=500s

 APP-1,2,3,4,5
 elapse=250s

Fig. 7. The average cluster utilizations of the five application workload
groups scheduled by Magnet scheme and the basic scheme (Base) with
increasing elapses

Compared to the original cluster utilization (10.24%,
14.73%, 18.75%, 20.20% and 21.20% for workload APP-1,
2, 3, 4, 5 respectively), our method can increase the average
cluster utilization significantly. When elapse is 250s, the
average cluster utilization mounts up to 41.89%, 32.04%,
36.57%, 45.17% and 50.61%; when elapse is 500s, it
mounts up to 33.72%, 35.44%, 32.36%, 34.40% and 39.68%;
when elapse is 1000s, it mounts up to 29.59%, 27.05%,
24.42%, 36.10% and 34.97%, respectively.

The increasing of the average cluster utilization is caused
mainly by the decrease number of the idle nodes. By means
of turning off the idle nodes, the overall workload can be
squeezed to a subset of active workstations and thus increase
the throughput. Compared bars of different elapse
parameters (250s, 500s and 1000s), it is clear that less value

20

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

of elapse parameter leads to further utilization of active
workstations.

D. Improving Quality of Service
Fig.8 and Fig.9 present the comparative total execution

time and job slowdown during lifetimes of five workload
groups using Magnet scheme and basic scheme with respect
to an increasing value of elapse parameter, from 250s to
1000s. From Fig.8, it can be seen that when elapse is 250s,
the total execution time is reduced by -37.10%, -17.83%, -
27.66%, 3.47%, and 4.96% for workload APP-1, 2, 3, 4, 5,
respectively; when elapse is 500s, it is reduced by -40.72%,
-21.65%, -5.62%, 0.30%, and 5.10%; when elapse is 1000s,
it is reduced by -50.0%, -10.51%, 15.52%, 3.98%, and -
9.43%.

0

10000

20000

30000

40000

50000

60000

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

 Magnet
 Base

Five Application Workload groups with Increasing Elapse

 APP-1,2,3,4,5
 elapse=1000s

 APP-1,2,3,4,5
 elapse=500s

 APP-1,2,3,4,5
 elapse=250s

Fig. 8. The total execution times of the five application workload groups
scheduled by Magnet scheme and the basic scheme (Base) with increasing
elapses

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 S
lo

w
do

w
n

Five Application workload groups with Increasing Elapse

 APP-1,2,3,4,5
 elapse=1000s

 APP-1,2,3,4,5
 elapse=500s

 APP-1,2,3,4,5
 elapse=250s

 Magnet
 Base

Fig. 9. The average slowdowns of the five application workload groups
scheduled by Magnet scheme and the basic scheme (Base) with increasing
elapses

Note that the result is not positive for light job
submissions, moderate job submissions and normal job
submissions (APP-1, 2, 3). It is not surprising since job
blocking problems happen scarcely under light workload
and thus the time increased by live migrations outweighs the
time reduced by addressing job blocking problems.

Fig.9 shows that Magnet generally decreases the average
job slowdowns of workload APP-1, 2, 3, 4, 5. When elapse
is 250s, we are able to reduce the average job slowdown by -
43.82%, 17.61%, 15.35%, 22.85%, and 38.21%; when

elapse is 500s, it is reduced by -6.74%, 17.39%, 46.93%,
31.84%, and 31.79%; when elapse is 1000s, it is reduced by
2.00%, 32.98%, 52.28%, 48.4%, and 39.62%. Note that the
result is not positive for light job submissions when elapse is
250s and 500s, the reason is more likely that frequent
migrations lead to longer waiting times yet address much
less job blocking problems for lightweight working flow.
Therefore, the time increased by live migrations outweighs
the time reduced by addressing job blocking problems.

E. Overhead Analysis
As undue Magnet reconfiguration will cause noticeable

overhead, it is important to make sure that the QoS is not
sacrificed excessively in favor of power and energy savings.

