# **Top-down expectations vs. bottom-up information in prosodic memory**

### Lalitha Balachandran · UCSC

lalithab@ucsc.edu

# How do different types of linguistic information interact in memory?

### **1** Background: focus as a test case

#### Focus marking is a good test case because:

#### 1. Focus involves multiple sources of linguistic information

The interpretation of focus particles like *only* depends on the [focus]<sub>F</sub> they associate with [1]:

Ethel gave only  $[TUlips]_{F}$  to Sadie. (1)a. b. Ethel gave tulips only to  $[SAdie]_{F}$ 

Focus is marked by **prosodic cues** (e.g., pitch accent) and has **semantic effects** because it determines which alternatives are calculated.

#### Focus marking guides attention and generates expectations about upcoming input

- **Prosodically:** Native English listeners use prosodic cues on the syllable immediately before a contrastive accent (L+H\*) to predict that accent, even in the absence of accent itself [2-4].
- Semantically: Given preceding semantic context, listeners can predict upcoming foci in the absence of prosodic information [5].

#### 3. Foci are argued to be more deeply encoded in memory than nonfoci [4-5].

- Better memory for lexical content [6],
- Higher accuracy in change and error detection [7],
- Better recognition of contrastive accents [8].

#### **Does deeper encoding of foci extend to prosodic features?** Or does syntactic/semantic information override surface prosodic features due to loss of surface detail over time?

#### Cue conflict configuration

Ethel gave (only) [the tulips]<sub>F</sub> to Sadie.

#### **Hypotheses:**

- **Prosodic Cueing:** Listeners are always biased to expect an accent on the target due to preceding prosodic cues. This expectation, even when disconfirmed, has the potential to interfere with listeners' memory [9].
- **Top-down Overwriting:** Listeners are less sensitive to the absence of an accent in sentences with a particle, because memory for the semantic rep**resentation** may overwrite prosodic details [10-12].

