
FINITE STATURE IN ARTIN GROUPS

KASIA JANKIEWICZ

Abstract. We give criteria for a graph of groups to have finite stature with respect to its
collection of vertex groups, in the sense of Huang-Wise. We apply it to the triangle Artin
groups that were previously shown to split as a graph of groups. This allows us to deduce
residual finiteness, and expands the list of Artin groups known to be residually finite.

1. Introduction

A group G has finite stature with respect to a collection of subgroups Ω, if for every H ∈ Ω
there are only finitely many H-conjugacy classes of subgroups of the form H∩

⋂
i∈I H

gi
i where

Hgi
i is a G-conjugate of an element Hi ∈ Ω. Finite stature was introduced by Huang-Wise

in [HW19a] where they proved that under certain assumptions the fundamental group G
of a graph of groups has certain separability properties, provided that G has finite stature
with respect to its collection of vertex groups. In [HW19b] the same authors showed that a
graph of nonpositively curved cube complexes X with word hyperbolic fundamental group
is virtually special, provided that π1X has finite stature with respect to the vertex groups
in the corresponding splitting as a graph of groups. Finite stature is closely related to the
more classical notion of finite height, introduced and studied in [GMRS98].

In this article we provide explicit examples of very different nature, which are well-studied
groups arising naturally in topology and geometric group theory. Our examples are not
hyperbolic and not virtually compact special. Specifically we show that the splittings of
certain Artin groups obtained by the author in [Jan22a, Jan22b] have finite stature with
respect to the vertex groups. A triangle Artin group is an Artin group on three generators,
given by the presentation

GMNP = 〈a, b, c | (a, b)M = (b, a)M , (b, c)N = (c, b)N , (c, a)P = (a, c)P 〉,
where (a, b)M denotes the alternating word aba . . . of length M . The value of M can be ∞,
in which case there is no relation of the form (a, b)M = (b, a)M .

Theorem 1.1. A triangle Artin group GMNP splits as graphs of free groups with finite
stature with respect to its collection of vertex groups, provided that either M > 2 or N > 3,
where we assume that M ≤ N ≤ P .

As a consequence (using results of [HW19a]) we obtain the following.

Corollary 1.2. A triangle Artin group GMNP , where M ≤ N ≤ P and either M > 2 or
N > 3, is residually finite.

The condition on M,N,P in Theorem 1.1 excludes the cases (M,N,P ) = (2, 2, P ) and
(M,N,P ) = (2, 3, P ). In the first case, the corresponding Artin group GMNP is isomorphic
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to Z × AP where AP denotes a dihedral Artin group, and consequently GMNP does not
split as a graph of free groups, but is well-known to be residually finite. However, when
(M,N,P ) = (2, 3, P ) and P ≥ 7 we do not know whether GMNP splits as a graphs of
free groups with finite stature with respect to its collection of vertex groups, or if GMNP is
residually finite,

There are a few other classes of Artin group that are known to be residually finite. In the
case of spherical type Artin groups, residual finiteness follows from linearity [Kra02, Big01,
CW02, Dig03]. The linearity of a few other Artin groups was established as a consequence
of being virtually special [Liu13, PW14], but none of the triangle Artin groups considered
in Thereom 1.1 admit virtual geometric actions on CAT(0) cube complexes [HJP16, Hae21].
Residual finiteness of some other Artin groups was proven in [BGJP18, BGMPP19]. There
are also more examples provided in [Jan22a].

Some, but not all, of the groups considered in the above corollary were proven to virtually
split as algebraically clean graphs of free groups, i.e. graphs of finite rank free groups where
all inclusions of edge groups in the adjacent vertex groups are inclusions as free factors, in
[Jan22a, Jan22b]. Such groups are known to be residually finite [Wis02]. Our method allows
us to deduce residual finiteness of new Artin groups, but also recover the residual finiteness
of the Artin groups treated in [Jan22a, Jan22b].

Group virtually splitting as algebraically clean graphs of groups satisfy some stronger
profinite properties than residual finiteness, some of which are discussed in the forthcoming
paper [JS23]. We do not know whether all the groups considered in this paper are in fact
virtually algebraically clean. More generally, the following is open.

Question 1.3. Let G be a graph of finite rank free groups with finite stature with respect to
its collection of vertex groups. Does G have a finite index subgroup whose induced splitting
is algebraically clean?

The converse is known to be false, as there are examples of algebraically clean graphs of
free groups that do not have finite stature [HW19a, Exmp 3.31]. On the other hand, we do
not know whether there exists a group G splitting as an algebraically clean graph of groups
such that G does not have finite stature with respect to any splitting with free vertex groups.

This paper is organized as follows. In Section 2 we state some facts about maps between
graphs and free groups, and fix the notation and terminology. Section 3 discusses the notion
of finite stature, and we prove some facts used later in the text. Section 4 studies certain
families of graphs of free groups. Finally, Section 5 is devoted to Artin groups, and contains
computations that allow us to apply the results from earlier sections to prove Theorem 1.1.

