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Abstract—The concept of green computing has attracted much 
attention recently in cluster computing. However, previous local 
approaches focused on saving the energy cost of the components 
in a single workstation without a global vision on the whole 
cluster, so it achieved undesirable power reduction effect. Other 
cluster-wide energy saving techniques could only be applied to 
homogeneous workstations and specific applications. This paper 
describes the design and implementation of a novel approach 
that uses live migration of virtual machines to transfer load 
among the nodes on a multilayer ring-based overlay. This 
scheme can reduce the power consumption greatly by regarding 
all the cluster nodes as a whole. Plus, it can be applied to both 
the homogeneous and heterogeneous servers. Experimental 
measurements show that the new method can reduce the power 
consumption by 74.8% over base at most with certain adjustably 
acceptable overhead. The effectiveness and performance insights 
are also analytically verified. 

I. INTRODUCTION

Green computing has been a hot topic in cluster computing 
for many years. Anecdotal evidence from data center 
operators [1][9] indicates that a significant fraction of the 
operation cost of these centers is due to power consumption 
and cooling. In addition, most power-generation technologies 
(such as nuclear and coal-based generation) are harmful to the 
environment. 

Previous work on energy savings of the cluster can be 
divided into two groups, local techniques and cluster-wide 
techniques. Local techniques have focused on reducing power 
of the single workstation, by reducing the clock frequency, 
the supplied voltage or by saving interconnect components, 
including switches, network interface cards (NICs), and links 
[3][13]. However, it is a pity that most of them focus on the 
improvement of single node without a global vision of the 
whole system. On the contrary, cluster-wide techniques 
involve multiple servers. The basic idea of cluster-wide 
techniques is to aggregate the system load and then to 
determine the minimal set of servers which could handle the 
load. The energy savings can be obtained by turning off the 
redundant nodes. However, the cluster-wide approaches: 1) 
can only be applied to specific applications (e.g. Web service) 
in that its front-end has provided a good load balancing 
algorithm to redirect connection states of the back-end nodes; 
2) focus solely on homogeneous systems yet real-life clusters 

are almost invariably heterogeneous; 3) fail to deal with run-
time reallocation of load. 

Significant progresses have been made on both sides, 
including local techniques and cluster-wide techniques. 
However, it seems to reach the bottleneck already. 
Fortunately, the emergence of the virtual machine (VM) gives 
us a new horizon and thus we can look upon the problem at a 
different angle. A virtual machine was originally defined by 
Popek and Goldberg as an efficient, isolated duplicate of a 
real machine. The VM used in our work is system VM 
(sometimes called hardware VMs), which allows the 
multiplexing of the underlying physical machine between 
different VMs, each running its own operating system. 

The virtual machine exhibits the unique advantages as 
follows: first, it allows the separation of hardware and 
software and thus addresses the problem caused by 
heterogeneous computing platforms; second, live migration 
[5][10] of VMs allows the workload of a node to transfer to 
another node. 

That is not to say, however, that we can make virtual 
machines randomly migrate among all nodes. In fact, the 
potential overhead caused by live migrations of VMs can not 
be ignored, which may have serious negative effect on cluster 
utilization, throughput and QoS issues. Therefore the 
challenge is how to design a migration strategy to effectively 
implement green computing and meanwhile influence little on 
the performance of the cluster. 

Our green computing algorithm tends to turn off the 
redundant nodes to save the energy, provided that the system 
performance is guaranteed by the left nodes. The reason is 
that each node in our cluster consumes approximately 160 
watts when idle and 280 watts when all resources are 
stretched to the maximum. It means that: 1) there is a 
difference in power consumption between an idle node and a 
fully utilized node; 2) the penalty for keeping a node powered 
on is high even if it is idle. Thus, turning a node off always 
saves power, even if its load has to be transferred to one or 
more other nodes. 

We propose a policy, called Magnet, to implement green 
computing in the cluster with VMs. Magnet keeps track of all 
active nodes and organizes them into concentric, non-
overlapping rings in terms of gradually decreasing workload, 
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so it is easy to squeeze the existing running jobs which are 
widely distributed among lightweight nodes and then deliver 
them to a subset of current active nodes and it is also easy to 
release the overweighted nodes, thereby 1) turning off the 
redundant nodes to save energy when the system is in non-
intensive computing state; 2) transferring violating jobs or big 
jobs to the free nodes when the system is in intensive 
computing state to obtain performance gains. 

By conducting simulations from generated application 
workload with different intensities in the cluster with VMs, 
we show that our method can effectively reduce the power 
consumption by 67.1%, 72.0%, 69.3%, 72.8% and 74.8% at 
most for five application workload groups (light, moderate, 
normal, moderately intensive, and highly intensive job 
submission rates, respectively). Our method can increase the 
cluster utilization to 41.9%, 35.44%, 36.57%, 45.17% and 
50.61%, respectively. Our method can also increase the 
quality-of-service for the heavyweight workload group. Plus, 
we show that the total migration overhead is acceptable and 
adjustable. The effectiveness and performance insights are 
also demonstrated through a theoretical analysis. 

