1. Consider the following IS-LM model:

\[C = 1200 + 0.9 \, Y_d \]
\[I = 0.2 \, Y - 20,000 \, i \]
\[G = 2000 \]
\[T = \frac{1}{3} \, Y \]
\[(M/P)^d = Y - 100,000 \, i \]
\[M/P = 6000 \]

(a) Derive the equation for the IS curve (it will be easiest if you write this with \(Y \) on the left-hand side and all else on the right-hand side).

(b) Derive the equation for the LM curve (again, put \(Y \) on the left-hand side).

(c) Solve for the equilibrium interest rate (note that 0.01 is 1%).

(d) Solve for equilibrium real output.

(e) Solve for the equilibrium values of \(C \) and \(I \). Verify that your answer for \(Y \) is correct by adding \(C \), \(I \) and \(G \) together.

2. Use the IS and LM curves that you derived for Problem 1 to answer the following.

(a) Calculate the changes in \(Y \) and \(i \) if \(G \) increases by 400. Calculate the change in \(I \). Explain the effects of expansionary fiscal policy using your results to illustrate.

(b) Leave \(G \) equal to 2000 and let \(M/P \) rise by 2000 instead. Find the change in \(Y \) and \(i \) caused by the increase in \(M/P \). Explain the effects of expansionary monetary policy using your results to illustrate.

3. Problem 3, Chapter 5 of Blanchard, p. 106.

4. Use the model of Problem 3 to answer this question.

(a) Use your expression for equilibrium output to show how the effect of an increase in \(G \) on output depends on the parameter \(d_2 \)

(b) An increase in the ratio \(d_2/d_1 \) means that money demand is more sensitive to the interest rate. Use this interpretation to explain the result you found in part (a). Also use an IS-LM diagram to illustrate your answer.

(c) Show how the short-run effect of an increase in \(M \) depends on the parameter \(b_2 \) using your equation and a diagram. Explain why an increase in \(M \) has a larger effect on output if \(b_2 \) is larger.

5. Problem 3, Chapter 6 of Blanchard, p. 131.

6. Problem 8, Chapter 6 of Blanchard, p. 132.