Acknowledgements. The author thanks Jingyin Huang for discussing the notion of finite
stature with her. This material is based upon work supported by the National Science
Foundation grant DMS-2203307.

2. Preliminaries

2.1. Maps between graphs. A combinatorial graph Γ is a disjoint union V (Γ) t E(Γ)
together with the operation E(Γ) → E(Γ), e 7→ ē of taking the opposite edge (i.e. the same
edge with opposite orientation), and the operation E(Γ) → V (Γ), e 7→ τ(e) of taking the
endpoint of an oriented edge.
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A metric graph is a combinatorial graph that can also be viewed as a 1-dimensional CW-
complex, with a path metric in which each 1-cell has length 1. Later, we will be considering
graphs of free groups and corresponding graphs of spaces where the spaces are graphs as
well. We will denote the underlying graph of the graph of groups/graphs by Γ, while the
vertex and edge spaces will be denoted by letters such as X, Y and will be viewed as metric
graphs. The following definitions will be applied to graphs arising as vertex and edge spaces.

A continuous map φ : Y → X between two metric graphs is combinatorial, if the image of
each 0-cell of Y is a 0-cell of X, and while restricted to an open 1-cell with endpoints x1, x2,
φ is an isometry onto an edge with endpoints φ(x1), φ(x2). A combinatorial immersion is a
combinatorial map f : Y → X which is locally injective. It is a well-known fact that every
combinatorial immersion is π1-injective.

A Stalling’s fold is a combinatorial map f : Y → X where

• there exist distinct edges y1, y2 ∈ E(Y ) such that τ(ȳ1) = τ(ȳ2), and E(X) =
E(Y )/y1 ∼ y2,
• V (X) = V (Y )/τ(y1) ∼ τ(y2), and
• f is the natural quotient map, where f(y1) = f(y2).

We note that f is a homotopy equivalence if and only if τ(y1) 6= τ(y2).
We will also consider more general maps between graphs than combinatorial.

Definition 2.1. A continuous map φ : Y → X between two metric graphs is monotone, if
the image of each 0-cell of Y is a 0-cell of X, and while restricted to each 1-cell y of Y , φ is
either constant and its image is a 0-cell x in X, or φ is a combinatorial map after possibly
subdividing y into n nontrivial subintervals.

Here are two important examples of monotone maps. An edge-subdivision is a monotone
map f : Y → X where

• there exists an edge y ∈ E(Y ) and edges y1, . . . , yk ∈ E(X) where k ≥ 2 such that
f(y) is equal the path y1 · · · yk,
• E(Y )− {y} = E(X)− {y1, . . . , yk}, and f is the identity map on E(Y )− {y},
• V (X) = V (Y )t {τ(y1), . . . , τ(yk−1)}, and τ(yi) = τ(ȳi+1) for all i = 1, . . . , k− 1 (i.e.
y1 · · · yk is a path in X),

An edge-subdivision is always a homotopy equivalence. An edge-collapse is a monotone map
f : Y → X where

• there exist an edge y ∈ E(Y ) such that E(X) = E(Y )− {y},
• V (X) = V (Y )/τ(y) ∼ τ(ȳ), and
• f is the natural quotient map, where f|y is constant.

Similarly, an edge-collapse is a homotopy equivalence if and only if τ(y) 6= τ(ȳ), i.e. if y is
not a loop.

The following proposition provides a useful factorization of every monotone map.

Proposition 2.2. Every monotone map φ : Y → X factors as Y
σ−→ Y

ι−→ X where

• σ : Y → Y is obtained by a sequence of edge-subdivisions, Stalling’s folds, edge-
collapses,
• ι : Y → X is a combinatorial immersion.

Proof. Every combinatorial map factors as a sequence of Stallings-folds followed by a com-
binatorial immersion. By definition, a monotone map φ restricted to an edge is either an
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edge-collapse, or an edge-subdivision post-composed with a combinatorial map. The state-
ment follows. �

2.2. Subgroups of free groups. Let X be a metric graph with a basepoint x ∈ X, and
let F = π1(X, x). A precover of X is a combinatorial immersion Y → X, such that there

exists a covering map X̂ → X where Y ⊆ X̂.

Definition 2.3. Given a subgroup H ⊆ F , the core of H with respect to X is a based
precover i : (Y, x̂) → (X, x) where Y is the minimal subgraph of the covering space of

X̂ → X corresponding to H with π1(Y, x̂). More generally, we also say a subgroup H of F
is represented by a combinatorial immersion (Y, x̂)→ (X, x), if H = π1(Y, x̂) ↪→ F .

Clearly, a precover Y → X is an embedding if and only if X̂ = X.
Let φi : Yi → X be a combinatorial immersion for i = 1, 2. The fiber product of Y1 and Y2

over X is the graph Y1 ⊗X Y2 with the vertex set

{(v1, v2) ∈ V (Y1)× V (Y2) : φ1(v1) = φ2(v2)}
and the edge set

{(e1, e2) ∈ E(Y1)× E(Y2) : φ1(e1) = φ2(e2)}.
There is a natural combinatorial immersion Y1 ⊗X Y2 → X, given by (y1, y2) 7→ φ1(y1) =
φ2(y2).