The rest of this paper is organized as follows. Section II 
discusses the related work. The Magnet policy is described in 
Section III. Section IV demonstrates the effectiveness of 
Magnet through theoretical analysis. Section V describes our 
simulation methodology. Section VI presents the performance 
evaluation. We conclude this work in Section VII. 

II. RELATED WORKS

We divide previous work into two groups: local and 
cluster-wide technique. Local techniques are implemented 
independently by each server, whereas cluster-wide 
techniques involve multiple servers. 

A. Local Techniques 
Most of the local techniques aiming at reducing power 

consumption of a computing cluster focus on the 
improvement of the single node, by reducing the clock 
frequency, by reducing the supplied voltage or by saving 
interconnect components in computer. For instance, the DVS 
system dynamically reduces processors’ supply voltages while 
guaranteeing proper operations. The DLS [12] project makes 
use of an appropriate adaptive routing algorithm to shut down 
links in a judicious way. 

Elnozahy [16] proposed a new mechanism called request 
batching, in which the incoming requests are accumulated in 
memory by the network interface processor while the host 
processor of the server is kept in a low-power state. The host 
processor is awakened when an accumulated request has been 
pending for longer than a batching timeout. 

However, such schemes do not achieve the maximal 
optimization as experimental results (SPECpower_ssj2008 
[20]) confirm that the incremental energy savings from 
slowing down all CPUs (and scaling down their voltage) are 
far less than those from turning a machine off to reduce farm 
capacity by the same amount. Plus, request batching trades off 
system responsiveness to save energy, so it is not appropriate 

to trade or e-commerce server in that a very slow server will 
drive away customers. 

B. Cluster-wide  Techniques 
Pinheiro [17] and Chase [4] concurrently proposed similar 

strategies for managing energy in the context of front-end 
server clusters. The basic idea of such approaches is to 
leverage the aggregate system load and then determine the 
minimal set of servers which could handle the load. Finally, 
energy savings can be obtained by turning some machines on 
or off. Elnozahy et al. [15] evaluated different combinations 
of cluster reconfiguration and dynamic voltage scaling for 
clusters in which the base power is relatively low, including 
Independent Voltage Scaling (IVS), Coordinated Voltage 
Scaling (CVS), Vary-On Vary-Off (VOVO), Combined Policy
(VOVO-IVS), and Coordinated Policy (VOVO-CVS). 

Such approaches have drawbacks including that (1) it is 
only applicable to specific applications (e.g. Web service) in 
which the front-end has already provided a good load 
balancing algorithm and the connection states of the back-end 
node can be migrated across different nodes. In that sense, the 
given load could be concentrated on a subset of all nodes in a 
balance way, yet the strategy fails on most application servers; 
(2) they focus solely on homogeneous systems. However, 
real-life clusters are almost invariably heterogeneous in terms 
of their operation systems, the performance, capacity and 
power consumption of their hardware components; (3) most 
of these approaches fail to deal with run-time reallocation of 
the load. 

III. MAGNET DESIGN

To achieve good performance in the cluster, Magnet faces 
the following challenges: (1) how to design a framework to 
run in the green computing way and meanwhile to influence 
little on the performance; (2) how to decrease the overhead 
caused by frequent live migrations of VMs; (3) how to 
maintain the service continuity and stability (decreasing the 
impact of interruption caused by the crash down of unknown 
node). In this section, we discuss the situations which lead to 
bad performance to the cluster computing first and then 
introduce the design of Magnet. 

Generally the performance of the cluster, such as 
throughput, average job slowdown and QoS issues are likely 
to be influenced by two problems, called as inner job blocking 
problem and outer job blocking problem. The former is 
caused by certain violating jobs with seriously fluctuant 
resource requirements which lead to node thrashing. Previous 
studies [22][24] focused on balancing the number of 
jobs/tasks among the workstations, but the CPU or memory 
requirement should be informed in advance. The latter 
happens due to the coming of a big job with remarkable 
working set requirement which can not be satisfied by the 
current active workstations, resulting in the blocked working 
flow of rest of the jobs. Towards outer job blocking problem,
existing schemes like backfilling scheduling [19] and gang 
scheduling must consider the size of node needed by a job or 
estimated runtimes [21]. 
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The analysis above indicates us that if only we could 
conserve the energy globally and meanwhile flexibly address 
the job blocking problems, we can attain a win-win situation, 
saving energy and improving performance. 

A. Overview 
As illustrated in Fig. 1, the basic workflow of Magnet is as 

follows. First, the multilayer ring-based overlay is constructed 
and new jobs arrive continuously and are submitted to the 
service center. Second, a detector is employed to supervise the 
evil states of the computing cluster which can be categorized 
into four kinds: (1) saving energy state caused by the arrived 
lightweight working flow which persists for a long time; (2) 
inner job blocking state caused by node thrashing; (3) outer 
job blocking state caused by violating or big jobs; (4) fault 
tolerance state caused by certain nodes crashing down due to 
physical or software malfunctions; Third, a controller is 
employed to choose corresponding strategies to response the 
evil states. 

