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Abstract. A countable group is residually finite if every nontrivial element can act non-
trivially on a finite set. When a group fails to be residually finite, we might want to measure
how drastically it fails - it could be that only finitely many conjugacy classes of elements
fail to act nontrivially on a finite set, or it could be that the group has no nontrivial actions
on finite sets whatsoever. We define a hierarchy of properties, and construct groups which
become arbitrarily complicated in this sense.

1. Introduction

Many infinite discrete groups are known to be residually finite. For example, free groups,
and more generally, by the theorem of Mal’cev [Mal40], all linear groups are residually finite.
Other examples include all finitely generated nilpotent groups. A famous open problem
of geometric group theory asks whether all Gromov-hyperbolic groups are residually finite
[Bes04, Prob 1.15]. Without the assumption of Gromov-hyperbolicity, there are also many
examples of groups which are not residually finite.

Of course if a group G has no finite index subgroups at all, then G is very far from being
residually finite. This happens, for example, for the Higman group (see Example 3.1) or
any infinite simple group. However, there are also non residually finite groups that are very
close to being residually finite, in the sense that the intersection of all finite-index subgroups
is a finite nontrivial group (see Example 3.3). We would like to distinguish between these
possibilities.

We propose the notion of α-residual finiteness for arbitrary ordinal α, which generalizes
the notions of a finite group, and a residually finite group. For example, the Deligne group
(defined in Example 3.2), which is a non-residually finite extension of Z by a residually finite
group, is (ω · 2)-residually finite, where ω is the order type of the natural numbers, and so
ω · 2 is the order type corresponding to two copies of natural numbers listed one after the
other. On the other hand, Higman group, whose intersection of all finite index subgroup is
an infinite simple group, is not α-residually finite for any ordinal α. For a precise definition
of α-residual finiteness, see Section 3.

Our main result is a construction of the following examples.

Theorem 1.1. For every n ∈ Z, where n ≥ 1, there exists a finitely generated group Gn

which is ω · n-residually finite, but not ω · (n− 1)-residually finite.

We also give a characterization of the α-residual finiteness in terms of actions on rooted
α-trees, which can be though of as trees of depth α. Informally, those are collections of
vertex sets and edge sets indexed by ordinals i ≤ α, with edges joining vertices in sets whose
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indices differ by 1. For limit ordinals, the vertex sets are defined as the limit sets of the
preceeding sets of vertices.

Theorem 1.2. A group G is α-residually finite if and only if G admits a simple action on
a rooted α-tree.

This note is organized as follows. In Section 2 we recall some background on ordinals and
cardinals. In Section 3 we give motivation and definition of α-residual finiteness, and prove
some properties of this notion. In the following Section 4 we include a discussion on α-trees
and prove Theorem 1.2. Finally, in Section 5 we prove Theorem 1.1

Acknowledgements. The second author was supported by the NSF grants DMS-2203307
and DMS-2238198.

2. Background on ordinals and cardinals

We include basics on ordinals and cardinals. For more background see e.g. [Hal74].

2.1. Ordinals. An ordered set (X,≤) consists of a set X, and a binary relation ≤, which
is reflexive, anti-symmetric, and transitive. An ordered set (X,≤) is well-ordered, if for any
a, b ∈ X either a ≤ b or b ≤ a, and every non-empty subset of X has a least element with
respect to ≤.

Let (X,≤) and (Y,≤) be two ordered sets. A function f : X → Y is monotonic if for
every a, b ∈ X such that a ≤ b, we have f(a) ≤ f(b). An order isomorphism is a monotonic
bijection whose inverse is also monotonic. We say (X,≤) and (Y,≤) have the same order
type if there exists an order isomorphism between X and Y . We note that having the same
order type is an equivalence relation.

An ordinal is the order type of a well-ordered set. The ordinal ω is the order type of the
natural numbers with the standard order ≤. Every natural number n is the order type of
the set {1, 2, . . . , n} with the standard order.

