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This article examines nonmathematical linguistic complexity as a source of differential item

functioning (DIF) in math word problems for English language learners (ELLs). Specifically, this

study investigates the relationship between item measures of linguistic complexity, nonlinguistic

forms of representation and DIF measures based on item response theory difficulty parameters

in a state fourth-grade math test. This study revealed that the greater the item nonmathematical

lexical and syntactic complexity, the greater are the differences in difficulty parameter estimates

favoring non-ELLs over ELLs. However, the impact of linguistic complexity on DIF is attenuated

when items provide nonlinguistic schematic representations that help ELLs make meaning of the

text, suggesting that their inclusion could help mitigate the negative effect of increased linguistic

complexity in math word problems.

Assuring valid and fair assessments of subject-based skills for students who are not profi-

cient in English is one of the most pressing and challenging issues confronting large-scale

educational assessment today. English language learners (ELLs) are a very rapidly growing

student group in U.S. public schools. Whereas the general school population increased about

12% in the last decade, ELL enrollment has more than doubled (Kindler, 2002). In 2002,

there were approximately 5 million ELLs in U.S. public schools, comprising 10% of the

primary–secondary school enrollment. Though grouped under one label, ELLs represent a

myriad of national, cultural, and linguistic backgrounds (Kindler, 2002). Although 80% of

these students are Spanish speaking, the remaining 20% speak one of 460 different languages

at home. ELLs are also among the lowest scoring groups in the National Assessment of

Educational Progress (NAEP) mathematics assessment. Close to half of ELLs scored below
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Princeton, NJ 08541. E-mail: mmartiniello@ets.org
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LINGUISTIC COMPLEXITY, SCHEMATIC REPRESENTATIONS 161

Basic in the NAEP fourth-grade mathematics tests of 2005, 2007, and 2009 (46%, 44%, and

43%, respectively). By comparison, 18% of non-ELLs in 2005 and 16% in 2007 and 2009

scored below Basic in the same grade level (U.S. Department of Education, 2005, 2007,

2009).

The growing size of this diverse group of students poses considerable challenges to schools

not only in designing instruction but also in interpreting assessment results (National Re-

search Council, 2000) particularly in today’s high-stakes environment. At the federal level,

the No Child Left Behind Act mandates the inclusion of and disaggregated score-reporting

for ELLs in the accountability systems for schools operating with Title I funds (U.S. De-

partment of Education, 2002). The use of testing for high-stakes decisions presupposes that

a student’s test score is an accurate reflection of his or her mastery of a particular content

area, such as math. This assumption, however, might be flawed for the ELL population.

Numerous reports commissioned by the National Research Council discuss the questionable

validity of content-based assessments for students who are not proficient in English (August

& Hakuta, 1997; National Research Council, 2000, 2002). As stated in the 2000 report, “a

test [of proficiency in a content area] cannot provide valid information about a student’s

knowledge or skills if a language barrier prevents the students from demonstrating what

they know and can do” (p. 20). Research suggests that items with unnecessary linguistic

complexity in subject-based assessments such as math are a potential source of bias when

assessing ELLs’ subject mastery (Abedi, 2004; Abedi, Leon, & Mirocha, 2003). Experts

argue for the need to sort out language skills of ELLs from subject-area knowledge (Abedi,

2004; Abedi & Lord, 2001). However, they recognize the difficulty in doing so because

all assessments administered in English are also measures of English proficiency (Ameri-

can Educational Research Association, American Psychological Association; National Council

on Measurement in Education, 1985; August & Hakuta, 1997; National Research Council,

2000).

In an effort to disentangle the confounding of language skills with math proficiency in the

math assessment of ELLs, this study investigated whether the relative difficulty of mathematic

items for ELLs is associated with construct-irrelevant linguistic complexity in word prob-

lems. Employing item response theory (IRT) differential item functioning (DIF) methods, this

study examined the relationship between nonmathematical linguistic complexity of math word

problems and the differential performance of ELLs and non-ELLs. Specifically, it investigated

whether the magnitude of DIF measures (differences in IRT difficulty parameter estimates)

for ELLs versus non-ELLs are associated with item measures of nonmathematical linguistic

complexity in a state fourth-grade mathematics test.

However, mathematics discourse in context integrates linguistic and nonlinguistic modalities

of communication. In addition to text, graphs, equations, and diagrams are an integral part

of math word problems, math textbooks, curriculum standards, and classroom instruction.

Thus, this study also explored the impact of such symbolic and visual representations on

the relationship between text linguistic complexity and DIF for language proficiency status.

Specifically, it investigated whether the effect of nonmathematical linguistic complexity on

DIF was moderated by the nature of symbolic/visual forms of representations present in the

item (i.e., what is the interaction between type of symbolic representations and nonmathematical

linguistic complexity when modeling differences in the IRT difficulty parameter estimates for

ELLs and non-ELLs?).
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162 MARTINIELLO

RESEARCH BACKGROUND AND CONTEXT

The language of mathematics has been described as a “unified system of meaning-making”

(Lemke, 2003, p. 1) that integrates the multiple semiotic resources of natural language, technical

math terminology, and nonlinguistic symbolic and visual forms of representation. Successful

math word problem solving requires competently decoding each of these various modalities.

First, students must comprehend the item’s verbal “language in general” or natural language.1

The more complex the text is, the more difficult it will be to process, increasing reading time

and/or leading to misinterpretations of the problem and, in turn, to incorrect solutions (Mestre,

1988). In addition, students need to know the domain-specific terminology of mathematics, that

is, both the specialized vocabulary (i.e., triangle, coordinates) and syntactic structures (greater

than; 10 apples weigh the same as 2 melons) that are typical of math discourse (Abedi, Lord,

& Plummer, 1997; Halliday, 1978; Lemke, 2003; Mestre, 1988). Finally, students also need

to interpret nonlinguistic math symbols and their particular syntax to decode mathematical

meaning, such as in equations, as well as make sense of visual displays, diagrams, graphs, and

figures.