Detector

Controller

Magnet Ring

“Evil”
Signal 

Strategies

Front End Processor (Job Submission)

Service Center

Fig. 1.  The system diagram of Magnet 

B. Multilayer Ring Based Overlay 
Let degrad be the maximum acceptable weight a node 

could suffer without performance degradation. degrad can be 
given by the user expectation, the QoS requirement of the 
application and the like. Under different situations, degrad is 
different and we can not set a constant value. Let Max(vm) be 
the maximum number of VM containers a node could have. 
Max(vm) is also uncertain as it changes in accordance with 
different configurations of the physical machine. Let violate
be the weight a node could suffer which leads to unacceptable 
performance degradation. For example, let violate be 89%, 
then the node which consumes the resource ratio exceeding 
89% will be regarded as violating node and should be released. 

In the first operation of Magnet, each node boots up one 
VM and new jobs are submitted to these VMs. Then every 
VM, with a unique ID, consumes resources of the physical 
nodes at different rates (from 0% to 100%). Magnet keeps 
track of all active nodes, and organizes them into concentric, 
non-overlapping rings in accordance with decreasing resource 
consumed ratios. Magnet maintains 3-layer rings, the 
members of each ring suffer the workload that span the range 
[0, degrad/2), [degrad/2, degrad), [degrad, 100%). Magnet 
deals with the members of the outer ring by squeezing them to 

the secondary ring. VMs on the secondary ring are not 
recommended to merge together as the sum of their resource 
consumption rates exceed the performance upper bound 
(degrad).

In the second step, the leader takes the responsibility of 
maintaining a stable Magnet ring-based overlay for the reason 
that the memory and CPU demand of jobs may change 
dynamically and the execution time may not know in advance. 
The leader is the node who suffers the maximum load among 
its ring members of the same layer. 

Within each ring, the leader periodically updates his logical 
links with his members. At regular intervals, the leader checks 
whether the workload of his members is less than the 
threshold of his layer. If not, he removes the node which does 
not belong to his layer to the alternative appropriate layer. 

Finally, Magnet system addresses the resilience issue of 
Magnet ring-based overlay through the introduction of co-
leaders. Each leader recruits the co-leader at the time being 
elected.

To detect unannounced departures, Magnet relies on 
heartbeats exchanged among leaders and their crews. 
Unreported nodes are given a fixed time interval before being 
considered to be dead. If the failure node happens to be the 
leader, the members of the leader’s ring regards co-leader as 
the replacement leader. In that sense, co-leader improves the 
resilience of the Magnet ring-based overlay by avoiding 
dependencies on single nodes. 

C. Squeeze Measure and Release Measure 
In this section, we analyze the overhead caused by the 

migrations of VMs and then introduce the squeeze and release
migration measures which decrease the overhead to the 
maximum extent. 

VM migration is the key in the energy saving method of 
aggregating and redistributing the system load in the cluster 
consisting of VMs. The most optimal effect can be achieved 
by (1) calculating the overall load of the system and being 
divided by the capacity of a single physical machine to get the 
number of nodes which can handle the overall load; (2) 
transferring the scattered load to the calculated minimal set of 
servers by a sequence of live migrations. The challenge is 
how to obtain the optimal effect meanwhile decrease the 
overhead caused by VM migrations. 

Overhead. Previous work [5][23] have conducted a series 
of experiments to measure the overhead for migrating a 
number of running VMs from one physical host to another. 
The results show that, the overhead of VM migrations is 
reflected in two aspects, the time cost for all the migrations 
and the throughput loss of the competitive VMs on the target 
node. 

Let r be a fixed remote execution cost in second; B be the 
bandwidth; D be the amount of data in bits (OS image) to be 
transferred in the job migration; N be the times of all VM 
migrations. The time cost for all the migrations can be given 
by: 
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( ( )) ( )� � �
DOverhead Time s r N
B

   (1) 

Second, the throughput loss is caused by the VMs’ 
competition for the shared cache although the VMs have been 
already isolated in terms of CPU and memory. It has been 
shown that page faults frequently occur in some heavily 
loaded nodes but a few memory accesses or no memory 
accesses are requested on some lightly loaded nodes or idle 
nodes [2]. Therefore, in order to decrease the total throughput 
loss, it is recommended to merge lightly loaded VMs together 
on the physical host and avoid transferring one heavily loaded 
VM to the host inside which there is another heavily loaded 
VM running. 