Finally, we test the MT/ET (Magnet reconfiguration
time/Total execution time) and the average cumulative
migration times during the entire lifetimes of the five
different working flows (see Fig.10) while increasing the
interval between reconfigurations (elapse) gradually. MT
can be estimated as the product of the migration cost in
second and the total times of migrations. It shows that the
increasing of elapse leads to the decreasing of MT/ET,
indicating that although smaller value of elapse parameter
achieves better performance on energy saving, it is at the
expense of more overhead on the total execution time.
However, considering the benefits (more energy savings and
cluster utilization) carried by high frequency (see Fig.6,
Fig.7), it seems that the most optimal approach is a balanced
one that an appropriate value of elapse parameter should be
chosen.

8

9

10

11

12

13

 MT/ET
 Migration Times

elapse = 250s 500s 750s 1000s 1250s 1500s
 Five Application Workload Groups with Increasing Elapse

%
 M

T/
ET

 (
M

ag
ne

t t
im

e
/ t

ot
al

 e
xe

cu
tio

n
tim

e)

90

100

110

120

130

140

A
verage C

um
ulative

M
igration Tim

es

Fig. 10. MT/ET in percentage terms and the average cumulative migration
times during the entire lifetimes for APP-1, 2,3,4,5 with increasing elapses

VII. CONCLUSION

This paper aims at providing effective strategies to reduce
the power consumption and meanwhile influence little on
the performance. The contributions can be described as
follows: 1) our scheme addresses the limitations caused by
heterogeneous computing platforms; 2) an adaptive Magnet
approach is proposed to obtain significant energy savings by
taking the advantage of live migration of VMs; 3) through
the theoretical analysis, we propose the squeeze and release
measures to guide the live migrations aiming at the minimal
overhead. Experimental results show that the method have
positive impact on the average job slowdown and minor

21

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

negative impact on the total execution time. Particularly, the
overhead is adjustable by changing the parameter elapse.

In the future, we will try to optimize the power reduction
effect by exploring more intelligent schemes according to
the characteristics of jobs such as CPU intensive, memory
intensive or I/O intensive and the like. We will also analyse
the strategies of the migration of multiple VMs, e.g. parallel
migration and serial migration, to further reduce the impact
of VM migration on the system performance. We are
hopeful that our theoretical work will be complemented by
empirical research that can shed light on the practicality of
our provable novel scheduler.

ACKNOWLEDGMENT

This work is supported by National 973 Basic Research
Program of China under grant No.2007CB310900, Hubei
Natural Science Foundation under grant No.2007ABD009,
the Ministry of Education and Intel Joint Information
Technology special research fund under grant No.MOE-
INTEL-08-06, the research fund supported by HP Labs
China.

REFERENCES
[1] APC-American Power Conversion, Determining Total Cost of

Ownership for Data Center and Network Room Infrastructure.
ftp://www.apcmedia.com/salestools/CMRP-5T9PQG_R2_EN.pdf,
December 2003.

[2] A. Acharya and S. Setia, “Availability and Utility of Idle Memory in
Workstation Clusters”, Proc. ACM SIGMETRICS Conf. Measuring
and Modeling of Computer Systems, May 1999, pp.35-46.

[3] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A Dynamic
Voltage Scaled Microprocessor System”, Proc. IEEE Int’l Solid-State
Circuits Conf., 2000, pp.294-295.

[4] J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle,
“Managing Energy and Server Resources in Hosting Centers”,
Proceedings of the 18th Symposium on Operating Systems Principles,
October 2001.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.
Pratt, and A.Warfield, “Live Migration of Virtual Machines”,
Proceedings of 2nd Symposium on Networked Systems Design and
Implementation (NSDI’05), USENIX, 2005.

[6] S. Chen, L. Xiao, and X. Zhang, “Adaptive and virtual
reconfigurations for effective dynamic job scheduling in cluster
systems”, Proceedings of the 22nd International Conference on Dist.
Comp. Systems, March 2002.