2.2. Ordinal arithmetic. The arithmetic operation of addition and multiplication can be
defined for ordinals. Let α, β be two ordinals. We define α + β to be the ordinal whose
underlying set is the disjoint union of those of α and β, and the order is extended so that
each element of α is less than each element of β. We let α ·β be the ordinal whose underlying
set is the product of those for α and β, and the order is reverse lexicographic, so that
(a1, b1) < (a2, b2) if and only if b1 < b2 or b1 = b2 and a1 < a2.

For example, the ordinal ω+ ω corresponds to the order type of two copies of the natural
numbers, where each number in the first copy is smaller than each number in the second
copy. This is the same ordinal as ω · 2.

We note that neither addition nor multiplication are commutative. For example, 1+ω = ω,
but ω+1 is the order type of the ordered set (N∪{∞},≤) where the order on N is standard,
and n ≤ ∞ for every n ∈ N. In particular, the order type ω + 1 contains a largest element,
while the order type ω does not. Similarly, ω · 2 6= 2 · ω.

An ordinal α is a successor of β if α is the smallest ordinal greater than β, i.e. α = β + 1.
A limit ordinal is a non-zero ordinal that is not a successor ordinal. Equivalently, α is a
limit ordinal if there exists β such that β < α, and for every such β, there exists an ordinal
γ such that β < γ < α. Note that, in particular, every successor ordinal is of the form α+n
for some limit ordinal α and n > 0.
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2.3. Cardinals. A cardinal is a set considered up to bijection. There is a natural association
of a cardinal to each ordinal, by taking any set of given order type and consider it up to
bijection. Finite ordinals are in one to one correspondence with finite cardinals, and both
can be identified with natural numbers. For infinite ordinals there are many ordinals that
correspond to the same cardinal, for example ordinals ω, ω + 1 and ω · 2 all correspond to
the cardinal ℵ0.

3. (α, κ)-residual finiteness

We recall that a countable group G is residually finite if for every nontrivial g ∈ G, there
exists a finite index subgroup H ⊆ G such that g /∈ H. Equivalently, G is residually finite if
for every nontrivial g ∈ G there exists a finite quotient φ : G→ Q such that φ(g) 6= 1. The
residual finitness core Core(G) of a countable group G, is the intersection of all finite index
subgroups of G. A group G is residually finite if and only if Core(G) = {1}.

3.1. Motivation. We start with reviewing some examples of non-residually finite groups.

Example 3.1 ([Hig51]). The Higman group is given by the presentation

H = 〈a, b, c, d | a−1ba = b2, b−1cb = c2, c−1dc = d2, d−1ad = a2〉.

It is an infinite group that admits no finite quotients. In particular, Core(H) = H.

Example 3.2 ([Del78], see also [Mor09]). Note that the fundamental group of Sp2n(R) is

Z. There exists a finite index subgroup G ⊆ Sp2n(Z) such that the preimage G̃ of G in the

universal cover ˜Sp2n(R) of Sp2n(R) is a central extension

1→ Z→ G̃→ G→ 1.

Moreover every finite index subgroup of G̃ contains the kernel Z, and in fact Core(G) is equal

to the index two subgroup 2Z of the kernel Z. In particular, G̃ is not residually finite, but
{residually finite}-by-{residually finite}.

Example 3.3. If instead of lifting G to the universal cover, we lift to a finite cover of degree
k ≥ 3, we obtain a central extension of the form

1→ Z/kZ→ Ĝ→ G→ 1.

The group Ĝ is not residually finite, but finite-by-{residully finite}.

Our goal is to distinguish the above groups using a finer notion than residual finiteness,
which we define in the next section.

