Explainable AI for Fairness and Accountability

Leilani H. Gilpin, Ph.D. Assistant Professor of Computer Science & Engineering UC Santa Cruz Igilpin@ucsc.edu Igilpin.com

Talk Agenda

Brief Intro

Motivate problem: Systems are imperfect

What is explainability?

What is actually being explained?

How to evaluate explainability?

How to explain complex systems? (autonomous driving)

About Me

- B.S in Computer Science, B.S. in Mathematics at UC San Diego
- M.S. in Computational Mathematics from Stanford University (2013), Ph.D. in EECS from MIT (2020).
- Industry experience
 - Xerox PARC
 - INRIA (France)
 - Sony Al
- Research: The methodologies and technologies for complex systems to explain themselves.

AI algorithm outcompetes human champions in Gran Turismo racing game

RACE

The international journal of science / 10 February 2022

aure

Complex Systems Fail in Complex Ways

K. Eykholt et al. "Robust Physical-World Attacks on Deep Learning Visual Classification."

Predictive Inequity in Object Detection

Benjamin Wilson¹ Judy Hoffman¹ Jamie Morgenstern¹

Societal Need for Explanation

BUSINESS NEWS OCTOBER 9, 2018 / 11:12 PM / 2 MONTHS AGO

Amazon scraps secret AI recruiting tool that showed bias against women

Jeffrey Dastin

Business Impact

An Al-Fueled Credit Formula Might Help You Get a Loan

Startup ZestFinance says it has built a machine-learning system that's smart enough to find new borrowers and keep bias out of its credit analysis.

by Nanette Byrnes February 14, 2017

8 MIN READ

y

Talk Agenda

Motivate problem: Systems are imperfect

What is explainability?

What is actually being explained?

How to evaluate explainability?

How to explain complex systems? (autonomous driving)

What is Explainability?

From Darpa XAI

"Explanations...express answer to not just any questions but to questions that present the kind of intellectual difficulty..."

Sylvain Bromberger, On What We Know We Don't Know

Deep Nets are Everywhere

Self-driving Cars

Playing Go

Making Medical Decisions

Deep Nets are Not Understandable

Middle "hidden" layers

Whenever correct: "whatever you did in the middle, do more." Whenever wrong: "whatever you did in the middle, do less."

Review of Research in XAI

- Definitions
- Taxonomy
 - Survey: Literature review (87 papers) in computer science, artificial intelligence, and philosophy.
 - Recommendations for Evaluation
- How can explanations help (e.g. anomaly detection).
- Contributions and Future Work

Definitions

- Explainability != Interpretability
- humans.
- **Completeness** describes operation in an *accurate* way.
- An explanation needs both.

Interpretability describes the internals of a system that is *understandable* to

What we Have

Visual cues

Interpretable, not complete

Role of individual units

Attention based

Q: Is this a healthy meal? Textual Justification Visual Pointing

A: No

... because it is a hot dog with a lot of toppings.

A: Yes

... because it contains a variety of vegetables on the table.

Complete, not interpretable

Interpretable, not complete

Why this Matters

Interpretability

- GDPR
- Liability for decision making

Why this Matters

<u>Completeness</u>

- Explaining the wrong thing.
- Making decisions for the wrong reasons.

From Claudia Perlich at Women in Data Science 2018.

Talk Agenda

Motivate problem: Systems are imperfect

What is explainability?

What is actually being explained?

How to evaluate explainability?

How to explain complex systems? (autonomous driving)

What is Being Explained?

Visual cues

Explain processing

Role of individual units

Attention based

Q: Is this a healthy meal? Textual Justification Visual Pointing

A: No

... because it is a hot dog with a lot of toppings.

... because it contains a A: Yes variety of vegetables on the table.

Explain representation

Explanation producing

Taxonomy

Methods that Explain Processing

DeepRED -

Rule Extraction from Deep Neural Networks*

Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Technische Universität Darmstadt Knowledge Engineering Group j.zilke@mail.de, {eneldo,janssen}@ke.tu-darmstadt.de

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu

Extracting Rules from Artificial Neural Networks with Distributed Representations

Sebastian Thrun University of Bonn Department of Computer Science III Römerstr. 164, D-53117 Bonn, Germany E-mail: thrun@carbon.informatik.uni-bonn.de

Carlos Guestrin University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu

Examples of Processing Methods

Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? The kitti vision benchmark suite." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.

DeepRED – Rule Extraction from Deep Neural Networks*

Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Technische Universität Darmstadt Knowledge Engineering Group j.zilke@mail.de, {eneldo,janssen}@ke.tu-darmstadt.de

Zilke, Jan Ruben et al. "DeepRED - Rule Extraction from Deep Neural Networks." DS (2016).

Taxonomy

Methods that Explain Representations

Network Dissection: Quantifying Interpretability of Deep Visual Representations

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba CSAIL, MIT

{davidbau, bzhou, khosla, oliva, torralba}@csail.mit.edu

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)

Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler Fernanda Viegas Rory Sayres **CNN Features off-the-shelf: an Astounding Baseline for Recognition**

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson CVAP, KTH (Royal Institute of Technology) Stockholm, Sweden

{razavian,azizpour,sullivan,stefanc}@csc.kth.se

Examples of Explained Representations

Network Dissection: Quantifying Interpretability of Deep Visual Representations

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba CSAIL, MIT {davidbau, bzhou, khosla, oliva, torralba}@csail.mit.edu

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)

Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler Fernanda Viegas Rory Sayres road conv5 unit 107 (object)

IoU 0.16

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, "Network dissection: Quantifying interpretability of deep visual representations," in *Computer* Vision and Pattern Recognition, 2017.