Lemma 2.4 ([Sta83]). Let H1, H2 ⊆ G = π1(X, v) where X is a finite metric graph, and
for i = 1, 2 let (Yi, x̂i)→ (X, x) be the core of Hi with respect to X. Then the intersection
H1 ∩H2 is represented by (Y1 ⊗X Y2, (x̂1, x̂2))→ (X, x).

Lemma 2.5. Suppose X is a finite graph, and H1, H2 ⊆ G = π1(X, v) are finite rank sub-
groups. Then there are only finitely many conjugacy classes of the intersections of conjugates
of H1 and H2, and any such intersection has finite rank.

Proof. By Lemma 2.4 each conjugacy class of the intersection of conjugates H1 and H2 is
represented by the connected component of the fiber product Y1⊗X Y2 where Y1, Y2 are cores
of H1, H2 with respect to X. Since H1, H2 have finite ranks, Y1, Y2 are finite graphs. Thus
Y1⊗X Y2 is finite, and in particular, Y1⊗X Y2 has finitely many connected components (each
representing a conjugacy class of the intersections of conjugates of H1 and H2). �

3. Finite stature

Let G be a group and let Ω = {Hλ}λ∈Λ be a collection of subgroups of G. Then (G,Ω)
has finite stature if for each H ∈ Ω, there are finitely many H-conjugacy classes of infinite
subgroups of formH∩C, where C is an intersection of (possibly infinitely many)G-conjugates
of elements of Ω. The main result of [HW19a] is the following.

Theorem 3.1 ([HW19a, Thm 1.3]). Let G be the fundamental group of a graph of groups
with finite underlying graph Γ. Suppose that

(1) each Gv for v ∈ V (Γ) is a hyperbolic, virtually compact special group,
(2) each Ge for e ∈ E(Γ) is quasiconvex in its vertex groups,
(3) (G, {Gv}v∈V (Γ)) has finite stature.

Then G is residually finite.
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In particular, the first two conditions are automatically satisfied for any finite graph of
finite rank free groups. We also note the following characterization of finite stature in terms
of edge stabilizers in the action of G on the Bass-Serre tree associated to the splitting. All
the stabilizers considered in this paper are pointwise stabilizers.

Lemma 3.2 ([HW19a, Lem 3.19]). Let T be the Bass-Serre tree of the splitting of G as a
graph of groups with the underlying graph Γ. Then (G, {Gv}v∈V (Γ)) has finite stature if and
only if for each v ∈ V (Γ), there are only finitely many conjugacy classes of groups of the
form Gv ∩

⋂
e∈E Stab(e) where E ⊆ E(T ).

Moreover, if all the vertex groups are hyperbolic and edge groups are quasiconvex, then it
suffices to only consider finite subsets E ⊆ E(T ).

We note that we can identify Gv with Stab(ṽ) for some ṽ ∈ V (T ). In fact, every conjugate
of a vertex group of G can be identified with Stab(ṽ) for some ṽ ∈ V (T ). We explain in
more detail, how one can think of the intersections of conjugates of vertex groups.

We will denote the pointwise stabilizer of a path ρ in T by Stab(ρ), i.e. Stab(ρ) =⋂
e∈ρ Stab(e). Using the identification of Gv with Stab(ṽ), we can view Stab(ρ) as a sub-

group of Gv if ṽ is a vertex of ρ. To emphasize that, we will denote such a subgroup by
Gv ∩ Stab(ρ). If ρ, ρ′ both pass through ṽ and ρ ⊆ ρ′, then Gv ∩ Stab(ρ′) ⊆ Gv ∩ Stab(ρ).

Proposition 3.3. Let G be a graph of finite rank free groups with finite rank edge groups,
and let T be its Bass-Serre tree. Then (G, {Gv}v∈V (Γ)) has finite stature if and only if there
are only finitely many G-conjugacy classes of groups of the form Gṽ ∩ Stab(ρ) where ρ is a
finite path in T passing through ṽ.

Proof. Since free groups are hyperbolic and locally quasiconvex, Lemma 3.2 implies that it
suffices to show that there are only finitely many conjugacy classes of groups of the form
Gṽ ∩

⋂
e∈E Stab(e) for v ∈ V (Γ), and finite E ⊆ E(T ) if and only if there are only finitely

many conjugacy classes of groups of the form Gv ∩ Stab(ρ) where ρ is a finite path that
passes through v.