3.2. Definition.

Definition 3.4. Let α be an ordinal and κ a cardinal. A group G is called (α, κ)-residually
finite if there exists an α-indexed chain {Ci(G)}i≤α of subgroups of G so that

(i) C0(G) = G, and Cα(G) = {1},
(ii) [Ci(G) : Ci+1(G)] < κ for all i < α,

(iii) Cλ(G) =
⋂
i<λ Ci(G) for limit ordinals λ ≤ α.
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When (α, κ) = (ω,ℵ0), we recover the standard notion of residual finiteness. Groups which
are (α,ℵ0)-residual will be called α-residually finite. We note that if G is α-residually finite,
then G is β-residually finite for every β > α.

Similarly, if G is (α, κ1)-residually finite, then G is (α, κ2)-residually finite for every κ2 >
κ1. Moreover, every group G is (1, κ)-residually finite for every κ > |G|. However, if p is
prime and k < p, Z/pZ is not (α, k)-residually finite for any α.

Definition 3.5. We say the residual finiteness depth depthRF(G) = α if G is α-residually
finite, but not β-residually finite for any β < α

3.3. Properties. The notion of α-residual finiteness is not very interesting for finite ordinals.
Indeed, for every n ∈ N such that n ≥ 1 a group G is n-residually finite if and only if G is
finite. More generally, we have the following.

Proposition 3.6. If depthRF(G) = α, then α is 0, 1, a limit ordinal, or the successor of a
limit ordinal.

Proof. Any successor ordinal can be expressed as α + n for some n ≥ 1, and some limit
ordinal α. Suppose that G is (α+ n)-residually finite for some n ≥ 2 and sone limit ordinal
α, and let {Ci(G)}i≤α+n be its α + n index chain provided by the definition. That means
that Cα+n(G) = {1} and [Cα+n−1(G) : Cα+n(G)] < ∞,. . . , [Cα(G) : Cα+1(G)] < ∞, hence
[Cα(G) : Cα+n(G)] <∞. In particular the chain {C′i(G)}i≤α+1 where C′i(G) = Ci(G) for i ≤ α,
and C′α+1(G) = Cα+n(G) = {1} is an (α + 1,ℵ0)-residual chain for G as in Definition 3.4.
Thus G is (α + 1)-residually finite. �

Example 3.7. We have depthRF(G) = 0 if and only ifG is the trivial group, and depthRF(G) =
1 if and only if G is a nontrivial finite group. A group G with depthRF(G) = ω + 1 is finite-
by-residually finite.

More generally, we have the following.

Proposition 3.8. Suppose that

1→ N → G
π−→ Q→ 1

is a short exact sequence of groups where Q is (α1, κ1)-residual and N is (α2, κ2)-residually
finite. Then G is (α1 + α2,max{κ1, κ2})-residually finite.

Proof. Let {Ci(Q)}i≤α1 , {Ci(N)}i≤α2 be (α1, κ1)- and (α2, κ2)-residual chains for Q and N

respectively. For i ≤ α1 + α2 set Ci(G) =

{
π−1(Ci(Q)) for i ≤ α1

Ci−α1(N) for i > α1

Then Cα1(G) =
⋂
i<α1

π−1(Ci(Q)) = π−1(
⋂
i<α1

Ci(Q)) = π−1(1Q) = N . Thus {Ci(G)}i≤α1+α2

is an (α1 + α2,max{κ1, κ2})−residual chain for G. �

Proposition 3.9. Let G be a group such that Core(G) has depthRF(Core(G))) = α > 0.
Then depthRF(G) = ω + α.

Proof. Note that if Core(G) is α-residually finite for some ordinal α > 0, then necessarily
[G : Core(G)] = ∞. Indeed, if [G : Core(G)] < ∞, then any finite index subgroup of
Core(G), which exists by the assumption that Core(G) is α-residually finite, would also have
finite index in G, contradiction the definition of Core(G). Thus, G/Core(G) is an infinite
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residually finite group. By Proposition 3.8 G is ω + α-residually finite. It remains to prove
that depthRF(G) is not less that ω + α.