By definition, ELLs have not yet acquired sufficient mastery of the English language to

perform in regular classrooms. Consequently, excessive linguistic complexity is expected to

compromise their understanding of math word problems more than non-ELLs’ understanding.

Consistent with this expectation, this study hypothesized that excessive linguistic complexity in

the natural language of math word problems would function as a source of construct-irrelevant

difficulty (Messick, 1989) for ELLs, making linguistically complex items “irrelevantly more

difficult” for this group than for non-ELLs with equivalent math proficiency, compared to

linguistically simple items. The term linguistic complexity used throughout this study refers to

construct-irrelevant linguistic complexity of the natural language in math word problems, and

not to the math-related terminology that is specific to the construct the math test intends to

measure.

Likewise, because decoding of math word problems often involves both linguistic and

nonlinguistic symbols, the study hypothesized that the presence and type of symbolic/visual

representations in the item would moderate the impact of increased linguistic complexity on

language proficiency DIF.

Previous Research on Linguistic Complexity and Math Performance

of ELLs

According to the literature, the linguistic features of natural language that create comprehension

difficulties for ELLs include vocabulary/lexical complexity (number of low-frequency, abstract,

ambiguous/polysemous, idiomatic, and culture-specific nonmathematical vocabulary terms) and

increased syntactic complexity (measured as mean sentence length in words, item length in

words, noun phrase length, number of prepositional phrases, and participial modifiers, presence

of syntactically complex sentences; i.e., with relative, complement, adverbial and conditional

clauses; Abedi & Lord, 2001; Abedi, Lord, & Hofstetter, 1998; Abedi et al., 1997; Butler,

1The term natural language refers to both the nonacademic or everyday language learned at home and other

informal settings, and also the general, cross-disciplinary academic language learned at school.
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LINGUISTIC COMPLEXITY, SCHEMATIC REPRESENTATIONS 163

Bailey, Stevens, Huang, & Lord, 2004; Kim-Wolf et al., 2008; Martiniello, 2006a, 2007b,

2008; Spanos, Rhodes, Dale, & Crandall, 1988).

In the last decade, a few important empirical studies have investigated the relationship

between some of these linguistic features and the difficulty (p value) of math word problems

for ELLs and non-ELLs in elementary, middle, and high school levels (Abedi et al., 2005;

Abedi & Lord, 2001; Abedi et al., 1998; Abedi et al., 1997; Lord, Abedi, & Poosuthasee,

2000; Shaftel, Belton-Kocher, Glasnapp, & Poggio, 2006). Although many of these studies

did, as predicted, find a relationship between linguistic complexity and ELLs’ performance in

math word problems, the effect of specific linguistic features varied from test to test and from

one grade to another.

Of the features studied, only item length has shown relatively consistent negative effects on

item difficulty for ELLs and non-ELLs in a variety of math tests and grade levels in national

and state samples. Longer items exhibited greater p value differences across ELLs and non-

ELLs than shorter items did in the eighth-grade NAEP math test (Abedi et al., 1997) and the

Stanford Achievement Test 9th Edition (SAT9; Lord et al., 2000). Also, longer items showed

lower p values than shorter items for both ELLs and non-ELLs in the fourth-, seventh-, and

tenth-grade Kansas general math assessments (KGMA; Shaftel et al., 2006).

Employing discriminant-function analysis, Abedi et al. (1997) examined the interaction

between item length and language spoken at home on item mean score or p value on the 1990

NAEP eighth-grade math test. Item length was measured as number of lines in the stem and

answer choices (short item: one line, long item: two or more lines). They found that both

long and short items were more difficult for students who always spoke a language other than

English at home than for those that spoke only English (Booklet 9 long items’ means were 0.32

and 0.43, respectively, p < .01; short items 0.46 and 0.53, respectively, p D .12; see Table 15

in Abedi et al., 1997), remarking that the relationship between language spoken at home and

item difficulty was “more evident for the longer items than for the shorter items” (p. 19).

Working with third- and eighth-grade students in Delaware, Lord et al. (2000) estimated

differences in the item p values for ELLs and non-ELLs2 in the SAT9. They correlated these

performance gap indices with item length (now measured in terms of number of words rather

than lines) and found significant correlations in eighth but not in third grade. In eighth grade,

longer items exhibited larger difficulty differences across groups than did shorter items.

Using multiple regression, Shaftel et al. (2006) modeled item p value as a function of item

length (and other linguistic features) for general students, ELLs, and students with disabilities

in the 2000 KGMA administered in Grades 4, 7 and 10. They found no interactions between

pattern of linguistic features and group membership. For the groups combined, the total number

of words in the item was a significant predictor of item p values in seventh grade, although

not in fourth or tenth grade. Not surprisingly, the item p values were greater for the general

population than for ELLs, in all grades.

Results for other linguistic features have been relatively inconsistent. For example, items

with ambiguous or multiple meaning words were more difficult than items with fewer or none

of these features for both ELLs and non-ELLs in the fourth-grade KGMA, but this effect was

not significant in the seventh and tenth grades (Shaftel et al., 2006).

2This study used the terms LEP and EP, Limited English Proficiency and English Proficient.
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164 MARTINIELLO

Likewise, the presence of idioms, uncommon words and/or words used in an uncommon

way was not significantly correlated with (unconditional) item p value differences across ELLs

and non-ELLs in a third-grade math subtest of a standardized achievement test (Abedi et al.,

2005). Neither was the presence of low-frequency vocabulary in the third and eighth grade

SAT9 (Lord et al., 2000).