The forward implication is immediate. Let us assume there are only finitely many con-
jugacy classes of groups of the form Gv ∩ Stab(ρ) where ρ is a finite path passing through
ṽ. The group Gv ∩

⋂
e∈E Stab(e) is exactly the subgroup of G stabilizing the vertex and

all the edges in E. In particular, it can be realized as the subgroup of G stabilizing the
union of paths {ρe}e∈E where ρe is the minimal path containing v and the edge e, i.e.
Gv ∩

⋂
e∈E Stab(e) = Gv ∩

⋂
e∈E Stab(ρe) =

⋂
e∈E (Gv ∩ Stab(ρe)). Since there are only

finitely many conjugacy classes of group of the form Gv∩Stab(ρ), there are also only finitely
many conjugacy classes of their intersections by Lemma 2.5 . �

We finish this section with the following observation that will allow us to work with certain
finite index subgroups of the considered groups.

Proposition 3.4 (Passing to finite index supergroups). Let G split as a graph of groups. If
G′ is a finite index subgroup of G such that G′ has finite stature with respect to the vertex
groups in the induced graph of groups decomposition, then G has finite stature with respect
to its vertex groups.

Proof. This follows immediately from the characterization of finite stature in terms of the
of number of orbits of based big trees in the sense of [HW19a, Def 3.7], see [HW19a, Lem
3.9]. �
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4. Graphs of free groups

4.1. Amalgamated products A ∗C B where [B : C] = 2. Let G = A ∗C B be an amal-
gamated product of finite rank free groups, where [B : C] = 2. Let b ∈ B −C, i.e. bC is the
nontrivial coset of C/B.

Let T be the Bass-Serre tree of G (metrized so that each edge of T has length 1). The
vertices of T are of two kinds: infinite valence A-vertices, corresponding to conjugates of A,
and valence two B-vertices corresponding to conjugates of B. The edges of T correspond
to conjugates of C. We use the convention where Cg denotes the conjugate gCg−1. We
emphasize that using this notation, we have (Cg)h = Chg, but on the other hand it makes
the statement of Lemma 4.2 below slightly simpler.

We start with the following observation.

Lemma 4.1. An element g ∈ G stabilizes an edge e of T if and only if g stabilizes an
adjacent edge e′ meeting e at a B-vertex.

Proof. Since the vertex incident to both e and e′ has valence 2, any element stabilizing one
of the edges must stabilize the other one as well. �

As a consequence of the above lemma, for every path ρ′ in T Stab(ρ′) = Stab(ρ) where
ρ is the minimal path containing ρ′ that starts and ends at A-vertices. Thus we will only
consider paths in T starting and ending at A-vertices. We continue measuring the length of
paths with respect to the original metric on the tree, i.e. any two A-vertices are even distance
away.

In the following lemma, we describe all the stabilizers of paths in T joining two A-vertices.
In our application, we will only need the statement for the paths of length at most 8, so
we give explicit description in those cases, but for completeness we also give the general
statement for paths of arbitrary length.

Lemma 4.2. Let ρ be a length 2` path in T starting and ending at A-vertices. Then Stab(ρ)
is a conjugate of a subgroup K` ⊆ C of the form:

• K1 = C
• K2 = Ca1 ∩ C for some a1 ∈ A
• K3 = Ca1 ∩ C ∩ Cbd1 for some a1, d1 ∈ A
• K4 = Ca1ba2 ∩ Ca1 ∩ C ∩ Cbd1 for some a1, a2, d1 ∈ A

and more generally,

• for ` = 2k + 1:

K2k+1 = Ca1b...bak−1bak ∩ Ca1b...bak−1 ∩ · · · ∩ Ca1 ∩ C ∩ Cbd1 ∩ Cbd1bd2 ∩ · · · ∩ Cbd1...bdk

for some a1, . . . , ak, d1, . . . , dk ∈ A;
• for ` = 2k:

K2k = Ca1b...bak−1bak ∩ Ca1b...bak−1 ∩ · · · ∩ Ca1 ∩ C ∩ Cbd1 ∩ Cbd1bd2 ∩ · · · ∩ Cbd1...bdk−1

for some a1, . . . , ak, d1, . . . , dk−1 ∈ A.

Additionally, we have the following, where K` and K ′` denote two groups of the form as
above (for possibly different choices of elements ai’s and di’s.).

• if ` is odd, then K` = K`−1 ∩ (K ′`−1)b

• if ` is even, then K` = K`−1 ∩ (K ′`−1)a
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Aba1 Ba1 A B Ab Ba2b Aba2b

Ca1 Ca1 C C Ca2b Ca2b

Figure 1. Every length 6 path in the Bass-Serre tree of A ∗C B where
[B : C] = 2 is conjugate to the pictured path. The labels are the stabilizers.
We note that two consecutive edges meeting at a B-vertex have the same
stabilizers. See Lemma 4.2. Algebraically, this also follows from the fact that
Cb = C, since [B : C] = 2.

Proof. Since the length of ρ is 2`, so always even, the middle point of ρ is always a vertex
in T . Depending on parity of `, the middle vertex can be an A-vertex or a B-vertex. If `
is even, the middle vertex of ρ is an A-vertex, and by conjugating Stab(ρ), we can assume
that the middle vertex of ρ is stabilized by A, and that the following vertex is stabilized by
B (see initial subpath of length 4 of the path in Figure 1 for an example with ` = 2). If ` is
odd, the middle vertex of ρ is a B-vertex, and by conjugating Stab(ρ), we can assume that
it is stabilized by B, and the vertex before is stabilized by A (see Figure 1 for an example
where ` = 3).