[7] S. Chen, L. Xiao, and X. Zhang, “Dynamic load sharing with
unknown memory demands in clusters”, Proceedings of the 21st
International Conference on Distributed Computing Systems
(ICDCS’2001), April 2001, pp.109-118.

[8] G. Ciardo, J. Muppala, and K. S. Trivedi, “SPNP: stochastic Petri net
package”, Proc Petri NETS and Performance Models, Kyoto, Japan,
1989, pp.142-151.

[9] M. Hopkins, “The Onsite Energy Generation Option”, The Data
Center Journal,
http://datacenterjournal.com/News/Article.asp?article_id=66,
February 2004.

[10] W. Huang, Q. Gao, J. Liu, and D. K. Panda, “High Performance
Virtual Machine Migration with RDMA over Modern Interconnects”,
Proceedings of IEEE International Conference on Cluster Computing
(Cluster'07), September 2007.

[11] S. Jiang and X. Zhang, “TPF: a system thrashing protection facility in
Linux”, Software: Practice and Experience, Vol.32, No.3, 2002,
pp.295-318.

[12] E. J. Kim, K. H. Yum, G. M. Link, N. Vijaykrishnan, M. Kandemir,
M. J. Irwin, M. Yousif, and C. R. Das, “Energy optimization
techniques in cluster interconnects”, Proceedings of ISLPED, ACM,
2003, pp.459-464.

[13] E. J. Kim, K. H. Yum, G. M. Link, N. Vijaykrishnan, M. Kandemir,
M. J. Irwin, M. Yousif and C. R. Das, “A holistic approach to
designing energy-efficient cluster interconnects,” IEEE Trans.
Computers, Vol.54, No.6, 2005.

[14] D. Lifka, “The ANL/IBM SP scheduling system”, Job Scheduling
Strategies for Parallel Processing, Lect. Notes Comput. Sci., Vol.949.
Springer-Verlag, 1995, pp.295-303.

[15] E. N. Elnozahy, M. Kistler, and R. Rajamony, “Energy-Efficient
Server Clusters”, Proceedings of the 2nd Workshop on Power-Aware
Computing Systems, February 2002.

[16] E. N. Elnozahy, M. Kistler, and R. Rajamony, “Energy Conservation
Policies for Web Servers”, Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems, March 2003.

[17] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, “Dynamic
Cluster Reconfiguration for Power and Performance”, Compilers and
Operating Systems for Low Power, Kluwer Academic Publishers,
August 2003.

[18] M. S. Squillante, D. D. Yao, and L. Zhang, “Analysis of job arrival
patterns and parallel scheduling performance”, Performance
Evaluation, Vol.36-37, 1999, pp.137-163.

[19] E. Shmueli and D. G. Feitelson, “Backfilling with look ahead to
optimize the performance of parallel job scheduling”, Job Scheduling
Strategies for Parallel Processing, Lect. Notes Comput. Sci.,
Vol.2862, Springer-Verlag, 2003, pp.228-251.

[20] Standard Performance Evaluation Corporation, http://www.spec.org.
[21] Y. Wiseman and D. G. Feitelson, “Paired gang scheduling”, IEEE

Trans. Parallel & Distributed Sys., Vol.14, No.6, June 2003, pp.581-
592.

[22] L. Xiao, X. Zhang, and S. A. Kubricht, “Incorporating job migration
and network RAM to share cluster memory resources”, Proceedings
of the 9th IEEE International Symposium on High Performance
Distributed Computing (HPDC-9), August 2000, pp.71-78.

[23] M. Zhao and R. J. Figueiredo, “Experimental Study of Virtual
Machine Migration in Support of Reservation of Cluster Resources”,
Proceedings of 2nd International Workshop on Virtualization
Technologies in Distributed Computing (VTDC), November 2007.

[24] X. Zhang, Y. Qu, and L. Xiao, “Improving distributed workload
performance by sharing both CPU and memory resources”,
Proceedings of 20th International Conference on Distributed
Computing Systems (ICDCS’00), April 2000, pp.233-241.

22

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 15, 2008 at 03:43 from IEEE Xplore. Restrictions apply.