The number of prepositions and pronouns had no effect on item p values for ELLs or non-

ELLs in the KGMA seventh and tenth grades, but their effects were significant in the KGMA

fourth grade (Shaftel et al., 2006). The presence of complex or uncommon syntactic structures

did not show significant correlations with group p value differences in the third-grade math

subtest, whereas the presence of multiple clauses did (r D .32, p D .02; Abedi et al., 2005).

Neither the number of passive voice sentences nor the number of subordinate clauses has shown

significant effect in any of the tests and grades studied (NAEP Grade 8 in Abedi et al., 1997;

SAT9 Grades 3 and 8 in Lord et al., 2000; KGMA Grades 4, 7, and 10 in Shaftel et al., 2006).

Although most linguistic features have failed to show a significant effect on item difficulty

when considered individually, research employing different levels of aggregation of linguistic

complexity indicators suggests that their effect is significant when they are considered together

in a composite scoring of overall linguistic complexity. For instance, Abedi et al. (1997) found

that a linguistic complexity score based on familiarity of nonmathematical vocabulary, presence

of syntactically complex sentences, relative clauses, and abstract format of the item statement

significantly predicted the difference between the item p values for ELLs and non-ELLs in the

NAEP eighth-grade national sample.

These findings suggest that using a composite scoring of overall linguistic complexity (in-

cluding both syntactic and lexical indicators) might be more appropriate in capturing challenges

to text comprehension than using each of the features as individual indicators or aggregating

them under separate categories for vocabulary and grammar.

Consistent across studies is the practice of considering only verbal natural language for

the linguistic complexity analyses, excluding specialized math terminology. In the one study

that did examine math vocabulary, attributes of this vocabulary did predict performance. For

instance, difficulty of math vocabulary was the only “linguistic” feature to show a significant

negative effect on item p values across all grades (4, 7, 10) for both ELLs and non-ELLs in the

KGMA (Shaftel et al., 2006). However, math vocabulary is not a construct-irrelevant feature

of math items. After all, understanding the meaning of math terms of varying difficulty is part

of what a math test intends to measure. Therefore, considering difficult math vocabulary as an

indicator of purely linguistic (rather than mathematical) complexity in items would not help us

distinguish the effect of English language skills from subject knowledge in the performance of

ELLs and non-ELLs.

To identify construct-irrelevant variation in item performance, the studies reviewed relied

mainly on measures of item impact. Their outcomes included either group p values or differ-

ences in group p values for ELLs and non-ELLs. However, to identify items unusually favoring

one group over another, one must look at differences in item performance, in this case difficulty,

for ELLs and non-ELLs matched on their math proficiency (i.e., DIF). A more recent study by

Abedi (2004) overcomes this problem with the use of contingency table methods that condition

on math scores. Abedi examined whether items functioned significantly differently for language

background groups in the 1992 NAEP long-term trend math test using the Mantel-Haenszel

(Holland & Thayer, 1988) DIF statistic. Matching students on total items correct at the block
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LINGUISTIC COMPLEXITY, SCHEMATIC REPRESENTATIONS 165

level, Abedi identified some items showing significant DIF against students who always spoke

a language other than English at home. After comparing the number of items flagged for DIF

across groups, he posed that these items were affected by language factors. However, unlike his

previous studies, this one did not analyze the items’ linguistic features. Neither did it examine

the relationship between particular linguistic features and the results of the Mantel-Haenszel

DIF analyses.

Symbolic and Visual Representations in Math Items

Despite the fact that most math word problems include symbols and figures along with text,

none of the studies reviewed have examined the combined effect of linguistic complexity and

nonlinguistic forms of representation on differential item difficulty for ELLs and non-ELLs.

However, the language of mathematics includes more than the natural language on which

the linguistic complexity measures rely. As a multisemiotic system, mathematics discourse

in context integrates multiple modalities of communication. In math textbooks, classroom

instruction, and assessment, students make sense of a particular math word problem using

both the linguistic and nonlinguistic symbols coexisting in such an item (Barton & Neville-

Barton, 2003a, 2003b; Halliday, 1978; Lemke, 2003; Mestre, 1988; O’Halloran, 2000). In

fact, Lemke (2003) found that “competent deployment of mathematical meaning in context is

typically interdependent with both verbal language and visual representations” (p. 12).

In the case of ELLs from diverse age groups, research has shown that nonlinguistic visual

representations are an especially important tool for making sense of math tasks and conveying

math concepts (Barton & Neville-Barton, 2003a, 2003b; Turner, Dominguez, Maldonado, &

Empson, 2006). For instance, during problem-solving discussions, fourth- and fifth-grade ELLs

struggling to express their mathematical ideas through spoken English used representations such

as diagrams and symbols to help them communicate their mathematical thinking (Turner et al.,

2006).

Furthermore, in experimental math tests designed to present similar math questions using

different modalities of representation,3 undergraduate ELLs showed greater understanding of

nonlinguistic or nontextual modes of representation than of textual modes of representation.

They also tended to resort to nontextual modes to make sense of math questions when they could

not understand the English text (Barton & Neville-Barton, 2003a, 2003b). Specifically, under-

graduate ELLs tended to “understand symbolic and graphical questions best, then diagrammatic

questions, and [English] text questions least” (Barton & Neville-Barton, 2003a, p. 8). When the

same questions were presented in two modes (text only and symbols) ELLs chose to work with

the symbolic mode more frequently than with the text-only mode. Also, undergraduate ELLs

and non-ELLs of comparable math ability did not differ in their understanding of math problems

presented in nontextual modes, whereas they did differ in their understanding of text-only math

questions. These findings suggest that ELLs’ difficulty comprehending English text in math

word problems “may be overcome with symbolic, diagrammatic, or graphical understanding”

when math assessments present problems through different modalities of representation (Barton

& Neville-Barton, 2003b, p. 6).