Squeeze Measure. The above analysis gives us the 
directions for minimizing the overhead: the less D, N, and 
probability of allocating heavily loaded VMs together, the less 
overhead will be achieved. While in energy saving state or 
outer job blocking state, Magnet will take squeeze measure to 
migrate a sequence of VMs on the outer layer ring, which is 
similar to the process of constructing an optimal tree. The 
difference lies in that the process will stop if the sum of load 
of VMs on a physical host exceeds the upper bound load of 
their layer (degrad/2). Fig.2(a) presents the detail squeeze
steps. Let the number inside the VM be the amount of load in 
terms of a percentage and 33% be the upper bound of the 
cluster P1 consisting of outer layer ring nodes (degrad=66%).
The physical host which contains 4 VMs (4%, 6%, 10%, and 
26%) will be removed to the secondary layer ring. Each step 
of squeeze measure merges two lightest loaded VMs together 
and thus guarantees the minimal D and minimal probability of 
the mergence of heavily loaded VMs. Moreover, the process 
of constructing the optimal tree leads a relatively smaller 
value of N.

Fig. 2.  (a) The squeeze steps in detail    (b) The release steps in detail

Release Measure. While in inner job blocking state,
Magnet will take release measure to the VM whose host 
machine consumes the resource ratio exceeding the upper 
bound (violate). Release measure is the inverse process of 
Squeeze measure and the disjointed violating VMs will be 
transferred to the free nodes on the lightly loaded nodes of the 
outer layer ring. Fig.2(b) presents the detail release steps, in 
which the VM (26%) mutates to be a violating VM (66%) due 
to some unknown reasons, e.g. its jobs’ fluctuant demand of a 
large memory space. Consequently, the physical machine of 

the VM (66%) becomes a violating node (suppose violate is 
80%) and then it is released.

D. The Rationale of Our Solutions 
In this section, we separately discuss our solutions to the 

four common evil system states and the rationale behinds 
them. 

In saving energy state, Magnet virtually reconfigures the 
cluster system to further utilize resources by taking squeeze
measure on outer layer nodes (see Fig.3). At next step, 
Magnet switches the high-power state of the released nodes to 
the low-power state. You may question why we do not submit 
these lightweight jobs to certain nodes from the very 
beginning and thus save trouble and overhead of all these 
migrations. Actually, a situation is ignored, that jobs on 
cluster may change dynamically, heavily loaded nodes could 
become lightly loaded when its jobs are completed or 
terminated that we do not know in advance. Therefore, saving 
energy is not so much a predetermined strategy as a feedback-
driven process. 

Fig. 3.  Magnet reconfiguration in saving energy state 

In inner job blocking state, it is necessary to make the 
violating job migrate to the node which can provide enough 
memory space or CPU resource. More importantly, 
experiments have shown that a large job is likely to be a large 
job with long lifetime [6][11]. In the sense, the candidate node 
should not be a heavyweight node as it is likely to be the same 
for a long time and thus causes another inner job blocking 
state.

Magnet takes release measure on the violating VMs. 
Magnet maintains a multilayer ring-based overlay among 
which the lightweight workload nodes are organized on the 
outer layer ring, so it is easy to find the candidate nodes by 
requesting the corresponding outer layer leader for the list of 
his members and then choosing one from them, as illustrated 
in Fig.4. 

In outer job blocking state, a new job is coming, which 
demands large memory space and CPU resource. 
Unfortunately, the available space of each individual node is 
not large enough to serve it and thus the following 
submissions to the workstation will be blocked. However, if 
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the idle memory spaces of all individual nodes can be 
accumulated, then the sum may fit the large job. Magnet takes 
squeeze measure on outer layer nodes to release the resources. 

Fig. 4. Magnet reconfiguration in inner job blocking state 

More importantly, Magnet can provide both the centralized 
and distributed job scheduling approaches in the cluster. 
Previous FEP emphasizes a lot on the characteristics of jobs 
by adjusting its scheduling strategies in accordance with job 
types, such as rigid jobs and moldable jobs. Undoubtedly, the 
centralized management has many advantages. However, 
when the scalability is restricted or high fault tolerance is 
required, distributed management is an alternative scheme. 
Magnet can transfer the responsibilities of the FEP to the 
workstations in cluster, making the workstations themselves 
decide which node to run certain task. In other words, the 
computing cluster acts like a black box which is transparent to 
the user and the FEP. 

IV. ANALYSIS

A. Energy Saving Modelling 
Let V be the set of all workstations, t be the given interval 

for Magnet reconfiguration, SM(t)�V be the set of the active 
workstations during t, � be the average watt of electricity 
consumed by one workstation per second, 

� �MV S tE �	 � �
 �  representing the energy saved during t. 
Assuming that node Ni follows Poisson distribution 

requiring Ki percentage of resource (0<Ki<100) with the mean 
rate �i (intensity of workload) [24], hence the probability 
density of resource consumption of Ni can be calculated as 

( ) / !� �	� � i ik
i i i iP X k e k .

As the sum of N independent Poisson distributions still 
follows Poisson distribution, at time t, the sum of workload on 
all the workstations follows Poisson distribution. Suppose that 
the mean workload of the outer layer ring, the secondary ring 
and the inner layer ring is 1 1[0, )load k� , 2 1 2[ , )load k k�  and 

3 2[ ,100]load k� , respectively. 

