How We Test Self-Driving Cars And How We Explain Their Failures

Leilani H. Gilpin Assistant Professor Dept. of Computer Science & Engineering, UC Santa Cruz

Introduction and Disclaimer: My Car Failures

Agenda

Motivate problem: Complex systems are prone to failure

Local sanity checks for vehicle perception

Explanations as an Internal Debugging Language for Complex Systems

Ongoing Work: Testing Autonomous Vehicles by Augmenting Datasets

Question: What are the eXplanatory AI (XAI) methods for testing autonomous vehicles in safety-critical scenarios?

Complex Systems Fail in Complex Ways

K. Eykholt et al. "Robust Physical-World Attacks on Deep Learning Visual Classification."

Predictive Inequity in Object Detection

Benjamin Wilson¹ Judy Hoffman¹ Jamie Morgenstern¹

Autonomous Vehicle Solutions are at Two Extremes

Very comfortable

Serious safety lapses led to Uber's fatal selfdriving crash, new documents suggest

Comfort

Car

GM and Cruise are testing vehicles in a chaotic city, and the tech still has a ways to go.

Not comfortable

Not cautious

Problem: Need better common sense and reasoning

Cautious

My Herky-Jerky Ride in General Motors' Ultra-Cautious Self Driving

Very cautious

Architecture Inspired by Human Organizations Communication and Sanity Checks

- 1. Hierarchy of overlapping committees.
- 2. Continuous interaction and communication.
- 3. When failure occurs, a story can be made, combining the members' observations.

An Architecture to Mitigate Common Problems

Synthesizer to reconcile inconsistencies between parts.

Reconcile conflicting reasons.

Justify new examples.

An Existing Problem The Uber Accident

Solution: Internal Communication Anomaly Detection through Explanations

Synthesizer to reconcile inconsistencies between monitor outputs.

The best option is to veer and slow down. The vehicle is traveling too fast to suddenly stop. The vision system is inconsistent, but the lidar system has provided a reasonable and strong claim to avoid the object moving lacross the street.

TACTICS

Agenda

Motivate problem: Complex systems are prone to failure

Local sanity checks for vehicle perception

Explanations as an internal debugging language

Ongoing Work: Testing Autonomous Vehicles by Augmenting Datasets

A Neural Network Labels Camera Data CAMERAS **RADAR SENSORS** (BOTH SIDES) LIDAR UNIT

RADAR SENSOR

For self-driving, and other mission-critical, safety-critical applications, these mistakes have CONSEQUENCES.

K. Eykholt et al. "Robust Physical-World Attacks on Deep Learning Visual Classification."

Monitor Opaque Subsystems for Reasonableness Label e.g. pedestrian Opaque Mechanism +++Justify Identify Flexible Commonsense (Un)reasonability (Un)reasonability Representation Knowledge Base

Judgement of reasonableness

1. 2. Justification of reasonableness

Primitive Representations Encode Understanding

Conceptual Dependency Theory (CD), Schank 1975

11 primitives to account for *most* actions: ATRANS **ATTEND** INGEST EXPEL GRASP **MBUILD MTRANS** MOVE PROPEL **PTRANS SPEAK**

5 for physical actions Extended to vehicle primitives

Data from Nuscenes

Representations with Implicit Rules location street D A perceived frame is person REASONABLE person ... \ actor

Move Primitive Reasonability

 $((x_1, p_1, y_1), isA, REASONABLE) \land$ $((x_2, p_2, y_2), isA, REASONABLE) \land$ $((x_n, p_n, y_n), isA, REASONABLE)$

$(x, hasProperty, animate) \land (x, locatedNear, y) \Rightarrow ((x, MOVE, y) isA, REASONABLE)$ location actor

Reasonableness Monitoring on Real Data NuScenes

```
{'token': '70aecbe9b64f4722ab3c230391a3beb8',
 'sample token': 'cd21dbfc3bd749c7b10a5c42562e0c42',
 'instance_token': '6dd2cbf4c24b4caeb625035869bca7b5',
'visibility token': '4',
 'attribute_tokens': ['4d8821270b4a47e3a8a300cbec48188e'],
'translation': [373.214, 1130.48, 1.25],
 'size': [0.621, 0.669, 1.642],
 'rotation': [0.9831098797903927, 0.0, 0.0, -0.18301629506281616],
'prev': 'a1721876c0944cdd92ebc3c75d55d693',
'next': '1e8e35d365a441a18dd5503a0ee1c208',
 'num_lidar_pts': 5,
 'num_radar_pts': 0,
 'category name': 'human.pedestrian.adult'}
```


Data from NuScenes

Commonsense is Unorganized ConceptNet

adult is capable of...

('adult, 'typeOf, 'animal)
('adult, 'isA, 'bigger than a child')

human.pedestrian.adult

Data from NuScenes

Monitor Outputs a Judgement and Justification

approximate dimensions of [0.621, 0.669, 1.642] is approximately the correct size in meters.

This perception is reasonable. An adult is typically a large person. They are usually located walking on the street. Its

Agenda

Motivate problem: Complex systems are prone to failure

Local sanity checks for vehicle perception

Explanations as an internal debugging language

Ongoing Work: Testing Autonomous Vehicles by Augmenting Datasets

Reconciling Internal Disagreements With an Organizational Architecture

- Monitored subsystems combine into a system architecture.
- Explanation synthesizer to deal with *inconsistencies*.
 - Argument tree.
 - Queried for support or counterfactuals.