# Morwenna Hoeks · UCSC

mhoeks@ucsc.edu

### 2 Method: stimuli

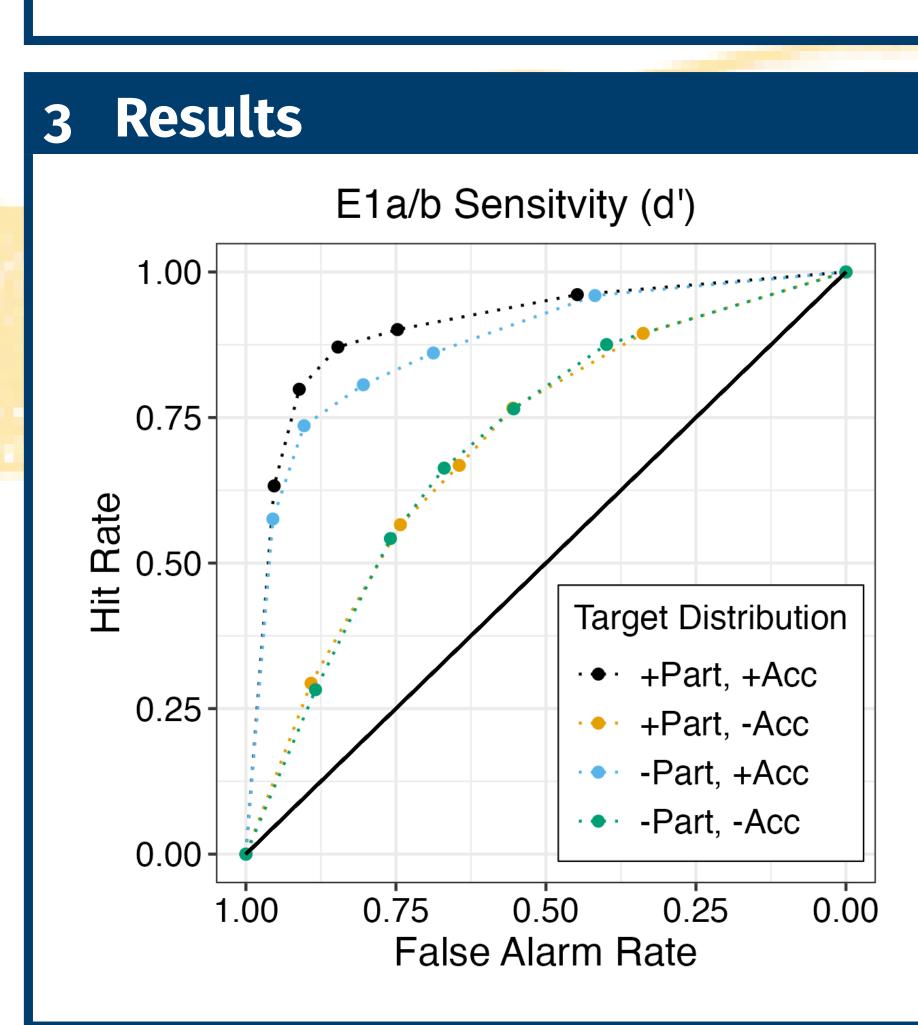
E1a

E1b

**4** Conclusion

Two recognition memory experiments tested memory for accent in the presence (E1a) vs. absence (E1b) of preceding focus particles.

- Particle (Present, Absent) x Accent (Pres, Abs) x Match (Match, Mismatch)
- Original recordings were spliced to create 96 items (48 per subexperiment; in addition to 6 practice items and 90 fillers).


Stimuli were created by splicing in an accented (H\*) or unaccented token into narrow focus syntactic frames with a particle present or absent.

The **prosodic cues** leading up to the accent (whether the accent was present or not) were retained:

#### **Experimental stimuli**

Nathaniel fed only the Nathaniel fed **the** 

CORGI corgi



#### $\pm$ sem +pros

#### Results are most consistent with the **Prosodic Cueing Hypothesis**

- In ABS conditions, prosodically driven expectations linger in memory, resulting in retrieval interference during the recognition phase.
- The presence of a focus particle leads to better memory, but only in the presence of congruent sem and pros cues (in PRES conditions)
- **Future work** aims to test the focus-prosody interaction in memory in the absence of preceding prosodic cues:

Ethel gave (only) [the tulips]<sub>F</sub> to Sadie.

(...not roses, daisies, ... (...not to Marsha, Edgar, ...)