Assuming the percentage of workstations suffering 1load ,
2load , 3load  is P1, P2 and P3, respectively, so there are 1V P ,

2V P , and 3V P  workstations on the outer ring, the secondary 
ring and the inner ring, where: 

1

1
0 !

k reP dr
r

��	

� 
 ,
2

2
1 !

k r

k

eP dr
r

��	

� 
 ,
100

3
2 !

r

k

eP dr
r

	

� 

��

P1+P2+P3=1 
Before reconfiguration: MS V�

After reconfiguration: The load on the outer ring and the 
secondary ring will be partially squeezed or transferred.
Magnet only deals with the members of the outer ring by 
squeezing them to the secondary ring, then: 

1
1 2 3

2
M

LoadS V P V P V P
Load

� � � , and then 

MV S	 = V 	
1

1 2 3
2

LoadV P V P V P
Load

� � = 1
1

2
(1 )LoadV P

Load
	

Thus, the saved energy can be given by 

� �MV S tE �	 � �
 � = 1
1

2
(1 )LoadV P t

Load
�	 � �

                                =
1

1

20

(1 )
!

k re LoadV dr t
r Load

�� �
	� �

	 � �� �� �
� �

  (2) 

We have 1 2load load� , so 
E>0. 
The above model gives conditions for the Magnet 

reconfiguration to reduce the total electricity. A key condition 
for performance gains is from k1, � and variance between 

1load  and 2load . The more k1, the less � and the larger 
difference between 1load  and 2load , the more energy will be 
saved. 

B. Quality of Service Modelling 
The total execution time of job i in a workload for i=1, 2,... 

n, texe(i) is expressed as texe(i)=tcpu(i)+tpage(i)+tque(i), where 
tcpu(i), tpage(i), and tque(i) are the CPU service time, the paging 
time for page faults, the queuing time waiting in a job queue. 

1 1 1
( ) ( ) ( )

n n n

exe cpu page que cpu page que
i i i

T t i t i t i T T T
� � �

� � � � � �� � �
After Magnet reconfiguration, with the equation (1), we 

have 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )� � � � � � � � � �exe cpu page que mig cpu page que

DT T T T T T T T r N
B

The jobs demand identical CPU service on both cluster 
environments, so that ˆ

cpu cpuT T� .
For inner job blocking problem, the paging time reduction 

(Tpage 	 ˆ
pageT ) can be achieved by making jobs with large 

memory demands migrate to the nodes of the outer ring which 
has enough resources. The inner job blocking problem 
happens during the running process of the system, so that 

q̂ue queT T� .
In that sense, 
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ˆ ˆ ˆ( )exe exe page page migT T T T T T
 � 	 � 	 	 ˆ( ) ( )� 	 	 � �page page
DT T r N
B

(3) 
For outer job blocking problem, we can conclude that 

Tque> q̂ueT  as Magnet helps keep the workflow smooth. It is 
under the assumption that the total resource can suffice the 
jobs, so Tpage= ˆ

pageT . Then we have: 

ˆ ˆ ˆ( )exe exe que que migT T T T T T
 � 	 � 	 	 ˆ( ) ( )� 	 	 � �que que
DT T r N
B

   (4) 

The above model gives conditions for the Magnet 
reconfiguration to reduce the total execution time of jobs. The 
equation (3) and (4) tell us that the more Magnet reconfigures 
the nodes to maintain the stable overlay, the more difference 
of Tpage and ˆ

pageT  or Tque and q̂ueT  will be obtained. However, 
the migration times N will increase too, so 
T is not always 
positive. Certainly, less D (data amount) and less B
(bandwidth) will lead to smaller time cost for migrations. 

V. EXPERIMENTAL ENVIRONMENT

A. A Simulated Cluster with VMs 
We have simulated a cluster with 64 homogeneous hosts, 

each of which has an AMD Athlon 3500+ processor and 1GB 
DDR RAM. Storage is accessed via iSCSI protocol from a 
NetApp F840 network attached storage server (NAS). 
Moreover, each host has an Intel Pro/1000 NIC to transfer the 
images of the VMs with 1000 Mbps network bandwidth. We 
used Xen 3.10 as the virtual machine monitor on each host in 
all cases and the host kernel for XenLinux is a modified 
version of Linux 2.6.18. 

In the simulation of the cluster, the virtual machine is 
configured to use 512MB of RAM, the memory page size is 
4KB, page fault service time is 10ms, and the context switch 
time is 0.1ms. The remote submission/execution cost, r, is 
0.01s for 1000 Mbps network. Each host maintains a 
dynamically changed load index file which contains CPU, 
memory, and I/O load status information. Magnet periodically 
collects the load information among the workstations. 

B. Application Workload 
In order to effectively conduct Magnet policy with 

unknown CPU or memory demands, we need to select 
different benchmark programs which are representing 
different types of jobs and then we mix them together to 
generate the application workload at different submission 
rates.