Since Stab(ρ) =
⋂
e∈ρ Stab(e), b analyzing the stabilizers of edges in ρ, we get the descrip-

tion of Stab(ρ) as required.
Let us now prove the second part of the statement. First assume that ` = 2k + 1. Then

K2k+1 =(Ca1b...bak−1bak ∩ Ca1b...bak−1 ∩ · · · ∩ Ca1 ∩ C ∩ Cbd1 ∩ Cbd1bd2 ∩ · · · ∩ Cbd1...bdk−1)∩

∩ (Cd1b...bdk−1bdk ∩ · · · ∩ Cd1 ∩ C ∩ Cb(b−2a1) ∩ Cb(b−2a1)ba2 ∩ · · · ∩ Cb(b−2a1)...bak−1)b

We note that b−2a1 ∈ A since b2 ∈ C, so the expression above is indeed of the form K2k ∩
(K ′2k)

b. Similarly, when ` = 2k, we get

K2k =(Ca1b...bak−1 ∩ Ca1b...bak−2 ∩ · · · ∩ Ca1 ∩ C ∩ Cbd1 ∩ Cbd1bd2 ∩ · · · ∩ Cbd1...bdk−1)∩

∩ (Ca−1
1 bd1...bdk−2 ∩ · · · ∩ Ca−1

1 ∩ C ∩ Cba2 ∩ · · · ∩ Cba2b...bak)a1

which gives as K` = K`−1 ∩ (K ′`−1)a for a = a1 as required. �

We emphasize that subgroups K` in the above statement are not uniquely defined, i.e.
they depend on the choice of elements ai and di.

4.2. Monochrome cycles preserving splittings. We start with recalling the definition
of a graph of spaces in the special cases where all the vertex and edge spaces are graphs. A
graph of graphs X(Γ) consist of the following data:

• a combinatorial graph Γ,
• for every v ∈ V (Γ), a metric graph Xv,

• for every edge e ∈ E(Γ), a metric graph Xe such that Xe

β
' Xē, and a monotone map

φe : Xe → Xτ(e).

We emphasize that we do not require φe to be a combinatorial map.
Let [n] denote the set {1, . . . , n}. An edge coloring of a metric graph X is a maps c :
{1-cells of X} → [n]. We refer to i ∈ [n] as colors. A cycle in a graph X is monochrome
if each edge in the cycle has the same color. Suppose graphs X,X ′ admit edge colorings
c, c′ with colors [n] respectively. A monotone map φ : X → X ′ is color-preserving, if

7



c′(φ(e)) = c(e) for every 1-cell e of X. A color-preserving isomorphism is a combinatorial
map which is bijective on both vertex-sets and edge-sets, which is color-preserving.

Definition 4.3 (Monochrome cycles preserving graph of graphs). Fix n ≥ 1 and for each
i ∈ [n] = {1, . . . , n} let `i ≥ 1. Let X(Γ) be a graph of graphs, where for each y ∈ V (Γ)∪E(Γ)
there exists a coloring cy : {1-cells of Xy} → [n], and if y ∈ E(Γ) then cy = cȳ. A graph of
graphs X(Γ) is monochrome cycles preserving if

• for every e ∈ E(Γ), φe is color-preserving, and
• for each i ∈ [n] and each y ∈ V (Γ) t E(Γ), the preimage c−1

y (i) ⊆ Xy is a disjoint
union of embedded cycles,
• for e ∈ E(Γ), the map φe restricted to each cycle of color i factors through a cycle of

length `i in the factorization provided by Proposition 2.2.

We can visualize such graphs of groups as having edges in vertex and edge graphs colored
in a way that the induced colorings of edges in the edge graphs is consistent with respect
to both adjacent vertex graphs. Note that in particular, each vertex and edge graph in a
monochrome cycles preserving graph of graphs is a union of monochrome cycles. The third
condition can be thought of stating that each cycle of a given color in an edge graph has
length `i in the metric induced by each vertex group. We note that this length does not
need to correspond to the combinatorial length of that cycle, as the attaching maps φe do
not need to be combinatorial. We make this (and more general) statement more precise in
Lemma 4.4. Instead of providing any examples now, we refer the reader to Section 5 and
splittings of Artin groups, induced by monochrome cycles preserving graph of graphs. They
are the motivation for the above definition.

We will denote the associated graph of group by G(Γ).
In the next couple of Lemmas, we assume that ρ ⊆ T is a path in the Bass-Serre tree of

G(Γ)) passing through the vertex ṽ, and an edge ẽ containing ṽ. We identify the stabilizer
Stab ṽ with Gv for some v ∈ V (Γ)), and the Stab(ẽ) with Ge for some e ∈ E(Γ)). We view
the stabilizer Stab(ρ) =

⋂
e⊆ρ Stab(e) as a subgroup of Stab(ẽ) = Ge.