Since G surjects onto an infinite group, clearly G is infinite, so depthRF(G) ≥ ω. Suppose
that G is ω+β-residually finite for some ordinal β, and let {Ci(G)}i≤α be the ω+β-indexed
chain witnessing the ω + β-residual finiteness of G. Since Cω(G) is an interesection of finite
index subgroups of G we have Cω(G) ⊇ Core(G). By construction, this ω + β-indexed chain
also provides a β-indexed chain witnessing β-residual finiteness of Cω(G). In particular, this
proves that Core(G) is β-residually finite.

It follows that depthRF(G) = ω + α as claimed. �

Remark. We emphasize that ω + α might be equal to α. Indeed, this is the case precisely
when α ≥ ωω.

In the next proposition, GX denotes the group of function from the set X to the group G,
with the group operation defined coordinate-wise. By G(X) we denote the subgroup of the
functions with finite support.

Proposition 3.10. If G is α-residually finite, and X is a countable set, GX is α-residually
finite. In particular, if G is infinite, depthRF(G) = depthRF(GX) = depthRF(G(X)).

Proof. Let {Ci(G)}i≤α be a residual chain for G, and {x0, x1, x2, x3, . . . } an enumeration of
X. Then consider the chain Hn = {f : X → G | f(xi) ∈ Cn−i(G) for i < n}. This has index
[G : C1(G)][G : C2(G)] . . . [G : Cn(G)] <∞, and the intersection of all Hn is trivial.

The second statement follows because G ≤ G(X) ≤ GX . �

4. Actions on rooted trees

4.1. Faithful actions on rooted finite valence trees. If G is a group, g ∈ G and H ≤ G,
the element g permutes the left cosets of H. For a fixed group G, we may wish to study all
such actions at once, for all g and all H. Note that if H2 ≤ H1 ≤ G, the permutations of H2

are compatible with permutations of H1, in the sense that if g fixes H2, it fixes H1 as well.

Proposition 4.1 (Folklore). A countable group G is residually finite if and only if it acts
faithfully on a rooted finite valence tree.

Proof. Let Ci(G) for i ∈ N be a residual chain. Consider a rooted tree T with the level i vertex
sets Vi = G/Ci(G), and edges joining the cosets gCi+1(G) and gCi(G). This admits a left
G-action via h(gCi(G)) = (hg)Ci(G), which preserves the edge structure. Since {Ci(G)}i∈N
is a residual chain, for every 1 6= g ∈ G there is an i with g 6∈ Ci(G). So g acts nontrivially
on Vi. This shows that G acts faithfully on a rooted finite valence tree.

Conversely, suppose G acts faithfully on a rooted tree T , and let Gi be the finite index
subgroup which fixes the ith level of the tree. Since the action is faithful, no nontrivial
element fixes every level of the tree, so ∩i∈NGi = 1. �

4.2. Rooted α-trees.

Definition 4.2. Let α be an ordinal, and κ a cardinal. A rooted (α, κ)-tree T is a family
{Vi}i≤α of sets, and a family {Ei}i<α of functions, where V0 = {∗}, Ei : Vi+1 → Vi with
|E−1i (vi)| < κ, and for a limit ordinal λ ≤ α, Vλ = lim←−i<λ Vi.
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For each i ≤ α, we refer to Vi as the vertex set of T at level i. By V<i we denote the union⋃
j<i Vj, the vertex set of T at level at most i. Note that when α is a finite ordinal, then T is

just a rooted tree of depth α. When α = ω, then T is a standard infinite rooted tree, with
an extra vertex corresponding to each end of T .

The directed system determines restriction maps Ej
i : Vj → Vi for any i ≤ j ≤ α. Indeed,

if j = i + n for some finite n ≥ 0, then Ej
i is the composition of finitely many maps

Ej−1 · Ej−2 · · ·Ei. Otherwise j = β + n for some limit ordinal β and some finite n ≥ 0, and

i < β. Then by the definition of Vβ there is a map Eβ
i : Vβ → Vi, and we define Ej

i = Ej
β ·E

β
i .