The large scientific and system programs we use are from 
[7], which are representative CPU-intensive, memory-
intensive, and/or I/O-active jobs: bit-reversals (bit-r), merge-
sort (m-sort), matrix multiplication (m-m), a trace-driven 
simulation (t-sim), partitioning meshes (metis), cell-
projection volume rendering  for a sphere (r-sphere), and cell-
projection volume rendering for flow of an aircraft wing (r-
wing). Chen [7] have measured the execution performance of 
each program and monitored their memory performance in a 

dedicated computing environment. Table I [7] presents the 
results of all the seven programs, where the data size is the 
number of entries of the input data, the working set gives a 
range of the memory space demand during the execution, the 
lifetime is the total execution time of each program. 

TABLE I 
EXECUTION PERFORMANCE AND MEMORY RELATED DATA OF THE SEVEN

APPLICATION PROGRAMS

Programs Data Size Working Set (MB) Lifetime (s)

bit-r 223 64.22 192.26 
m-sort 223 64.27 82.76 
m-m 1,7002 66.37 4902.29 
t-sim 31,061 4.64 41.63 
metis 1M-4M 1.37-4.30 124.41 
r-sphere 150,000 36.84-39.66 318.64 
r-wing 500,000 19.53-23.39 72.28 

TABLE II 
BENCHMARK RESULT SUMMARY

Performance Power 
Target
Load

Actual
Load 

ssj_ops Average 
Power 

100% 99.2% 40,852 336 
90% 89.1% 36,677 308 
80% 80.7% 33,235 288 
70% 69.0% 28,398 263 
60% 58.7% 24,157 241 
50% 49.8% 20,512 225 
40% 39.5% 16,281 207 
30% 30.0% 12,337 194 
20% 20.0% 8,237 181 
10% 10.1% 4,142 170 

Active Idle 0 159 

SPECpower_ssj2008 [20] shows the relationship between 
the workload and the power consumptions (Table II), which 
have been formulized by us to calculate the power 
consumption under certain target load. The results are applied 
as input file. 

The application workload consisting of different types of 
jobs is randomly submitted to the cluster. Each job has a 
header item recording the submission time, the job ID, and its 
lifetime measure in the dedicated environment. Following the 
header item, the execution activities of the jobs are recorded 
in a time interval of every 100ms including CPU cycles, the 
memory allocation demand and the details of its VM 
migrations including its VM container ID, the source and 
destination node, the start and the end time. Thus, the power 
consumption can be calculated by the closely monitored CPU 
and memory utilization rates with Table II. Meanwhile, the 
total execution time, the average slowdown and the time cost 
of migrations can be given by the logs.

C. Job Submission Rate Generations 
In order to implement our policy across a broad range of 

workload intensities, we have conducted our experiment at 
different submission rates respectively. Similar to [7], we 
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have also generated the job submission rates by the lognormal 
function: 

2
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e tR t
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��
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 (5) 

where Rin(t) is the lognormal arrival rate function, t is the time 
duration for job submissions in a unit of seconds, and the 
values of � and � adjust the degree of the submission rate. 
The lognormal job submission rate has been observed in 
several practical studies [6][18]. Five application workload 
groups with different arrival rates are illustrated in Table III,
where APP-1, APP-2, APP-3, APP-4, APP-5 represents light, 
moderate, normal, moderately intensive and highly intensive 
submission rate, respectively, Submission Duration is the time 
duration for job submissions in a unit of seconds.

TABLE III 
JOB SUBMISSION RATES OF THE APPLICATION WORKLOAD

Application 
Workload

� � Amount
of Jobs 

Submission 
Duration (s)

APP-1 3.9 3.9 318 5,499 
APP-2 4.1 4.1 450 5,503 
APP-3 4.3 4.3 565 5,497 
APP-4 4.5 4.5 707 5,510 
APP-5 4.6 4.6 993 5,498 

D. Migration Cost Estimation 
The approach we propose is a continual optimization 

approach, where we dynamically make the VMs migrate from 
one physical server to another in order to minimize the total 
power consumption. The migration process between the two 
hosts involved the following stages: pre-migration, 
reservation, iterative pre-copy, stop-and-copy, commitment 
and activation [21], which requires creation of a checkpoint 
on secondary storage and retrieval of the VM image on the 
target server, so applications can continue running during the 
migration. However, the performance of applications may be 
influenced in the transition because of cache misses (hardware 
caches are not migrated) and potential application quiescence. 
Thus, it is necessary to estimate the time cost for one-time 
migration of the VM on which the seven benchmark programs 
(Table II) runs and study the parameters that affect the cost 
for the further MT/ET (section VI) calculation. 

Generally speaking, the time cost for the one-time VM 
migration contains the shutdown delay, the migration duration 
and the startup delay. As the VM is shut down after being 
migrated, the shutdown delay is irrelevant to the execution 
time of jobs running on the VM; As the booting of a new VM 
is informed in advance, the startup delay is irrelevant to 
execution time of jobs running on the VM neither. Therefore, 
we disregard the shutdown delay and startup delay of the 
512MB VM in our simulation. 

