Explaining Explanations in Al

Black-box

Leilani H. Gilpin, PhD lgilpin@mit.edu

System-level

Talk Agenda

Motivate problem: Systems are imperfect

What is explainability?

What is *actually* being explained?

How to evaluate explainability?

Implications to policy

Question: What are the eXplanatory AI (XAI) methods for diagnosis, accountability and liability?

Complex Systems Fail in Complex Ways

Nissan Expands Altima Recall Because of **Hoods That Could Open Unexpectedly**

The recall includes newer models and some older vehicles that have already been recalled three times

By Keith Barry June 04, 2020

No Explanation

👔 Igilpin — -bash — 80 Last login: Tue Feb 7 15:37:57 on ttys000 30-9-198:~ lgilpin\$ sudo mkdir /usr/bin/jemdoc Password: mkdir: /usr/bin/jemdoc: Operation not permitted 30-9-198:~ lgilpin\$

OS Upgrade (Version Skew)

AI Mistakes Bus-Side Ad for Famous CEO, Charges Her With Jaywalking

By Tang Ziyi / Nov 22, 2018 04:17 PM / Society & Culture

No Commonsense

Imprecise (Certificate Missing)

Failures with Consequences

Intelligent Machines

I rode in a car in Las Vegas that was controlled by a guy in Silicon Valley

A startup thinks autonomous cars will need remote humans as backup drivers. For now, it's kind of nerve-racking.

by Rachel Metz January 11, 2018

Fatal crash could pull plug on autonomous vehicle testing on public roads

Are self-driving cars really ready for the road?

Intelligent Machines

What Uber's fatal accident could mean for the autonomous-car industry

The first pedestrian death leads some to ask whether the industry is moving too fast to deploy the technology.

by Will Knight March 19, 2018

Societal Need for Explanation

BUSINESS NEWS OCTOBER 9, 2018 / 11:12 PM / 2 MONTHS AGO

Amazon scraps secret AI recruiting tool that showed bias against women

Jeffrey Dastin

Business Impact

An Al-Fueled Credit Formula Might Help You Get a Loan

Startup ZestFinance says it has built a machine-learning system that's smart enough to find new borrowers and keep bias out of its credit analysis.

by Nanette Byrnes February 14, 2017

8 MIN READ

У.

f

Vision: **Explanations Beyond Justifications**

- Debug the system during development.
- Understand the reasons for decisions.
- Learn the correct response to events(s). •
- Ensure regulatory compliance.

bad concept detected

remove concept from network for re-evaluation

Enter the password for the Account "lgilpin@csail.mit.edu" OK certificate error Download new certificate from CSAIL

👚 lgilpin — -bash — 8

Last login: Tue Feb 7 15:37:57 on ttys000 30-9-198:~ lgilpin\$ sudo mkdir /usr/bin/jemdoc Password: mkdir: /usr/bin/jemdoc: Operation not permitted 30-9-198:~ lgilpin\$

Possible vehicle failure.

Re-cap gas cap.

Q: Is this a healthy meal? Textual Justification Visual Pointing

A: No

...because it is a hot dog with a lot of toppings.

...because it A: Yes contains a variety of vegetables on the table.

Talk Agenda

Motivate problem: Systems are imperfect

What is explainability?

What is actually being explained?

How to evaluate explainability?

Implications to policy

What is Explainability?

From Darpa XAI

"Explanations...express answer to not just any questions but to questions that present the kind of intellectual difficulty..."

Sylvain Bromberger, On What We Know We Don't Know

Deep Nets are Everywhere

Self-driving Cars

Playing Go

Making Medical Decisions

Deep Nets are Not Understandable

Middle "hidden" layers

Whenever correct: "whatever you did in the middle, do more." Whenever wrong: "whatever you did in the middle, do less."

Review of Research in XAI

- Definitions
- Taxonomy
 - Survey: Literature review (87 papers) in computer science, artificial intelligence, and philosophy.
 - Recommendations for Evaluation
- How can Explanations Help (e.g. anomaly detection).
- Contributions and Future Work

Definitions

- Explainability != Interpretability
- humans.
- **Completeness** describes operation in an *accurate* way.
- An explanation needs both.