Kim, Been, et al. "Tcav: Relative concept importance testing with linear concept activation vectors." *arXiv preprint arXiv:*1711.11279 (2017).

Taxonomy

Methods that Produce Explanations

Multimodal Explanations: Justifying Decisions and Pointing to the Evidence

Dong Huk Park¹, Lisa Anne Hendricks¹, Zeynep Akata^{2,3}, Anna Rohrbach^{1,3}, Bernt Schiele³, Trevor Darrell¹, and Marcus Rohrbach⁴

¹EECS, UC Berkeley, ²University of Amsterdam, ³MPI for Informatics, ⁴Facebook AI Research

Hierarchical Question-Image Co-Attention for Visual Question Answering

Jiasen Lu*, Jianwei Yang*, Dhruv Batra*[†], Devi Parikh*[†] * Virginia Tech, [†] Georgia Institute of Technology {jiasenlu, jw2yang, dbatra, parikh}@vt.edu

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

Xi Chen^{†‡}, Yan Duan^{†‡}, Rein Houthooft^{†‡}, John Schulman^{†‡}, Ilya Sutskever[‡], Pieter Abbeel^{†‡} † UC Berkeley, Department of Electrical Engineering and Computer Sciences ‡ OpenAI

Examples that Produce Explanations The activity is

Multimodal Explanations: Justifying Decisions and Pointing to the Evidence

Dong Huk Park¹, Lisa Anne Hendricks¹, Zeynep Akata^{2,3}, Anna Rohrbach^{1,3}, Bernt Schiele³, Trevor Darrell¹, and Marcus Rohrbach⁴ ¹EECS, UC Berkeley, ²University of Amsterdam, ³MPI for Informatics, ⁴Facebook AI Research

[1] L.H. Gilpin. Explaining possible futures for robust autonomous decision-making. Proceedings of the AAAI Fall Symposium on Anticipatory Thinking, 2019.

[2] L.H. Gilpin, V. Penubarthi, and L. Kagal. Explaining Multimodal Errors in Autonomous Vehicles. DSAA 2021.

A: Mountain Biking

A: Road Biking

... because he is riding a bicycle down a mountain path in a mountainous area.

Park, Dong Huk, et al. "Multimodal Explanations: Justifying Decisions and Pointing to the Evidence." 31st IEEE Conference on Computer Vision and Pattern Recognition. 2018.

The best option is to veer and slow down. The vehicle is traveling too fast to suddenly stop. The vision system is inconsistent, but the lidar system has provided a reasonable and strong claim to avoid the object moving across the street.

A Problem: Insides Matter

The More Complex (Deeper) The Deeper the Mystery 3x3 conv, 64 **IM** GENET 3x3 conv, 64, pool/2

fc, 1000

AlexNet (2012) 8 layers; acc 84.7%

VGG (2014) 19 layers; acc 91.5%

GoogLeNet (2015) **ResNet** (2016) 22 layers; acc 92.2% 152 layers; acc 95.6%

Talk Agenda

Motivate problem: Systems are imperfect

What is explainability?

What is actually being explained?

How to evaluate explainability?

How to explain complex systems? (autonomous driving)

What is Being Explained?

Visual cues

Completeness to model

Role of individual units

Attention based

Q: Is this a healthy meal? Textual Justification Visual Pointing

A: No

... because it is a hot dog with a lot of toppings.

A: Yes

... because it contains a variety of vegetables on the table.

Completeness on other tasks

Human evaluation

Taxonomy

Challenges in Explainability

- Standards and metrics for explanations
 - How to evaluate explanations?
- Current metrics of evaluation are "fuzzy"
 - User based evaluations are not always appropriate
- Benchmarks for safety-critical and mission-critical tasks.

A Neural Network Labels Camera Data CAMERAS **RADAR SENSORS** (BOTH SIDES) LIDAR UNIT

RADAR SENSOR

For self-driving, and other mission-critical, safety-critical applications, these mistakes have CONSEQUENCES.

K. Eykholt et al. "Robust Physical-World Attacks on Deep Learning Visual Classification."

Vision: Real World Adversarial Examples

"Realistic" Adversarial examples

L. H. Gilpin, A. Amos-Binks, "Close Syntax but Far Semantics: A Risk Management Problem for Autonomous Vehicles." The AAAI Fall Symposium on Cognitive Systems for Anticipatory Thinking.

Vision: Real World Adversarial Examples Anticipatory Thinking Layer for Error Detection

"Realistic" Adversarial examples

The traffic lights are on top of the truck. The lights are not illuminated. The lights are moving at the same rate as the truck, therefore this is not a "regular" traffic light for slowing down and stopping at.

Lack of Data and Challenges for AVs

- Existing Challenges
 - Targeted as optimizing a mission or trajectory and not safety.
 - Data is hand-curated.
- Failure data is not available
 - Unethical to get it (cannot just drive into bad situations).
 - Want the data to be realistic (usually difficult in simulation).

Data from NuScenes

Approach: Content Generation Anticipatory Thinking Layer for Error Detection

S. Xu, L. Mi and L.H. Gilpin. "A Framework for Generating Dangerous Scenes for Testing Robustness." Under Review. 2023.

Approach: Content Generation Anticipatory Thinking Layer for Error Detection

S. Xu, L. Mi and L.H. Gilpin. "A Framework for Generating Dangerous Scenes for Testing Robustness." Under Review. 2023.

Contributions

Brief Intro

Motivate problem: Systems are imperfect

What is explainability?

What is *actually* being explained?

How to evaluate explainability?

How to critical systems? (autonomous driving)

Opaque Systems

Autonomous Systems

Error Detection