We have measured the migration cost of a VM with 
512MB of RAM under different background load, as 
illustrated in Fig.5. The physical machine is a 3.6GHz 
Pentium PC with 1GB main memory and a swap space of 

1GB, running Linux version 2.6.9. The background load is 
the mix of the seven application programs as mentioned above. 
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Fig. 5. Migration cost in second of a 512MB VM at a time while under 
different background load 

We observe that the cost of migration is independent of the 
background load and depends only on the VM characteristics. 
However, it is based on the premise that the network is idle. 
Once the task execution environment is communication 
intensive, the bandwidth will be partially occupied and thus 
the result is not likely the same. 

VI. PERFORMANCE EVALUATION 

A. Measured Metrics and Reconfiguration Parameters 
To better evaluate the performance of Magnet, we use the 

metrics as follows: (1) Power savings over base is defined as 
the ratio of the saved electricity to the total electricity during 
the entire lifetime of the application workload in percentage 
terms. (2) Cluster utilization is defined as the average ratio 
between the amounts of consumed memory volume to all 
memory space of active workstations (rule out the shut down 
nodes) during the entire lifetime of the application workload 
in percentage terms. (3) Total execution time is defined as the 
sum of the total CPU service time, the total paging time for 
page faults, the total queuing time waiting in a job queue and 
the total migration time. (4) Job slowdown is defined as the 
average ratio between its wall-clock execution time and its 
CPU execution time of all nodes. Plus, we also use the metric 
(5) MT/ET which is defined as the average ratio between the 
cumulative Magnet reconfiguration time and its total 
execution time to evaluate the overhead of Magnet. 

For our experiment, we refer to the time interval between 
reconfigurations as the elapse parameter. Let degrad=80%
and Max(vm)=3 .The workload of each layer ranges from 
0~40%, 40%~80%, 80%~100%, respectively, of the base 
resource. To guarantee the QoS of the tasks, the number of 
the active nodes should not be less than one third of the 
number of the shut down nodes and for our experiment, the 
threshold is eight. The threshold changes according to the 
different QoS requirements of the services. 

Finally, towards each metric, we compare the following 
policies: 
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Fig. 6. Energy savings for Magnet, Expected-Magnet and current methods (a) elapse = 250 seconds (b) elapse=500 seconds (c) elapse=1000 seconds

� Basic method without any virtual reconfiguration 
(Base) 

� Current methods (Combined DVS and Batching, 
Disk Intense Batching and Disk Intense DVS [16]) 

� Magnet method with expected results deduced by 
mathematical analysis (Expected-Magnet) 

� Magnet method with practical results (Magnet) 
The Expected-Magnet results can be calculated with 

equation (2), 
1
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V =64, 1
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Load
Load

=(1+0.4)/(1+0.8). Since the selected 

application workload tends to be lightweight, 
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  is set 

to 1, and � is set to 170 watts (average power from 
SPECpower_ssj2008). 

B. Improving Power Consumption 
Fig.6 presents the energy savings (in percentage) for the 

Magnet policy over five application workload groups with 
an increasingly elapse, 250s, 500s and 1000s. Compared to 
Combined (DVS+Batching), Disk-intensive-DVS and Disk-
intensive-Batching methods, Magnet policy exhibits much 
more power savings. 

From Fig.6(a), it can be seen that Magnet method, under 
the reconfiguration elapse of 250s, significantly reduced 
power consumptions. The figure shows that power 
consumptions are reduced by 67.09%, 72.02%, 67.55%, 
72.77% and 74.81% for light, moderate, normal, moderately 
intensive and highly intensive job submissions, respectively 
(APP-1, 2, 3, 4, 5). 

From Fig.6(b) and 6(c), regarding an increasingly Magnet 
reconfiguration elapse (500s and 1000s), the power 
consumption are reduced by 67.36%, 69.53%, 69.28%, 
70.79%, 70.67% and 61.81%, 63.69%, 63.68%, 69.90%, 
68.28%. Note that when elapse is 1000s, Magnet performs 
worse than that of 250s and 500s in the energy saving. This 
suggests that Magnet performs better while its ring-based 
overlay is maintained more frequently, for the reason that 
the less interval time between Magnet reconfigurations, the 
more redundant workstations can switch to shut down state. 

Meanwhile, from Fig.6(a), 6(b) and 6(c), we can see that the 
less elapse is, the closer the practical Magnet results come to 
the theoretical Magnet results. 