reading reading listening

### Nicholas Van Handel · Manpower

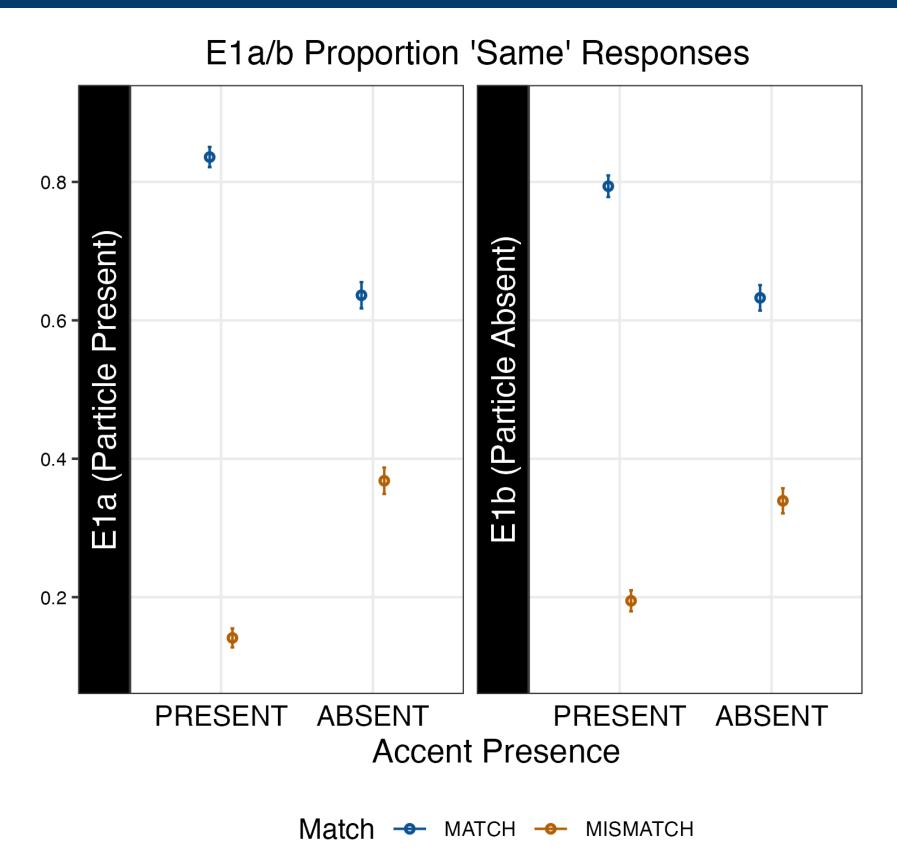
the new kibble

the new kibble

#### nvanhand@ucsc.edu

# **Amanda Rysling** · UCSC

rysling@ucsc.edu


### 2 Method: Original recordings

| no particle, no accent | Nat  |
|------------------------|------|
| particle, accent (v1)  | Natl |
| no particle, accent    | Nat  |
| particle, accent (v2)  | Nat  |

#### 2 Method: Task

#### **Trial structure:**

- **Exposure sentence**
- **Exposure word list**
- Two math distractors
- **Target sentence** (a) or **word list** (b)
- **Same/Different decision** on (d)
- **Confidence rating** (1-3)



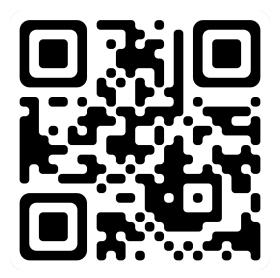
**Unequal Variance Signal Detection Theory Analysis** [13-15] **E1a:** Acc Pres > Acc Abs  $(D_{boot} = 11.69, p < 0.001)$ **E1b:** Acc Pres > Acc Abs (D<sub>boot</sub> = 9.3, p < 0.001)

Across experiments: Acc E1a > Acc E1b (marginally,  $D_{boot} = 1.79$ , p = 0.07) Within PRES: Acc E1a > Acc E1b ( $D_{boot}$  = 2.41, p = 0.01)

brms [16] logistic regression on Same responses Greater tendency to erroneously respond Same for ABS-MM compared to PRES-MM ( $\beta$  = 6.05, [5.21, 6.92])

 $\rightarrow$  Degraded accuracy in ABS conditions across the board  $\rightarrow$  No evidence for Top-down Overwriting




# Acknowledgments & References

Many thanks to Maziar Toosarvandani, and to audiences at UCSC's Syntax, Semantics, and Language Processing Lab (s/lab), CAMP5, and Linguistics at Santa Cruz for helpful feedback and comments.



**References:** [1] Rooth (1992). Nat. Lang. Semantics [2] Rysling et al. (2020) Acoustical Society of America. [3] Clifton, Rysling, & Bishop (2021). APP [4] Cutler (1976). Verbal Learning and Verbal Behavior. [5] Cutler & Fodor (1979). Cognition. [6] Birch & Garnsey (1995). JML [7] Sturt et al. (2004). Psychonomics [8] Fraundorf et al. (2010). JML. [9] Rich & Harris (2021). Annual Meeting Cog. Sci Society. [10] Potter & Lombardi (1990). JML [11] Kimball & Cole. (2016). Speech Prosody. [12] Bellik & Roberts. (2019). CUNY35. [13] Hautus et al. (2021). Routledge. [14] Robin et al. (2011) BMC Bioinf. [15] Dillon & Wagers (2021) In Cambridge Handbook of Exp. Syntax. [16] Bürkner (2017) J. Stat. Soft.

# HSP 2023 @ Pittsburgh



the **corgi** the new kibble thaniel fed thaniel fed only the **CORGI** the new kibble

thaniel fed **the CORGI** the new kibble thaniel fed only the CORGI the new kibble

3 unrelated words, pairwise LSA scores < .4, sometimes with H\*

randomly generated digits 0-50, addition or subtraction