Interpretability describes the internals of a system that is *understandable* to

What we Have

Visual cues

Interpretable, not complete

Role of individual units

Attention based

Q: Is this a healthy meal? Textual Justification

📄 A: No

...because it is a hot dog with a lot of toppings.

A: Yes

...because it contains a variety of vegetables on the table.

Complete, not interpretable

Interpretable, not complete

Why this Matters

Interpretability

- GDPR
- Liability for decision making

Why this Matters

<u>Completeness</u>

- Explaining the wrong thing.
- Making decisions for the wrong reasons.

From Claudia Perlich at Women in Data Science 2018.

Talk Agenda

Motivate problem: Systems are imperfect

What is explainability?

What is actually being explained?

How to evaluate explainability?

Implications to policy

What is Being Explained?

Visual cues

Explain processing

Role of individual units

Attention based

Q: Is this a healthy meal? Textual Justification

📄 A: No

...because it is a hot dog with a lot of toppings.

A: Yes

...because it contains a variety of vegetables on the table.

Explain representation

Explanation producing

Taxonomy

Methods that Explain Processing

DeepRED -

Rule Extraction from Deep Neural Networks*

Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Technische Universität Darmstadt Knowledge Engineering Group j.zilke@mail.de, {eneldo,janssen}@ke.tu-darmstadt.de

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu

Extracting Rules from Artificial Neural Networks with Distributed Representations

Sebastian Thrun University of Bonn Department of Computer Science III Römerstr. 164, D-53117 Bonn, Germany E-mail: thrun@carbon.informatik.uni-bonn.de

Carlos Guestrin University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu

Examples of Processing Methods

Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? The kitti vision benchmark suite." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.

DeepRED – Rule Extraction from Deep Neural Networks*

Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Technische Universität Darmstadt Knowledge Engineering Group j.zilke@mail.de, {eneldo,janssen}@ke.tu-darmstadt.de

Zilke, Jan Ruben et al. "DeepRED - Rule Extraction from Deep Neural Networks." DS (2016).

Taxonomy

Methods that Explain Representations

Network Dissection: Quantifying Interpretability of Deep Visual Representations

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba CSAIL, MIT

{davidbau, bzhou, khosla, oliva, torralba}@csail.mit.edu

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)

Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler Fernanda Viegas Rory Sayres **CNN Features off-the-shelf: an Astounding Baseline for Recognition**

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson CVAP, KTH (Royal Institute of Technology) Stockholm, Sweden

{razavian,azizpour,sullivan,stefanc}@csc.kth.se

Examples of Explained Representations

Network Dissection: Quantifying Interpretability of Deep Visual Representations

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba CSAIL, MIT {davidbau, bzhou, khosla, oliva, torralba}@csail.mit.edu

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)

Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler Fernanda Viegas Rory Sayres conv5 unit 107 (object)

loU 0.16

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, "Network dissection: Quantifying interpretability of deep visual representations," in *Computer* Vision and Pattern Recognition, 2017.

Kim, Been, et al. "Tcav: Relative concept importance testing with linear concept activation vectors." *arXiv preprint arXiv:*1711.11279 (2017).

Taxonomy

Methods that Produce Explanations

Multimodal Explanations: Justifying Decisions and Pointing to the Evidence

Dong Huk Park¹, Lisa Anne Hendricks¹, Zeynep Akata^{2,3}, Anna Rohrbach^{1,3}, Bernt Schiele³, Trevor Darrell¹, and Marcus Rohrbach⁴

¹EECS, UC Berkeley, ²University of Amsterdam, ³MPI for Informatics, ⁴Facebook AI Research

Hierarchical Question-Image Co-Attention for Visual Question Answering

Jiasen Lu", Jianwei Yang", Dhruv Batra"[†], Devi Parikh^{*†} * Virginia Tech, † Georgia Institute of Technology {jiasenlu, jw2yang, dbatra, parikh}@vt.edu

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

Xi Chen^{†‡}, Yan Duan^{†‡}, Rein Houthooft^{†‡}, John Schulman^{†‡}, Ilya Sutskever[‡], Pieter Abbeel^{†‡} † UC Berkeley, Department of Electrical Engineering and Computer Sciences ‡ OpenAI

Examples that Produce Explanations The activity is

Multimodal Explanations: Justifying Decisions and Pointing to the Evidence

Dong Huk Park¹, Lisa Anne Hendricks¹, Zeynep Akata^{2,3}, Anna Rohrbach^{1,3}, Bernt Schiele³, Trevor Darrell¹, and Marcus Rohrbach⁴

[1] L.H. Gilpin. Explaining possible futures for robust autonomous decision-making. Proceedings of the AAAI Fall Symposium on Anticipatory Thinking, 2019.