Since we are assuming that Gv is the fundamental group of the graph Xv, the inclusion
of Stab(ρ) in Gv can be represented by the precover φ : Yρ → Xv, where Yρ is the core of

Stab(ρ) with respect to Xv. Let φ : Yρ
σ−→ Y ρ

ι−→ Xv be a factorization of φ provided by
Proposition 2.2.

Lemma 4.4. The graph Y ρ with the coloring induced from Xv, is a union of monochrome
cycles, where each cycle of color i has length `i.

Proof. By definition, φe : Xe → Xτ(e) factors as Xe
σ−→ Xe

ι−→ Xτ(e) where Xe is a disjoint
union of monochrome cycles, with each cycle of color i having length `i. For any subgroup
of H ⊆ Ge whose corresponding graph Y is a disjoint union of monochrome cycles, we have
that each cycle of color i in Y = σ(Y ) has length `i if and only if each cycle of color i in
σβ(Y ) has length `i (here we abuse the notation and extend the isomorphism β : Xe → Xe

to all precovers of Xe). In other words the precovers induced by Y either have each cycle of
color i having length `i in both vertex groups Gτ(e), Gτ(e), or do not have this property in
both vertex groups.

An intersection of any two adjacent edge groups corresponds to the fiber product of the
corresponding graphs. The fiber product of two graphs that are both unions of monochrome
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cycles, with each cycle of color i having length `i, is also a union of monochrome cycles, with
each cycle of color i having length `i. Since Stab(ρ) =

⋂
e∈ρ Stab(e), the core Y ρ is obtained

in a multiple steps by taking fiber products of graphs that are unions of monochrome cycles,
where each cycle of color i has length `i. The conclusion follows. �

As a consequence of Lemma 4.4, we can view every Y ρ as the 1-skeleton of a 2-complexÁYρ obtained by attaching `i-gons of color i along each monochrome cycle of color i.
If ρ ⊆ ρ′, then Stab(ρ′) ⊆ Stab(ρ) and so there is a map of precovers Y ρ′ → Y ρ of Xv.

Lemma 4.5. Suppose ρ ⊆ ρ′ and ÁYρ is simply connected. Then the precover Y ρ′ → Y ρ is
an embedding of a subgraph.

Proof. Since ÁYρ is simply connected, it follows that ÁYρ′ ⊆ ÁYρ, and so Y ρ′ ⊆ Y ρ. �

5. Finite stature in triangle Artin groups

5.1. The statement of the main result. A triangle Artin group is given by the presen-
tation

GMNP = 〈a, b, c | (a, b)M = (b, a)M , (b, c)N = (c, b)N , (c, a)P = (a, c)P 〉,
where (a, b)M denote the alternating word aba . . . of length M .

The following theorem describes a splitting of GMNP as an amalgamated product of free
groups, where the map from the amalgamating subgroup to the vertex groups is described
in terms of maps between graphs.

Theorem 5.1 ([Jan22a, Cor 4.13]). Let GMNP be an Artin group where M,N,P ≥ 3. Then
GMNP = A ∗C B where A ' F3, B ' F4 and C ' F7, and [B : C] = 2. The map C → A is
induced by the map φ : XC → XA pictured in Figure 2, and the map C → B is induced by
the quotient of the graph XC by a π rotation.

Theorem 5.2 ([Jan22b, Prop 2.8]). Let GMNP be an Artin group where M,N ≥ 4 and
P = 2.

• If at least one of M,N is odd, then GMNP = A ∗C B where A ' F2, B ' F3 and
C ' F5, and [B : C] = 2. The map C → A is induced by the map φ : XC → XA

pictured in Figure 3, and the map C → B is induced by the quotient of the graph
XC by a π rotation.
• If both M,N are even then GMNP = A∗B where A ' F2, B ' F3. The two maps
B → A are induced by the maps φ1, φ2 : XB → XA pictured in Figure 4.

Here is a precise statement of the main theorem of this paper (Theorem 1.1).

Theorem 5.3. Let GMNP be a triangle Artin group where M ≤ N ≤ P and either M > 2,
or N > 3. Then GMNP has finite stature with respect to {A}, where A is as described in
Theorem 5.1 or Theorem 5.2 respectively. All finitely generated subgroups of A are separable
in GMNP , and in particular GMNP is residually finite.

In subsections 5.4, 5.5, 5.6 and 5.7 we will prove groups GMNP as above have finite
stature with respect to {A} by analyzing various cases (see Proposition 5.11, Corollary 5.13,
Corollary 5.19, and Corollary 5.23). The separability of finitely generated subgroups of A is
a consequence of [HW19a, Thm 1.3].
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Figure 2. The map φ : XC
σ−→ XC

ι−→ XA when (1) none, (2) one, (3) two
or (4) all of M,N,P are even, respectively. Specifically, M = 2m or 2m + 1,
N = 2n or 2n + 1, and P = 2p or 2p + 1. We use the convention where the
edge labelled by a number k is a concatenation of k edges of the given color.
The thickened edges in XC are the ones that get collapsed to a vertex in XC

Figure 3. The map φ : XC
id−→ XC

σ−→ XC
ι−→ XA when P = 2, M = 2m+1 ≥

5, and (top) N = 2n + 1 ≥ 5, (bottom) N = 2n ≥ 4, respectively. The use of
colors in the leftmost graphs represents the π-rotation of XC .