C. Improving Cluster Utilization 
We have also observed the average total consumed 

memory volumes during the lifetime of job executions in 
each workload group. Fig.7 presents the comparative 
average cluster utilization during lifetimes of five workload 
groups using Magnet scheme and basic scheme. 
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Fig. 7. The average cluster utilizations of the five application workload 
groups scheduled by Magnet scheme and the basic scheme (Base) with 
increasing elapses

Compared to the original cluster utilization (10.24%, 
14.73%, 18.75%, 20.20% and 21.20% for workload APP-1, 
2, 3, 4, 5 respectively), our method can increase the average 
cluster utilization significantly. When elapse is 250s, the 
average cluster utilization mounts up to 41.89%, 32.04%, 
36.57%, 45.17% and 50.61%; when elapse is 500s, it 
mounts up to 33.72%, 35.44%, 32.36%, 34.40% and 39.68%; 
when elapse is 1000s, it mounts up to 29.59%, 27.05%, 
24.42%, 36.10% and 34.97%, respectively. 

The increasing of the average cluster utilization is caused 
mainly by the decrease number of the idle nodes. By means 
of turning off the idle nodes, the overall workload can be 
squeezed to a subset of active workstations and thus increase 
the throughput. Compared bars of different elapse
parameters (250s, 500s and 1000s), it is clear that less value 
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of elapse parameter leads to further utilization of active 
workstations. 

D. Improving Quality of Service 
Fig.8 and Fig.9 present the comparative total execution 

time and job slowdown during lifetimes of five workload 
groups using Magnet scheme and basic scheme with respect 
to an increasing value of elapse parameter, from 250s to 
1000s. From Fig.8, it can be seen that when elapse is 250s, 
the total execution time is reduced by -37.10%, -17.83%, -
27.66%, 3.47%, and 4.96% for workload APP-1, 2, 3, 4, 5, 
respectively; when elapse is 500s, it is reduced by -40.72%,
-21.65%, -5.62%, 0.30%, and 5.10%; when elapse is 1000s, 
it is reduced by -50.0%, -10.51%, 15.52%, 3.98%, and -
9.43%.
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Fig. 9. The average slowdowns of the five application workload groups 
scheduled by Magnet scheme and the basic scheme (Base) with increasing 
elapses 

Note that the result is not positive for light job 
submissions, moderate job submissions and normal job 
submissions (APP-1, 2, 3). It is not surprising since job 
blocking problems happen scarcely under light workload 
and thus the time increased by live migrations outweighs the 
time reduced by addressing job blocking problems. 

Fig.9 shows that Magnet generally decreases the average 
job slowdowns of workload APP-1, 2, 3, 4, 5. When elapse
is 250s, we are able to reduce the average job slowdown by -
43.82%, 17.61%, 15.35%, 22.85%, and 38.21%; when 

elapse is 500s, it is reduced by -6.74%, 17.39%, 46.93%, 
31.84%, and 31.79%; when elapse is 1000s, it is reduced by 
2.00%, 32.98%, 52.28%, 48.4%, and 39.62%. Note that the 
result is not positive for light job submissions when elapse is 
250s and 500s, the reason is more likely that frequent 
migrations lead to longer waiting times yet address much 
less job blocking problems for lightweight working flow. 
Therefore, the time increased by live migrations outweighs 
the time reduced by addressing job blocking problems. 

E. Overhead Analysis 
As undue Magnet reconfiguration will cause noticeable 

overhead, it is important to make sure that the QoS is not 
sacrificed excessively in favor of power and energy savings. 

Finally, we test the MT/ET (Magnet reconfiguration 
time/Total execution time) and the average cumulative 
migration times during the entire lifetimes of the five 
different working flows (see Fig.10) while increasing the 
interval between reconfigurations (elapse) gradually. MT
can be estimated as the product of the migration cost in 
second and the total times of migrations. It shows that the 
increasing of elapse leads to the decreasing of MT/ET,
indicating that although smaller value of elapse parameter 
achieves better performance on energy saving, it is at the 
expense of more overhead on the total execution time. 
However, considering the benefits (more energy savings and 
cluster utilization) carried by high frequency (see Fig.6, 
Fig.7), it seems that the most optimal approach is a balanced 
one that an appropriate value of elapse parameter should be 
chosen. 
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VII. CONCLUSION

This paper aims at providing effective strategies to reduce 
the power consumption and meanwhile influence little on 
the performance. The contributions can be described as 
follows: 1) our scheme addresses the limitations caused by 
heterogeneous computing platforms; 2) an adaptive Magnet 
approach is proposed to obtain significant energy savings by 
taking the advantage of live migration of VMs; 3) through 
the theoretical analysis, we propose the squeeze and release
measures to guide the live migrations aiming at the minimal 
overhead. Experimental results show that the method have 
positive impact on the average job slowdown and minor 
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negative impact on the total execution time. Particularly, the 
overhead is adjustable by changing the parameter elapse.

In the future, we will try to optimize the power reduction 
effect by exploring more intelligent schemes according to 
the characteristics of jobs such as CPU intensive, memory 
intensive or I/O intensive and the like. We will also analyse 
the strategies of the migration of multiple VMs, e.g. parallel 
migration and serial migration, to further reduce the impact 
of VM migration on the system performance. We are 
hopeful that our theoretical work will be complemented by 
empirical research that can shed light on the practicality of 
our provable novel scheduler. 
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