4.3. Actions on rooted α-trees. An automorphism of a rooted (α, κ)-tree is a family
g = {gi}i≤α of bijections of Vi satisfying Eigi+1 = giEi. An automorphism is simple if the
action on Vα is fixed-point free; a group acts simply on an α-tree if every nontrivial element
acts as a simple automorphism.

Theorem 4.3. A group G is (α, κ)-residually finite if and only if G has a simple action on
a rooted (α, κ)-tree.

Proof.
=⇒ Supposing {Ci(G)}i≤α is an (α, κ)-residual chain for G, we can build a rooted (α, κ)-

tree with a simple G-action as follows. Let Vj = {{giCj(G)}i≤j | gi+1Ci(G) =
giCi(G) for i < j}, and take Ej : Vj+1 → Vj by Ej({giCj+1(G)}i≤j+1) = {giCj(G)}i≤j.
Then we have |E−1i (vi)| = [Ci+1(G) : Ci(G)] < κ, and Vλ = lim←−i<λ Vi, so we have con-

structed an (α, κ)-tree. The left G-action g{giCk(G)}i≤j = {ggiCj(G)}i≤j respects
the edge structure.

⇐= Suppose G acts simply on an (α, κ)-tree T = (Vi, Ei)i≤α. Let vα ∈ Vα, and set
vi = Eα

i (vα) for any i ≤ α. Let Ci(G) = Stab(vi). By simplicity of the action,
Cα(G) = 1, and since the tree is locally κ, [Ci(G) : Ci+1(G)] ≤ |E−1i (vi)| < κ for all
i < α. Finally, if λ is a limit ordinal, we have ∩i<λCi(G) = ∩i<λStab(vi) = {g ∈ G |
gvi = vi for all i < λ} = Stab(lim←−i<λ vi) = Stab(vλ) = Cλ(G), as desired.

�

5. A construction of ω · n-residually finite groups

If X is a set with a transitive G action, and K is a group, the (restricted) wreath product
K oX G is defined

K oX G = K(X) oG,

where K(X) is the group of functions X → K with finite support, and the action of G on
K(X) is by precomposing with the G-action on X. By K oG, we mean K oGG, where G acts
on itself by left multiplication.

Note that K o G is the quotient of the free product K ∗ G by the family of relations
{[gkg−1, k′] = 1 | k, k′ ∈ K, 1 6= g ∈ G}.

Theorem 5.1. Suppose G is a finitely generated, residually finite group with finite abelian-
ization. Let G1 = G, and Gi+1 = Gi o G. The group Gn is a finitely generated group with
depthRF(Gn) = ω ·n. Moreover, if H is a finite nontrivial group, depthRF(Gn oH) = ω ·n+ 1.

For example, we can take G to be perfect (i.e. G = [G,G]), such as G = SLn(Z) for n ≥ 3,
or G a cocompact hyperbolic triangle group with generators of relatively prime orders, or
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G a free product of (at least 2 nontrivial) finite perfect groups. We can also take G to be
Zn o An, where An permutes the coordinates of Zn, for n ≥ 5.

For g ∈ G, we let G
(g)
i denote the functions whose support is contained in {g}, so this is

an isomorphic copy of Gi. Note that we have a short exact sequence G
(G)
i → Gi+1

π−→ G, and

that the normal closure of G
(1)
i in Gi+1 is G

(G)
i .

Lemma 5.2. [Gi, Gi]
(G) ≤ Core(Gi+1) ≤ G

(G)
i .

Proof. To see that Core(Gi+1) ≤ G
(G)
i , note that there is a natural map Gi+1 = G

(G)
i oG π−→ G

with kernel G
(G)
i . Since G is residually finite, a residual chain for G pulls back under the

quotient to a residual chain in Gi+1 terminating in G
(G)
i .

