

Domain-sensitivity of sentence memory

and (lack of) temporal contiguity effects

Lalitha Balachandran, Stephanie Rich, and Matt Wagers

{lalithab,skrich}@ucsc.edu UC Santa Cruz Linguistics AMLaP 29, 2 September 2023

Background: Contiguity in Memory

Temporal Context Model: Items are associated with shared encoding contexts, which affect the maintenance and retrieval of items in memory. Retrieval of items leads to reactivation of their contexts [4].

- **Temporal contiguity** in free recall of unstructured word lists: temporally proximal items within some group influence one another's accessibility [3].
- Contiguity Effect: Correct recall of word $w_i \rightarrow w_{i+1}$ or w_{i-1}
- Forward Asymmetry (FA): w_{i+1} is more likely than w_{i-1} .
- In word list experiments, contiguity effects also extend to chunks/groups, which delineate encoding contexts [6].

- Items consisted of *chunks*: list constructions containing 4 comma-separated SVO clauses.

- Task: chunk-by-chunk cumulative self-paced reading
- Comprehension question followed by free sentence recall.

Manipulated whether participants responded to a reactivating QUESTION (Chunk 2 Question, Chunk 3 Question, No Question) between presentation and recall.

Example Item	Cond	Reactivation Question
$C_{HUNK1} (\mbox{The guest}_{Ch1\mbox{-}Subj} \mbox{ loved the voter}_{Ch1\mbox{-}Obj}, \label{eq:ch1-}$	NoQ	
$C_{HUNK2} (the \ miner_{Ch2-Subj} \ loved \ the \ guide_{Ch2-Obj},)$	Ch2Q	Who did the miner love?

UNIVERSITY OF CALIFORNIA

In search of temporal contiguity effects in sentential contexts

• Do linguistic groupings within a sentence correspond to encoding contexts in memory? • Suggestive evidence comes from syntactic [5] and prosodic [2] memory literature.

Hypotheses & Predictions

Linguistic Sensitivity (LS): Contextual reactivation is bounded by linguistic groupings.

- Linguistic cues to contextual grouping (e.g. syntactic or prosodic boundaries) delineate contexts in sentential memory.
- Predicts contiguity effects remain within linguistic chunks: no recall advantage for w_{i+1} following reactivation of w_i if w_i and w_{i+1} are separated by a linguistic boundary.

Temporal Contiguity (TC): Contextual reactivation renders temporally contiguous content more active, even across linguistic boundaries.

- Temporal contiguity affects memory representations, even within linguistic structures.
- Predicts contiguity effects cross linguistic chunks: recall advantage for w_{i+1} following reactivation of w_i even if w_i and w_{i+1} are separated by a linguistic boundary.

CHUNK3 | the enemy_{Ch3-Subj} loved the groom_{Ch3-Obj},

and the boxer_{Ch4-Subi} loved the artist_{Ch4-Obi}. CHUNK4

Results: Recall Accuracy

Q-Corr	eta	95% Crl	eta	95% Crl	Q-Incorr	eta	95% Crl	eta	95% Crl
		Ch2Q		Ch3Q			Ch2Q		Ch3Q
Ch2-Subj	1.8	(1.2,2.5)	0.1	(-0.3,0.5)	Ch2-Subj	-0.7	(-1.4,0.02)	-1.2	(-1.8,-0.7)
Ch2-Obj	2.3	(1.6,3.2)	0.1	(-0.3,0.5)	Ch2-Obj	-3.2	(-5.8,-1.8)	-1.0	(-1.6,-0.4)
Ch3-Subj	-0.09	(-0.4,0.2)	1.6	(1.1,2.2)	Ch3-Subj	-1.7	(-2.3,-1.2)	-0.5	(-1.3,0.4)
Ch3-Obj	-0.2	(-0.5,0.08)	1.6	(1.2,2.1)	Ch3-Obj	-1.1	(-1.7,-0.5)	-3.4	(-5.1,-2.3)

Table 1. brms [1] m/e model results for Question-Correct and Question-Incorrect trials.

- ✓ LS: Reactivation is bounded by chunk boundaries.
- **?TC**: Correct trials reactivation benefit does not extend to temporally contiguous positions. Incorrect trials - recall failure does extend to TC positions.

Generalization 1: Chunk reactivation does not lead to across-chunk contiguity effects.

Q: Does chunk reactivation lead to contiguity effects across linguistic boundaries? A: No – the benefit for reactivated chunks does not spill over to subsequent positions.

Recall Accuracy by Position – Question Correct Trials

Recall Accuracy by Position – Question Incorrect Trials

Generalization 2: Intrusions evidence chunk-to-chunk contiguity.

Q: Do intrusion rates reveal contiguity effects?

- A: Yes, but at the level of the chunk, maintaining congruence of syntactic roles.
- Overall intrusion rates by position in Chunk 2 and Chunk 3: 7-10%
- Most intrusions (63-72%) came from the same item.

Discussion

- Reactivation questions successfully boosted accuracy for recall, but very selectively.
- Linguistic boundaries block associations between temporally contiguous words, but may facilitate associations between temporally contiguous chunks.
- Syntactic role information outweighs similarity from temporal contiguity in intrusion data.

Across-chunk intrusions:

- Typically from contiguous chunks (Chunks 2 and 3 replaced)
- Subjects most often replaced with subjects, objects with objects.
- Within-chunk intrusions: objects were likely to intrude in the subject position, not vice versa.

Contiguous Chunk Intrusions

Contiguous Position Intrusions

Acknowledgements: Many thanks to undergraduate RAs Jenna Maas and Josh Lieberstein for assistance in stimulus creation, and to members of UCSC's s/lab for discussion and feedback on this work.

Conclusions

• We find evidence for Linguistic Sensitivity

- Recall advantage does not extend across chunk boundaries following reactivation question
- Intrusions are more likely from the same structural position (e.g. subjects intrude subjects), and not from temporally contiguous list positions
- Evidence for Temporal Contiguity at the level of linguistic chunks, not individual words

References

[1] Bürkner, Paul-Christian. 2017. Journal of Statistical Software 80. 1–28. [2] Frazier, Lyn, Katy Carlson & Charles Clifton. 2006. Trends in Cognitive Sciences 10(6). 244–249. [3] Healey, M Karl, Nicole M Long & Michael J Kahana. 2019. Psychonomic Bulletin & Review 26(3). 699–720. [4] Howard, Marc W & Michael J Kahana. 2002. Journal of Mathematical Psychology 46(3). 269–299. [5] Johnson, Neal F. 1965. Journal of Verbal Learning and Verbal Behavior 4(6). 469–475. [6] Kahana, Michael J, Marc W Howard & Sean M Polyn. 2008. *Psychology* 3.