Explanations

Anomaly Detection through Explanations Reasoning in Three Steps

Generate Symbolic Qualitative Descriptions for each committee.

Input qualitative descriptions into local "reasonableness" monitors.

Use a synthesizer to reconcile inconsistencies between monitors.

Use a synthesizer to reconcile inconsistencies between monitors.

- Explanation synthesizer to deal with inconsistencies.
 - Argument tree.
 - Queried for support or counterfactuals.

- 1. Passenger Safety
- 2. Passenger Perceived Safety
- 3. Passenger Comfort
- 4. Efficiency (e.g. Route efficiency)

Priority Hierarchy

Abstract Goals

A passenger is safe if:

- The vehicle proceeds at the same speed and direction.
- The vehicle avoids threatening objects.

Use a synthesizer to reconcile inconsistencies between monitors.

 $(\forall s, t \in STATE, v \in VELOCITY \\ ((self, moving, v), state, s) \land \\ (t, isSuccesorState, s) \land \\ ((self, moving, v), state, s) \land \\ (\nexists x \in OBJECTS \text{ s.t.} \\ ((x, isA, threat), state, s) \lor \\ ((x, isA, threat), state, s)))$

 $(\forall s \in STATE, x \in OBJECT, v \in VELOCITY \\ ((x, moving, v), state, s) \land \\ ((x, locatedNear, self), state, s) \land \\ ((x, isA, large_object), state, s)$

A passenger is safe if:

- The vehicle proceeds at the same speed and direction.
- The vehicle avoids threatening objects.
- \Rightarrow (passenger, hasProperty, safe)
 - TY \land \land (x, isA, threat), state, s))

Abstract Goal Tree

'passenger is safe', AND ('safe transitions', NOT('threatening objects')

Use a synthesizer to reconcile inconsistencies between monitors.

> The best option is to veer and slow down. The vehicle is traveling too fast to suddenly stop. The vision system is inconsistent, but the lidar system has provided a reasonable and strong claim to avoid the object moving across the street.

Uber Example in Simulation

Server: 45 FPS Client: 49 FPS	
Vehicle: Nissan Micra	
Map: Town04	
Simulation time: 0:00:05	
Speed	and the second se
Speed: 4 km/n	
Heading: 0 N	
LOCALION: (-221.4, 37.3)	
GN55: (48.999003, 7.990980)	
Hergne: 4 M	
Throttelo	
Inrottle:	
Steer:	
Brake:	
Reverse:	
Hand Drake:	
Geal: N	
Collicion	
correston.	
Number of vehicles: 1	

L. H. Gilpin, V. Penubarthi and L. Kagal, "Explaining Multimodal Errors in Autonomous Vehicles," 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), 2021, pp. 1-10, doi: 10.1109/DSAA53316.2021.9564178.

Agenda

Motivate problem: Complex systems are prone to failure

Local sanity checks for vehicle perception

Explanations as an internal debugging language

Ongoing Work: Testing Autonomous Vehicles by Augmenting Datasets

Vision: Real World Adversarial Examples

"Realistic" Adversarial examples

L. H. Gilpin, A. Amos-Binks, "Close Syntax but Far Semantics: A Risk Management Problem for Autonomous Vehicles." The AAAI Fall Symposium on Cognitive Systems for Anticipatory Thinking.

Vision: Real World Adversarial Examples Anticipatory Thinking Layer for Error Detection

"Realistic" Adversarial examples

The traffic lights are on top of the truck. The lights are not illuminated. The lights are moving at the same rate as the truck, therefore this is not a "regular" traffic light for slowing down and stopping at.

Lack of Data and Challenges for AVs

- Existing Challenges
 - Targeted as optimizing a mission or trajectory and not safety.
 - Data is hand-curated.
- Failure data is not available
 - Unethical to get it (cannot just drive into bad situations).
 - Want the data to be realistic (usually difficult in simulation).

Data from NuScenes

Approach: Content Generation Anticipatory Thinking Layer for Error Detection

S. Xu, L. Mi and L.H. Gilpin. "A Framework for Generating Dangerous Scenes for Testing Robustness." Under Review. 2023.

Approach: Content Generation Anticipatory Thinking Laver for Error Detection

S. Xu, L. Mi and L.H. Gilpin. "A Framework for Generating Dangerous Scenes for Testing Robustness." Under Review. 2023.

Approach: Content Generation Anticipatory Thinking Layer for Error Detection

S. Xu, L. Mi and L.H. Gilpin. "A Framework for Generating Dangerous Scenes for Testing Robustness." Under Review. 2023.

Behaviors that are Inherently Explainable

Exit Parking

Cut-in Opposite

S. Xu, L. Mi and L.H. Gilpin. "A Framework for Generating Dangerous Scenes for Testing Robustness." Under Review. 2023.

Cut-in

Slalom Lane Change

Braking

Contributions

Motivate problem: Complex systems are prone to failure

Local sanity checks for vehicle perception

Explanations as an internal debugging language

Ongoing Work: Testing Autonomous Vehicles by Augmenting Datasets

Autonomous Systems

Error Detection