To prove that Core(Gi+1) ≥ [Gi, Gi]
(G), it suffices to show that if H is a subgroup of

Gi+1 with finite index, then H contains [Gi, Gi]
(G). Since the intersection of finitely many

conjugates of H yields a normal subgroup N of finite index in Gi+1, it is enough to show
that N contains [Gi, Gi]

(1), as this implies that N contains its normal closure [Gi, Gi]
(G).

Note that π(N) has finite index in G, and since G is infinite, π(N) is nontrivial. Let g0 be

a nontrivial element in π(N), and g1 a lift to N . Now for any x, y ∈ G(1)
i , the elements [x, y]

and [g1xg
−1
1 , y] have the same image in Gi+1/N . But since g1xg

−1
1 ∈ G

(g0)
i and y ∈ G(1)

i , we
have [g1xg

−1
1 , y] = 1, and thus [x, y] ∈ N . This shows that [Gi, Gi]

(G) ≤ Core(Gi+1). �

Proof of Theorem 5.1. We prove by induction that Gn is a finitely generated group with
depthRF(Gn) = ω · n. The group G1 = G satisfies those conditions by assumption. Suppose
that Gn−1 is finitely generated group with depthRF(Gn−1) = ω · (n− 1). Then Gn = Gn1 oG
is generated by the generators of Gn−1, and the generators of G, in particular Gn is finitely
generated. By Proposition 3.9

depthRF(Gn) = ω + depthRF(Core(Gn)).

We need to show that depthRF(Core(Gn)) = ω · (n − 1) to conclude that depthRF(Gn) =
ω + ω · (n− 1) = ω · n.

By Lemma 5.2 we have

depthRF([Gn−1, Gn−1]
(G)) ≤ depthRF(Core(Gn)) ≤ depthRF(G

(G)
n−1).

Now, by Proposition 3.10, depthRF([Gn−1, Gn−1]
(G)) = depthRF([Gn−1, Gn−1]), and similarly

depthRF(G
(G)
n−1) = depthRF(Gn−1). By the inductive assumption depthRF(Gn−1) = ω · (n− 1),

and since [Gn−1, Gn−1] has finite index in Gn−1, we also have depthRF([Gn−1, Gn−1] = ω · (n−
1). We conclude that depthRF(Core(Gn)) = ω · (n− 1). �

Note that the groups with the residual depth ω ·n constructed in Theorem 5.1 are finitely

generated but not finitely presented. The Deligne group G̃ from Example 3.2 depthRF(G̃) =
ω · 2 is finitely presented. We do not know finitely presented examples for n > 2.

Question 5.3. Does there exist a finitely presented group Gn with depthRF(Gn) = ω · n for
each n ∈ N?

There exist groups that are not α-residually finite for any α. An example of such a group
is the Higman group (Example 3.1) or any infinite simple group. However, we do not know
whether there are finitely generated groups with the residual finiteness depth defined, but
larger than ω ·n for all n. In particular, we do not know the answer to the following question.
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Question 5.4. Does there exist a finitely generated group G with depthRF(G) = ω2? What
about ωk for every k ∈ N? Can G be chosed to be finitely presented?

6. Application to profinite rigidity

A finitely generated, residually finite group Γ is said to be profinitely rigid if for any finitely

generated residually finite group Λ with Γ̂ ∼= Λ̂, we have Γ ∼= Λ.
If we take a group Γ which is profinitely rigid and has finite abelianization, the group

Γ o Γ will have the same profinite completion as Γ, and so we cannot distinguish these two
groups by their profinite completions. However, these groups may be distinguished in terms
of α-residual properties. For example, we may take Γ = PSL2(E), for E the Eisenstein
integers [BMRS20]; then Γ o Γ has the same profinite completion as Γ, but the two groups
are distinguished in terms of their ω · 2 chains by Theorem 5.1.
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