3The five modalities included English text only, mathematical technical text, symbols, diagrams, and graphs.
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166 MARTINIELLO

The literature on how students generate visual representations when problem solving in

mathematics provides different categorizations of visual representations that can be helpful in

classifying the types of nonlinguistic representations used in math items. Common across the

classifications reviewed are two basic categories of representations, pictorial and schematic.

Pictorial representations include concrete images (Presmeg, 1986), sometimes called mental

pictures (Andersen, as cited in Johnson, 1987), which depict details of objects described

in the math problem (Hegarty & Kozhevnikov, 1999). Schematic representations are more

abstract than pictorial images. They are meaning structures representing several elements or

parts (i.e., objects, people, events) and their pattern of connections and relationships (i.e.,

causal, part-whole, temporal sequence relationships; Johnson, 1987). This characterization of

schematic representations would include Hegarty and Kozhevnikov’s definition of schematic

representations as those “encoding the spatial relations described in a problem” (p. 684), and

Presmeg’s definition of pattern imagery as “pure relationships depicted in a visual-spatial-

scheme” (p. 43). It could also subsume Presmeg’s category of images of formulae, where

relationships among numbers and variables are represented. This study hypothesized that as

more “schematic” meaning is provided by the symbolic/visual representation in the item, the

more it will attenuate the effects of linguistically complex text on ELLs performance.

METHODS

In this study, the IRT difficulty parameter estimates of ELL and non-ELL fourth graders were

compared for math items of varying linguistic complexity and pictorial or schematic support.

In the first stage of the study, the items’ linguistic complexity was rated, the presence and

type of symbolic/visual representation coded, and measures of IRT DIF (i.e., differences in the

difficulty parameter estimates) were obtained for ELLs and non-ELLs. In a second stage of

analyses, Ordinary Least Square multiple regression was used to model the items’ DIF measure

as a function of the items’ linguistic complexity and the use of schematic representations in

the item.

Instrument

This study analyzed the English version of a state fourth-grade mathematics test. This is a

standards-based achievement test aligned with the state’s mathematics curriculum framework.

It includes five major learning strands: (a) number sense and operations; (b) patterns, relations,

and algebra; (c) geometry; (d) measurement; and (e) data analysis, statistics, and probabilities.

Items were of three types: multiple choice (MC; 29 items scored 0–1), short answer (SA; 5 items

scored 0–1), and open response (OR; 5 items scored 0–4). The 39-item long test was calibrated

using the three-parameter logistic model for MC items, the two-parameter logistic model for

SA items and Samejima’s Graded Response Model for polytomous items.

Sample

The sample comprised 68,839 fourth graders who took the test statewide in the spring of

2003. The focal group included 3,179 ELLs, whereas the reference group included 65,660
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LINGUISTIC COMPLEXITY, SCHEMATIC REPRESENTATIONS 167

non-ELLs. Students classified as former ELLs were excluded from the DIF analysis because,

although they were assumed to have acquired sufficient mastery of the English language to

perform in regular classrooms, they are typically not fully proficient in English. Because the

study’s purpose was to examine the linguistic complexity of items written in English, ELLs

taking the test in Spanish were also excluded from the sample.

Measures

DIF. In the unidimensional IRT model applied here, DIF measures were estimated as

the difference between the difficulty parameter estimates of the studied item for ELLs (focal

group) and non-ELLs (reference group), constraining pseudo-guessing (multiple choice only)

and discrimination parameters to be equal across groups.

An all-item anchor DIF approach (Thissen, 2001) was employed, wherein the conditioning

variable or anchor included all the items except the studied item. In this approach, the item

parameters are constrained to be equal for ELLs and non-ELLs for all items in the test, except

the studied item. For the studied item, the values of the difficulty parameters are allowed to vary

across groups, whereas the pseudo-guessing and the discrimination parameters are constrained

to be equal across groups.

Thissen’s IRTLRDIF v.2.0b program was used to estimate item parameters and DIF measures

for the 39-item long test.4 For each studied item, an omnibus likelihood ratio test for item DIF

was estimated comparing a model constraining all item parameters to be constant across groups

and a model allowing all item parameters to vary for the studied item. When this omnibus test

was not significant at the .05 alpha level, the conditional difference between the difficulty

parameter estimates for ELLs and non-ELLs was set to zero. When this omnibus test was

significant at the .05 level, b parameter estimate differences across the groups were estimated,

such that the DIF index b was b for the focal group minus b for the reference group. An item

with a negative DIF index favors ELLs over non-ELLs relative to the rest of the items in the

test. The mean value of this all-item anchor DIF measure is expected to be zero across all

items. Thus, if positive DIF exists for one item, then this approach must yield a corresponding

amount of negative DIF spread across other items, and vice versa.

Test of model assumptions: Unidimensionality. Both the IRT models used to scale the

test and those used here assume that performance on a test reflects an underlying single ability

or proficiency. Unidimensional IRT models tolerate a certain degree of multidimensionality

in test scores, which DIF measures detect at the item level. However, their use would be

precluded in the case of flagrant violations of the unidimensionality assumption. Thus, a

first factor dominance must be confirmed to support the use of a unidimensional model. To

test the appropriateness of modeling the data with a unidimensional IRT model, principal

component analyses of the items were conducted for the ELL and the non-ELL samples

together and separately. Plots of the eigenvalues were generated for each group, confirming that

the first factor was indeed dominant for both groups. Also, the relative size of the eigenvalues

complied with the criterion suggested by Hambleton, Swaminathan, and Rogers (1991) for

4The IRTLRDIF v.2.0b program implements the Bock-Aitkin (1981) marginal maximum likelihood estimation

algorithm. It produces very similar although not identical results to the MULTILOG program (Thissen, 2001).
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168 MARTINIELLO

unidimensional model fit. The first eigenvalue was more than five times the size of the second

largest eigenvalue, which in turn was relatively similar to the size of the rest of eigenvalues.