10



Figure 4. The maps φi : XB
id−→ XB

σ−→ XB
ι−→ XA for i = 1, 2, when

M = 2m ≥ 4, N = 2n ≥ 4, and P = 2.

5.2. Some facts about the splittings of Artin groups. We start with some facts that
will be used in the next sections. We first focus on the cases where GMNP splits as A ∗C B.
Let β : XC → XC be the π-rotation, as in Theorem 5.1 or Theorem 5.2 respectively. A
choice of a path between x ∈ XC and β(x) ∈ XC determines an element b ∈ B − C, such
that the induced homomorphism C → C is the conjugation by b. Figure 2 and Figure 3
illustrate the factorization φ = ι ◦ σ from Proposition 2.2. We denote σ(XC) = XC .

We will also extend the definition of σ to any precover of XC (and abuse the notation)
in the following way. Given a precover Y → XC , let Y → XC be a precover, and let
σ : Y → Y be a composition of edge-subdivisions, Stallings’ folds, and edge-collapses, which
locally coincides with σ : XC → XC . In particular, the following diagram commutes.

Y Y

XC XC .

σ

σ

We note the following.

Lemma 5.4. The map σ : Y → Y is a homotopy equivalence for every precover Y → XC .
For each subgroup H ⊆ C there is a one-to-one correspondence between the core Y → XC

of H with respect to XC and the core Y → XC of H with respect to XC , where Y = σ(Y )
as above.

Proof. The map σ : XC → XC is obtained as a sequence of edge-subdivisions and edge-
collapses of the edges. By analyzing each of the cases in Figure 2 and Figure 3, we note that
we never collapse a loop. Thus, by discussion in Section 2, σ : XC → XC is a homotopy
equivalence. Similarly, any induced map Y → Y is also obtained as a sequence of edge-
subdivisions and edge-collapses of the edges that are not loops, and hence σ : Y → Y is a
homotopy equivalence. By construction Y → XC is the core of some subgroup H ⊆ π(XC)

with respect to XC if and only if Y → XC is the core of H with respect to XC . �

We will use the notation σ−1(Y ) to denote Y such Y = σ(Y ).

Lemma 5.5. Let H ⊆ C be a subgroup, and let Y → XC be its core with respect to XC .

Then Y → XC
β−→ XC is the core of Hb ⊆ C

Proof. Indeed, Y → XC induces the inclusion H → C and XC
β−→ XC induces the conjugation

by b. �
11



The following lemma will allow us to apply Proposition 3.3.

Lemma 5.6. Let T be the Bass-Serre tree of the splitting GMNP = A∗CB, and ρ be a finite
path in T . The stabilizer Stab(ρ) of a path ρ of length 2` between a pair of A-vertices, is
conjugate to a subgroup of C, represented by a precover Y ` → XC , where the corresponding
Y` is defined recursively:

• Y1 = XC ,
• Y` = σ−1(Y `−1 ⊗XA

Y `−1) for even `,
• Y` = σ−1(Y `−1 ⊗XA

σ · β(Y`−1)) for odd `

The map Y `−1 → XA in the recursive definition above is obtained by composing the map
Y `−1 → XC with the map XC → XA.

Proof. Let ρ be a path of length 2`. By Lemma 4.2, Stab(ρ) is conjugate to a group K`

defined recursively as

• K1 = C,
• if ` is even, then K` = K`−1 ∩ (K ′`−1)a1 .
• if ` is odd, then K` = K`−1 ∩ (K ′`−1)b,

Clearly, Y1 = XC → XC is the core of L1 = C with respect to XC . For even `, K` =
K`−1 ∩ (K ′`−1)a, so by Lemma 2.4 the core of K` with respect to XC is Y `−1 ⊗XA

Y `−1,

and by Lemma 5.4 the core of K` with respect to XC is σ−1(Y `−1 ⊗XA
Y `−1). For odd `,

K` = K`−1 ∩ (K ′`−1)b, so by Lemma 2.4 and Lemma 5.5 the core K` with respect to XC is

Y `−1⊗XA
σ · β(Y`−1), and by Lemma 5.4 the core of K` with respect to XC is σ−1(Y `−1⊗XA

σ · β(Y`−1)). �

Again, we emphasize that graphs Y` are not uniquely determined, as they are associated
to non-unique K`’s. Since a sequence of group C = K1 ⊇ K2 ⊇ K3 ⊇ . . . form a descending
chain, we have a corresponding sequence of precovers . . . −→ Y3 → Y2 → Y1 = XC .