[2] L.H. Gilpin et al. Anomaly Detection Through Explanations. Under Review.

A: Mountain Biking

A: Road Biking

¹EECS, UC Berkeley, ²University of Amsterdam, ³MPI for Informatics, ⁴Facebook AI Research

... because he is riding a bicycle down a mountain path in a mountainous area. a bicycle down the road.

.... because he is wearing a cycling uniform and riding

Park, Dong Huk, et al. "Multimodal Explanations: Justifying Decisions and Pointing to the Evidence." 31st IEEE Conference on Computer Vision and Pattern Recognition. 2018.

The best option is to veer and slow down. The vehicle is traveling too fast to suddenly stop. The vision system is inconsistent, but the lidar system has provided a reasonable and strong claim to avoid the object moving across the street.

A Problem: Insides Matter

The More Complex (Deeper) The Deeper the Mystery 3x3 conv, 64 **IM** GENET 3x3 conv, 64, pool/2

AlexNet (2012) 8 layers; acc 84.7%

VGG (2014) 19 layers; acc 91.5%

GoogLeNet (2015) **ResNet** (2016) 22 layers; acc 92.2% 152 layers; acc 95.6%

Talk Agenda

Motivate problem: Systems are imperfect

What is explainability?

What is actually being explained?

How to evaluate explainability?

Implications to policy

What is Being Explained?

Visual cues

Completeness to model

Role of individual units

Attention based

Textual Justification Q: Is this a healthy meal?

📄 A: No

...because it is a hot dog with a lot of toppings.

A: Yes

...because it contains a variety of vegetables on the table.

Completeness on other tasks

Human evaluation

Taxonomy

Challenges in Explainability

- Standards and metrics for explanations
 - How to evaluate explanations?
- Current metrics of evaluation are "fuzzy"
 - User based evaluations are not always appropriate
- Benchmarks for safety-critical and mission-critical tasks.

Talk Agenda

Motivate problem: Systems are imperfect

What is explainability?

What is actually being explained?

How to evaluate explainability?

Implications to policy

Challenges in Explainability for Policy What Questions Can It Answer?

Visual cues

Why does this particular input lead to this particular output?

Role of individual units

Attention based

Q: Is this a healthy meal? Textual Justification

📄 A: No

...because it is a hot dog with a lot of toppings.

...because it contains a A: Yes variety of vegetables on the table.

What information does the network contain?

Given a particular output or decision, how can the network explain its behavior?

Challenges in Explainability for Policy What Questions Cannot be Answered?

Visual cues

Why were these inputs important to the output? How could the output be changed?

Why is a representation relevant for the outputs? How was this representation learned?

Role of individual units

Attention based

Textual Justification Q: Is this a healthy meal?

📄 A: No

...because it is a hot dog with a lot of toppings.

A: Yes

...because it contains a variety of vegetables on the table.

What information contributed to this output/decision? How can the network yield a different output/decision?

Definitions

- Inside explanation
 - Explanations that currently exist
 - Explanation is for *AI* experts
- Outside explanation
 - Explanations that are interpretable, complete, and answer why.
 - Explanation is for *building trust*.

Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter and Lalana Kagal Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 {lgilpin, davidbau, bzy, abajwa, specter, lkagal}@ mit.edu

Explaining Explanations to Society

Leilani H. Gilpin MIT CSAIL

Cecilia Testart MIT CSAIL

Nathaniel Fruchter MIT CSAIL lgilpin@mit.edu ctestart@mit.edu fruchter@mit.edu

Julius Adebayo MIT CSAIL juliusad@mit.edu

Contributions and Future Work

- A taxonomy and best practices for explanations via completeness and interpretability
 - What [part or parts] is being explain?
- Future directions
 - How can a network explain itself?
 - How to incorporate explainable methods?
 - Is there a provable trade-off between completeness and interpretability?