Linguistic Complexity

Indicators of linguistic complexity were gathered from experts’ ratings of the items’ grammat-

ical and lexical complexity as well as a microanalysis of the text’s linguistic complexity. In

this paper, the main predictor was a composite linguistic complexity score for each item. It is

the sum of the standardized ratings for the item’s textual microanalysis, average grammatical

complexity and average lexical complexity across experts.

Expert ratings. For this study, a panel of ten recognized researchers in the field of literacy,

linguistics, and bilingual education was gathered to rate the overall linguistic complexity of each

item and provide grammatical and lexical complexity scores for each item. The scoring rubrics

specified five levels of complexity ranging from 1 (least complex) to 5 (most complex). The

grammatical rubrics identified the presence of simple and/or complex grammatical structures in

the item and determined whether the structures were essential for comprehending the text. The

lexical rubrics identified the word usage frequency of the items’ nonmathematical vocabulary

and its potential impact on text comprehension. When scoring items with lower frequency

words, the expert raters were asked to consider whether their meaning would be hard to derive

from context, and whether they were so central for item comprehension that not knowing them

would interfere with comprehending the item.

As discussed earlier, mathematical words were excluded from the lexical complexity analyses

because they are relevant to the construct the test intends to measure. Therefore, for the lexical

rating, the expert raters were advised to disregard previously identified mathematical words in

their test materials, and concentrate instead on the natural language in which the mathematical

terms were embedded. Identification of the mathematical words in the test was based on the

literature reviewed as well as the judgment of two mathematics teachers, one general classroom

teacher with expertise in bilingual education, and a mathematics curriculum specialist from the

Harvard Graduate School of Education faculty.

Prior to their use by expert raters, both the grammatical and lexical scoring rubrics and the

scoring instructions were pilot-tested with a group of classroom teachers enrolled as master’s

students in an introductory linguistics class at Harvard Graduate School of Education. The

scoring instructions included directions to promote rating consistency within each expert rater

across items in the test. To prevent variations in the leniency of rating or rating drift for each

expert rater, raters were provided with benchmark items to be used as points of reference.

Raters were periodically asked to look back at their ratings for the benchmark items to check

whether their rating of linguistic complexity had become harsher or more lenient as they

progressed through the test. If their rating had drifted, raters were instructed to rescore the

items accordingly.

All items in the test were scored by all ten expert raters in the grammatical complexity

scale and the lexical complexity scale. Repeated ratings of each item were averaged across

the ten expert raters to produce a mean item grammatical complexity score and a mean item

lexical complexity score. These average scores are expected to be much more reliable than the

individual expert ratings (Shrout & Fleiss, 1979). To assess the interrater reliability of expert
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LINGUISTIC COMPLEXITY, SCHEMATIC REPRESENTATIONS 169

ratings, intraclass correlation coefficients were estimated using a two-way random effects model

(all experts rate all items; raters and items are considered random effects) for average measure

reliability (reliability of ratings averaged across multiple raters) and absolute agreement (raters

assign identical rather than similar scores). The interrater agreement was high. The intraclass

correlation coefficients were 0.89 for the mean grammatical complexity score and 0.87 for the

mean lexical complexity score.

Microanalysis of the text’s linguistic complexity. As an additional measure of linguistic

complexity, a coding system was developed to identify grammatical elements of complexity

such as number of clauses, noun phrases, verbs, and verb phrases. The coding system captured

the length of these grammatical elements by marking the beginning and ending of each clause

or phrase. Additional codes further specified the syntactic function or type of all elements and

the syntactic order of clauses.

Two linguists were trained to use this micro-analytic coding manual with items from a

different version of the fourth-grade math test. The first linguist coded all 39 items, whereas

the second linguist coded 20% of the items independently and reviewed the first rater’s original

coding for the remaining 80%. The interrater agreement in the microanalytic coding adjusted

for chance agreement was high (Cohen’s � D .89). Discrepancies were discussed and when

needed, items were recoded accordingly. Based on the text microanalysis, linguistic complexity

scores were derived for the items using the same five-level rubrics employed by the panel of

experts.

Nonlinguistic Forms of Representation

Measures of this variable were drawn from experts’ ratings of the items. In addition, student

responses were collected for triangulating the data and informing the final categories of

nonlinguistic forms of representation included as variables in the regression model predicting

DIF. However, students’ responses were not used as predictors in the DIF models.

Student responses. To capture how students use nonlinguistic forms of representation to

scaffold their understanding, think-aloud protocols of the test were administered to 24 fourth-

grade ELLs in six inner-city public schools from the state. The students were first- or second-

generation Latin-American immigrants with at least 2 years of schooling in the United States

and came from homes where Spanish was the primary language. Students were asked to read the

item text aloud and explain whether they could (a) understand the text in English; (b) rephrase

the text in Spanish or English to demonstrate their understanding of its meaning; (c) identify

which aspects (if any) of the English text they could not understand; and (d) figure out what the

item was requiring them to do, even if they could not understand the text in its entirety (e.g.,

by making meaning of nonlinguistic forms of representations in the item, such as equations,

diagrams, and figures).

Items were coded as affording the opportunity to use nonlinguistic representations on the

basis of the interview responses. If at least one of the children successfully relied on the

nonlinguistic representations in the item to scaffold their understanding of the text, the item

was coded 1; all other items were coded 0. Thus, the presence of equations or figures in the

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
ta

 C
ru

z]
 a

t 1
0:

47
 1

5 
N

ov
em

be
r 

20
15

 



170 MARTINIELLO

item would only correspond to a score of 1 if the ELLs relied on it to understand what the

item was requiring them to do.

