Origins & structure of Earth

Chapter 2

Topics to learn

- History of the Universe and Earth
- Structure of Earth
- Formation of the atmosphere and oceans
- Origins of life on Earth

Chapter 2, pp. 12-29
11:59:24 p.m.

15,000,000,000 years ago...
The Big Bang
Origin of solar system: Nebular Hypothesis
Sequence

- Explosion
- Eventually, non-uniform distribution of matter due to gravity
- Aggregation
- Repeat

Silicates and iron compounds
- Mercury
- Venus
- Earth
- Mars
- Saturn
- Neptune
- Jupiter

Hot inner disk: heated by young sun, ices and gases cannot condense. Particles that condense here are mainly silicates and iron compounds.

Cold outer disk: ices and gases condense here, as well as silicates and iron compounds.
General definitions

- **Atoms**: fundamental building blocks of chemistry; they are conserved in chemical reactions
- **Element**: a compound which cannot be further broken down into another compound with different chemical properties; material composed of one type of atom
- **Gravity**: force of attraction between two bodies; is large when distance between bodies is small
- **Density**: mass per unit volume
Composition of Universe

<table>
<thead>
<tr>
<th>Element</th>
<th>Abundance relative to silicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>40,000</td>
</tr>
<tr>
<td>Helium</td>
<td>3,100</td>
</tr>
<tr>
<td>Oxygen</td>
<td>22</td>
</tr>
<tr>
<td>Neon</td>
<td>8.6</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>6.6</td>
</tr>
<tr>
<td>Carbon</td>
<td>3.5</td>
</tr>
<tr>
<td>Silicon</td>
<td>1</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.91</td>
</tr>
<tr>
<td>Iron</td>
<td>0.6</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.38</td>
</tr>
</tbody>
</table>

The periodic table of the elements

[Periodic table image]
Solar System

- 5,000,000,000 years old
- Formed from stellar dust
- Inner planets
 - Heavier elements
 - (Fe, Si)
- Outer planets
 - Lighter Compounds
 - (H₂, CH₄, NH₃) solid ‘gas’

Earth

- 4,600,000,000 yrs old

(How do we know that?)
Dating Rocks

- **Relative Dating**
 - Early 19th Century
 - Correlate rock *strata* with fossils

- **Absolute Dating**
 - Curies discovered radiation
 - Almost all rocks have radio-isotopes
 - If you know $\tau_{1/2}$, can calculate *exact date*
Radioisotope and Half-life

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radon-222</td>
<td>4 days</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>28 years</td>
</tr>
<tr>
<td>Radium-226</td>
<td>1602 years</td>
</tr>
<tr>
<td>Plutonium-239</td>
<td>24 400 years</td>
</tr>
<tr>
<td>Uranium-235</td>
<td>700,000,000 years</td>
</tr>
<tr>
<td>Carbon-14</td>
<td>5730 years</td>
</tr>
<tr>
<td>Phosphorus-32</td>
<td>14.3 days</td>
</tr>
<tr>
<td>Tritium (H-3)</td>
<td>12.3 years</td>
</tr>
<tr>
<td>Americium-241</td>
<td>432 years</td>
</tr>
<tr>
<td>Nitrogen-13</td>
<td>9.96 minutes</td>
</tr>
</tbody>
</table>

Earth
- 4,600,000,000 yrs old
 - At first, homogeneous & fluid
Protoearth vs. Earth

- How are they different?
- How did Protoearth become Earth?

Topics to learn
- History of the Universe and Earth
- Structure of Earth
- Formation of the atmosphere and oceans
- Origins of life on Earth

Chapter 2, pp. 12-29
Earth

- Gravity causes "density stratification"

Lighter Elements (Al, Si, Mg, O)

Heavy Elements (Fe, Ni, other metals)

Earth Structure: Chemical

- Crust (0 – 30 km)
 - Continental
 - Light, granite, Si, Al, oxy-minerals
 - Oceanic
 - Heavier, Mg, Fe, oxy-silicates
- Mantle (30 – 2900 km)
 - Most of the Earth’s volume (2400 miles thick)
- Core (2900 – 6370 km)
Earth Structure: Physical

- **Lithosphere** (0-100 km)
 - (crust + mantle)
- **Asthenosphere** (100-700 km)
 - Plastic
- **Mesosphere** (700 - 2900 km)
 - Solid, rock due to pressure
- **Outer Core** (2900-5200 km)
 - Liquid (5500°C)
- **Inner Core** (5200-6370 km)
 - Solid (6600°C)
Topics to learn

- History of the Universe and Earth
- Structure of Earth
- Formation of the atmosphere and oceans
- Origins of life on Earth

Chapter 2, pp. 12-29

Oceans

- Where’d the water come from?
 - Two main hypotheses:
 - Outgassing
 - Extraterrestrial sources
Outgassing

Water trapped in rocks released from volcanic vents.
- Remained as water vapour to create clouds, rain and eventually oceans
- Only need to degas 7% of mantle to create today’s oceans

Extraterrestrial

- Riding on comets
 - Melt when enter Earth’s atmosphere
 - Mostly small (<9m)
 - But: water is very similar to water from meteors
- Open debate
...Changes in the atmosphere

3 Atmospheres in Earth’s history:
1. Initially: H, He (boiled away)
2. Earth cooled, formed crust
 - Volcanoes and outgassing
 - Water, carbon dioxide, ammonia
3. Oxygen-rich
Topics to learn

• History of the Universe and Earth
• Structure of Earth
• Formation of the atmosphere and oceans
• Origins of life on Earth

Chapter 2, pp. 12-29

Origins of Life

• “Life” began ~3.6 bya
• How?
 – From space?
 – In situ, on Earth?
• Either way, WATER, NUTRIENTS & ENERGY are necessary
• STABLE environment helps too
Origins of Life

- **Water**
 - Great solvent - dissolves many chemicals
 - Transports nutrients
 - Moderates temp.
 - Retains heat
- **Nutrients**
 - NH$_3$, CH$_4$, H$_2$
- **Energy**
 - Lightning, UV, geothermal heat, IR light in hydrothermal systems

Origins of Life...

Conditions when life began (3.6 bya):
- Atmosphere = H$_2$O (water), CH$_4$ (methane), NH$_3$ (ammonia)
- uv light
- lightning
Origins of Life

• JS Haldane (1929)
 – H₂O, NH₄, CH₃, H₂ + UV light = complex molecules

• Stanley Miller (1953) tried it
 – Mimic conditions in shallow ocean
 – Add lightning (spark)
Origins of Life

In situ hypothesis: spontaneous synthesis

- Surface Pools - Biosynthesis - evaporation of water in shallow pools may have concentrated organic building blocks. Energy supplied by sunlight (photosynthesis).
- Deep Ocean - Around hydrothermal vents utilizing H$_2$S as energy source (chemosynthesis), or perhaps infrared light.
Primitive life

- Water present ~4.6 billion years ago
- Heterotrophic organisms ~3.8 billion years ago
 - Autotrophs came later
- Oxygen starts to build up ~2.6 billion years ago
 - Photosynthesis & respiration

Ancestors of the first autotrophs
Changes in the atmosphere

1. H, He
2. Outgassing of internal gases (water vapor, carbon dioxide, ammonia)
3. Present atmosphere – oxygen from early photosynthesis! (oxygen, 20%, nitrogen, 78%)

End

• Next class... plate tectonics!