Expert ratings. Two raters coded the items according to a categorization scheme of

visual representations in math problem solving derived from Hegarty and Kozhevnikov (1999),

Johnson (1987), and Presmeg (1986). First, all items were coded according to three categories:

text only, primarily pictorial (images depicting concrete objects), and primarily schematic

(visual image or symbols represent spatial or numerical relationships among objects/variables).

The categories were named primarily pictorial or primarily schematic to reflect the fact

that some representations may include features of both categories and that their ultimate

classification is a matter of degree. Coding disagreements between raters were discussed until

a final coding was agreed upon.

The correlation between the experts’ ratings of items as primarily schematic and the students’

use of nonlinguistic representations in the interviews was significant (r D .67, p < .01). In most

cases, the ELLs interviewed relied on primarily-schematic representations to make meaning

of the text that they could not understand entirely, whereas primarily-pictorial representations

were seldom used by interviewees. The strong association between the raters’ judgment of

the schematic qualities of the item’s imagery and students’ reliance on such representations to

elucidate meaning in texts suggested that it would be appropriate to further dichotomize items

according to their schematic qualities. Therefore, the three categories were collapsed into one

dummy variable, schematic representation. Items originally coded as text only or primarily

pictorial were recoded as 0, and items coded as primarily schematic were recoded as 1.

Thus, items coded as nonschematic representations included either text only or text along with

pictorial images of concrete objects, while items coded as schematic representations included

a combination of text and nonlinguistic representations depicting mathematical relationships in

the form of visual-spatial patterns or algebraic expressions. This dummy variable (the experts’

classification of the items as schematic representations) was used as a predictor in the multiple

regression analyses predicting DIF.

Item format. The regression analyses predicting item DIF included the 34 dichotomously-

scored items only, examining two types of item format—SA items, where students construct

brief responses to the item, and MC items.

P value. The p value is the proportion of students who answer the item correctly in the

whole sample, including both ELLs and non-ELLs.

Table 1 summarizes the variables and their description.

RESULTS

Descriptive Statistics and Correlations

Table 2 presents descriptive statistics and Table 3 the bivariate correlation matrix. Linguistic

complexity and schematic representation correlated significantly with measures of DIF (r D .58,

p < .001; r D �.55, p < .001 respectively). On average, items with greater linguistic complexity
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LINGUISTIC COMPLEXITY, SCHEMATIC REPRESENTATIONS 171

TABLE 1

Description of Variables

Variable Description

Outcome

DIF index Difference in the IRT difficulty [b] parameter estimates for ELLs and non-ELLs, constraining

discrimination parameters (multiple choice and short answer items) and pseudo-guessing

parameters (multiple choice only) to be equal for the two groups using all the other items

in the test as anchor. The DIF index is b in the focal group minus b in the reference group.

Negative values favor ELLs over non-ELLs.

Predictors

Linguistic

complexity

Composite score of linguistic complexity ratings (microanalytic rating score, experts’ average

grammatical complexity score and experts’ average lexical complexity score).

Schematic

representation

Dummy variable indicating whether the item contains visual images representing either spatial

or mathematical relationships among objects or symbols, such as equations, diagrams, and

tables. Zero indicates that item consisted of text only or included primarily pictorial

representations, i.e. concrete images of objects.

Item format Dummy variable indicating whether item format is multiple choice. Zero indicates that item is

constructed response/short item.

Item p value Proportion of students who answer the item correctly in the whole sample of students.

Note. DIF D differential item functioning; IRT D item response theory; ELLs D English language learners.

TABLE 2

Descriptive Statistics, DIF Measure, Linguistic Complexity,

Schematic Representations, Item p Value, and Item Format for

Dichotomously Scored Math Items

Variable Min Max M SD

DIF statistic �0.50 1.00 �0.019 0.263

Linguistic complexity 5.00 13.00 8.040 1.588

Schematic representations 0.00 1.00 0.680 0.475

Item p value 0.43 0.93 0.675 0.132

Item format (MC) 0.00 1.00 0.850 0.359

Note. N D 34. DIF D differential item functioning; MC D multiple choice.

TABLE 3

Correlations

Variable 1 2 3 4 5

1. DIF statistic — .575** �.553** .108 .072

2. Linguistic complexity — �.026 .183 .159

3. Schematic representations — .201 .068

4. Item p value — .132

5. Item format (MC) —

Note. DIF D differential item functioning; MC D multiple choice.

**p < .01.
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172 MARTINIELLO

tended to show positive DIF, that is, DIF favoring non-ELLs over ELLs. Items with schematic

representations were associated with negative DIF favoring ELLs over non-ELLs. Neither the

item format nor the item p value were significantly correlated with the measure of DIF (r D

.072, p D .686; r D .108, p D .543, respectively). There were no significant correlations among

measures of the items’ linguistic complexity, schematic representations, format, and p value.

Regression Analysis: Predicting DIF as a Function of

Linguistic Complexity

A series of Ordinary Least Square multiple regression models were fit to examine the effect

of linguistic complexity on the DIF measure of the dichotomously scored items (MC and

SA items). Table 4 shows two of the fitted models that include both linguistic complexity and

schematic representations. In the final fitted model, both the main effect of linguistic complexity

and its interaction with schematic representations in the item were significant (p < .001). The

model’s adjusted R2 was .663.

The main effect of linguistic complexity on DIF was positive (p < .001), controlling for

the presence and type of symbolic representations in the item. On average, more linguistically

complex items in the test tended to show greater DIF favoring non-ELLs over ELLs, whereas

less linguistically complex items in the test tended to show greater DIF favoring ELLs over

non-ELLs.

As mentioned earlier, the average DIF value approaches zero in this DIF detection method,

and DIF disfavoring non-ELLs in linguistically simple items can be seen as artifactual. In

contrast to our interpretation of potential bias against ELLs in linguistically complex items,

TABLE 4

Regressions of IRT DIF Measures for ELLs

on the Fourth-Grade Math Items’ Linguistic Complexity

and Schematic Representations

Predictors

Unstandardized

Model 1

Coefficients

Final Model

Intercept �0.564** �0.956***

(0.157) (0.205)

Schematic representation �0.298*** 0.424

(0.061) (0.277)

Linguistic complexity 0.093*** 0.141***

(0.018) (0.025)

Interactions

Linguistic Complexity � �0.090**

Schematic Representation (0.034)

Adjusted R2 0.596 0.663

Unadjusted R2 0.620 0.693

Note. Source is Martiniello (2007b). N D 34. IRT D item response

theory; DIF D differential item functioning; ELLs D English language

learners.

�p < .10. *p < .05. **p < .01. ***p < .001.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
ta

 C
ru

z]
 a

t 1
0:

47
 1

5 
N

ov
em

be
r 

20
15

 



LINGUISTIC COMPLEXITY, SCHEMATIC REPRESENTATIONS 173

FIGURE 1 Differential item functioning (DIF) as a function of linguistic complexity and schematic

representations. Note. ELL D English language learner. Source: Martiniello (2007b).

we have no reason to believe that linguistically simple items are biased against non-ELLs. The

DIF detection methods used here set the mean value of DIF across items as zero (Angoff,

1993). Thus, the fact that linguistically simple items show DIF disfavoring non-ELLs should

not be cause of concern unless the differences are large enough to represent considerable DIF,

indicating need for item investigation.

Controlling for type of symbolic representations in the item, linguistically complex items

tended to have greater conditional difficulty for ELLs (and therefore a lower expected item

score) than for non-ELLs. At the highest end of the linguistic complexity range, items con-

tained complex grammatical structures that were central for comprehending the item, along

with mostly low-frequency, nonmathematical lexical terms whose meaning was central for

comprehending the item and could not be derived from context.5 Presumably these were

items that students with limited English proficiency simply could not understand. Conversely,

linguistically simple items tended to have lower conditional difficulty for ELLs (and therefore a

greater expected item score) than for non-ELLs. These items contained mostly high-frequency

nonmathematical lexical terms and simple grammatical structures. Some relatively simple items

included a “less familiar” term, but its meaning was derivable from context.

However, the extent of the impact of linguistic complexity on conditional difficulty for ELLs

varied as a function of whether the item had schematic representations. Figure 1 shows a plot of

the final regression model in Table 4 illustrating the interaction effect between these variables.

5A more extensive discussion of the linguistic characteristics of these items is included in Martiniello (2008)

Language and the performance of ELLs in math word problems.
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174 MARTINIELLO

The regression line for the effect of linguistic complexity was significantly less steep for

items with schematic representation than for those without. The overall impact of the item

linguistic complexity on DIF was attenuated when ELLs could rely on the nonlinguistic

schematic representations in the item to scaffold their understanding of the text. When items

consisted of text only or text accompanied by pictorial representations, a standard deviation unit

increase in the text linguistic complexity corresponded to a sharper increase in the expected

conditional difficulty differences between ELLs and non-ELLs (0.22) than it would if the item

had schematic representations (0.13).

Additional empirical analyses were performed to test the robustness of the findings with

alternative codings of the variable symbolic/visual representation. Regression models were fitted

substituting the predictor schematic representation for a dummy variable indicating whether the

item consisted of text only (coded 0) or text along with nonlinguistic representations in general

(coded 1). In contrast to the original final model, neither the main effect nor the interaction with

linguistic complexity were significant for this variable, confirming our theoretical assumption

that it is not the mere presence of symbolic/visual representations in the item that matters,

but rather the type of representation that influences the differential difficulty of linguistically

complex items for ELLs.

When regression models identical to those in Table 4 were fitted for a subsample of 29 items,

which combined text and symbolic representations (excluding 5 text-only items), the results

were consistent with those found in the original final model with the 34 dichotomous items;

the effect of linguistic complexity and its interaction with schematic representations remained

significant. In this case, this indicated that the effect of linguistic complexity on DIF was

different for items with schematic and pictorial representations.

Replication Using a Second Measure of DIF

Results of DIF studies may vary depending on the characteristics of the DIF detection method

employed (Camilli & Shepard, 1994). To test the robustness of the IRT DIF findings, regression

models were fit using DIF indices from another DIF detection procedure: the standardization

(Dorans & Kulick, 1986) method. In contrast to the IRT DIF method, the standardization

procedure makes no assumptions about the relationships between item performance and student

ability as IRT models do. Also, its conditioning variable is based on observed total scores and

not on latent ability traits as for IRT. In the standardization procedure, a measure of DIF was

ascertained by estimating the signed average difference between the item p values of ELLs and

non-ELLs conditional on total score on the 39-item long test, assigning greater weight to p value

differences in the range of math scores where most ELLs lie. The standardization procedure

was conducted following the two-stage procedure recommended by Zenisky, Hambleton, and

Robin (2003). The matching variable or total test score was purified by removing three items

with large DIF indices (DIF > .075 or DIF < �.075).

The study findings are very robust regardless of the DIF detection procedure employed.

The correlation between the DIF measures from the IRT and standardization procedures was

very high (r D .93, p < .000). Similarly to the IRT DIF method, with the standardization

method the effect of linguistic complexity on DIF is significant and positive (p < .001) and

there is a significant interaction between linguistic complexity and the presence of schematic

representations in the item (p < .015).
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DISCUSSION

This study investigated whether linguistic complexity of math word problems functioned

as a source of DIF for ELLs in the dichotomously scored items of a state fourth-grade

mathematics test. Going beyond prior research that looked at linguistic complexity in isolation,

this study acknowledged the multimodality of semiotic representations that characterizes the

deployment of mathematical meaning in the real context of classroom instruction, textbooks,

and assessments. The findings shed light on the prominent role of the text linguistic complexity

and its interaction with nonlinguistic symbolic/visual forms of representation in explaining

differences in the difficulty parameter estimates of math word problems for ELLs and non-

ELLs. Together, these two variables account for two thirds of the variation in DIF measures

across language proficiency groups in the items.

As hypothesized, the greater the items’ grammatical and lexical complexity, the greater

are the differences in difficulty parameter estimates favoring non-ELLs over ELLs. However,

the impact of linguistic complexity on DIF is attenuated when items provide schematic rep-

resentations that help ELLs make meaning of the text, suggesting that their inclusion could

help mitigate the negative effect of increased linguistic complexity in math word items. The

findings indicate that not all nonlinguistic visual representations are equally helpful. Schematic

representations, rather than pictorial illustrations or concrete images of objects, effectively

moderate the influence of increased complexity in text. These schematic representations embody

mathematical relationships, either spatial relationships among objects or patterns, or numeri-

cal/mathematical relationships through mathematical symbols or algebraic expressions.

Construct-Irrelevant Difficulty

DIF signals potential bias, but it is not in itself proof of bias. While a comprehensive evaluation

of bias is beyond the scope of this study, the findings reported here provide evidence supporting

the claim that linguistic complexity is a source of construct-irrelevant difficulty for ELLs in

math word problems. Scores on linguistically complex items capture not only differences in

math proficiency but also differences in English proficiency between ELLs and non-ELLs. The

latter generates disproportionate difficulty for ELLs on these items but not on those with low

linguistic complexity. This questions the extent to which we can interpret the scores of ELLs

in linguistically complex items as indication of their mastery in the particular math content the

items intend to measure.

A substantive review of evidence and a thorough examination of rival hypotheses that might

explain the conditional differential performance of these groups are both needed. For instance,

to confirm the role of linguistic complexity on DIF, linguistic simplification experiments can be

conducted to investigate whether a reduction of item linguistic complexity causes a reduction

of DIF disfavoring ELLs.

Investigating student response processes through cognitive interviews can also be helpful

in examining the role of linguistic complexity on DIF for ELLs. Martiniello (2007b, 2008)

conducted think-aloud interviews with Spanish-speaking ELLs responding to math word prob-

lems with low, moderate, and large DIF indices favoring non-ELLs over ELLs. Items flagged

with large DIF were discussed in depth along with comparison non-DIF items measuring

similar mathematical content but with different levels of linguistic complexity. For each item,
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176 MARTINIELLO

curriculum content and linguistic features were analyzed, and DIF information and empirical

item characteristic curves by group presented along with transcriptions of children’s responses

to these items in the think-aloud interviews. Analysis of linguistic patterns across large DIF

items revealed the following features hindering text comprehension for ELLs:

� Syntactic: multiclausal complex structures with embedded adverbial and relative clauses;

long phrases with embedded noun and prepositional phrases; lack of clear relationships

between the syntactic units.

� Lexical: unfamiliar vocabulary, high-frequency words usually learned at home and not in

school; polysemous or multiple-meaning words.

� References to mainstream American culture.

� Test or text layout. Lack of one-to-one correspondence between the syntactic boundaries

of clauses and the lay out of the text in the printed test.

In addition, further studies must investigate alternative sources of DIF, such as potential

systematic differences in the mathematics instruction and opportunities to learn of ELLs and

non-ELLs. In a previous study (Martiniello, 2006b, 2007a) the author examined the role of

curricular learning strands and their interrelation with linguistic complexity and schematic

representations as sources of DIF for ELLs in mathematics items. The two learning strands

data analysis, statistics, and probabilities and patterns, relations, and algebra were significantly

associated with DIF measures in simple regression models, whereas the other three learning

strands were not (number sense and operations; geometry, and measurement). Data analysis,

statistics, and probabilities items tended to show positive DIF favoring non-ELLs over ELLs,

while patterns, relations, and algebra showed negative DIF favoring ELLs. However, the main

effects of these two learning strands on DIF were no longer significant when the effects of item

linguistic complexity and schematic representations were accounted for in the model. This is

probably due to the nature of the intercorrelations among these variables. Items measuring data

analysis, statistics, and probabilities tended to be linguistically much more complex than items

measuring other learning strands in the test, whereas items measuring patterns, relations, and

algebra tended to include more schematic visual representations than the rest of the strands.

The role of these construct-relevant curricular variables and their interactions with linguistic

complexity and schematic representations must be further examined.

Implications

These findings have important implications for both test development and evaluation for the

population of ELLs. Efforts should be made to assess the math proficiency of ELLs by

employing text that is appropriate to their levels of English proficiency. Math items should

avoid complex grammatical structures and low-frequency nonmathematical vocabulary that are

central for item comprehension. Also, DIF studies comparing ELLs and non-ELLs should be

standard procedures for the evaluation of statewide math assessment as ethnic and gender DIF

studies currently are.

Future research should also investigate the differential impact of pictorial and schematic

representations in improving the accessibility/comprehensibility of math word problems for

ELLs. A recent randomized study evaluating the potential value of adding visual representations
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LINGUISTIC COMPLEXITY, SCHEMATIC REPRESENTATIONS 177

to text-only math word problems found that illustrative pictures are an ineffective accommo-

dation for the math assessment of ELLs (Moreno, Pirritano, Allred, Calvert, & Finch, 2006).

This result may be attributed to the fact that most, if not all, of the representations utilized

in the cited study were primarily pictorial. The potential of using schematic representations

combined with text in math word problems should be further examined. If the interaction

between linguistic complexity and schematic representations found here is replicated more

generally, this might support the argument for universal design: redesigning assessments in this

manner might ameliorate biases for ELLs without requiring assessment accommodations.
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