Lemma 5.7. Suppose that there are only finitely many isomorphism types of graphs Y` for
any ` ≥ 1. Then GMNP has finite stature with respect to {A}.

In particular if there exists k ≥ 1 such that every map Y k+2 → Y k is an embedding of a
subgraph, then GMNP has finite stature with respect to {A}.

Proof. We first prove the first statement. Let T be the Bass-Serre tree T of GMNP = A∗CB,
and ṽ ∈ T be a vertex whose stabilizer is A. By Lemma 5.6 and Lemma 4.2 there are finitely
many conjugacy classes of Stab(ρ) (viewed as subgroups of A) for finite paths ρ in T joining
two A-vertices and passing through ṽ. Since every finite path passing through ṽ is contained
in such a path joining two A-vertices, we conclude that the assumptions of Proposition 3.3
are satisfied. We deduce that GMNP has finite stature with respect to {A}.

Now let k ≥ 1 such that Yk+2 → Yk is an inclusion. Since Yk+2 is obtained from Yk in two
steps as described in Lemma 5.6, we deduce that Yk+2(i+1) → Yk+2i is an inclusion for each
i ≥ 0. In particular, there can only be finitely many color-preserving isomorphism types of
graphs Yk+2i since Yk, as a finite graph, has only finitely many subgraphs. Using the formula
for Yk+2i+1 from Lemma 5.6 we deduce that there are finitely many isomorphism types of
graphs Y` for any ` ≥ 1. The conclusion follows from the first part of the lemma. �
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5.3. Monochrome cycle preserving structure of splitting of Artin groups.

Proposition 5.8. Let GMNP be an Artin group where M ≤ N ≤ P and either M > 2 or
N > 3. Then GMNP has a subgroup G′ of index at most 2 that is the fundamental group of

a monochrome cycles preserivng graph of graphs XA
φ←− XC

β·φ−−→ XA.

Proof. Let GMNP = A ∗C B as in Theorem 5.1 or Theorem 5.2. Then GMNP has an index
2 subgroup G′ which splits as A ∗C A. The associated graph of graphs has two vertices with
each vertex graph being a copy of XA, and one edge graph XC . We choose the coloring of
cA : XA → {red, green, blue}, where each loop has distinct color, as in Figure 2 or Figure 3.
Those figure also show how the coloring is cC : XC → {red, green, blue} is defined. The two
maps XC → XA differ by precomposing one with the automorphism β of XC . In particular,
both maps XC → XA are color-preserving, and the preimage of each color in XC is a union
of disjoint embedded cycles. Moreover, the maps XC → XA both factor through XC , and
in particular, both maps restricted to each cycle factors through a cycle of length Q if Q
is odd, and Q/2 is Q is even, for Q = M,N,P respectively. Thus the graphs of graphs

XA
φ←− XC

β·φ−−→ XA is monochrome cycles preserving. �

Every finite path ρ in the Bass-Serre tree of GMNP = A ∗C B joining a pair of A-vertices
can be also thought of as a path in the Bass-Serre tree of the index 2 subgroup G′ = A ∗C A
of GMNP . By Proposition 5.8 above and Lemma 4.4, for the precover Yρ → XA of Stab(ρ)
the associated graph Y ρ is a union of monochrome cycles, where each cycle of color i has
length `i. We can denote the the 2- complex obtained from Yρ by attaching 2-cells whose

boundaries have color i and length `i by ÁYρ, as in Section 4.2.

Notation 5.9. We now switch to the use of notation of Lemma 5.6, where the graph Yρ is
denoted by Y` where 2` = |ρ|, and the associated K` is the stabilizer Stab(ρ). We will also

write ÁY` for ÁYρ. Once again, we remind that Y`, K` depend not only on `, but also the choice
of parameters ai, di in their definition, which are equivalent to the choice of ρ.

Lemma 5.10. If for some ` ≥ 1 a complex ÁY` is simply connected, then for every Y `+2, the
precover Y `+2 → Y ` is an embedding of a subgraph. In particular, if there exists ` ≥ 1 such

that every ÁY` is simply connected, then GMNP has finite stature with respect to {A}.

Proof. The first statement follows directly from Lemma 4.5. Since there are only finitely
many color-preserving isomorphism types of Y k, there are also only finitely many color-
preserving isomorphism types of their subgraphs. Thus if all Yk are simply-connected, there
are only finitely many color-preserving isomorphism types of graphs that Y ρ might have.
It follows that there are only finitely many conjugacy classes of the groups of the form
Gṽ ∩ Stab(ρ). By Proposition 3.3 G′ has finite stature with respect to both copies of A. By
Proposition 3.4 GMNP also has finite stature with respect to {A}. �

In the next subsections we apply Lemma 5.7 or Lemma 5.10 to prove that all the large
type triangle Artin group have finite stature. We consider three cases:

(5.4) at least one M,N,P ≥ 3 is even and {M,N,P} 6= {2m+ 1, 4, 4} for m ≥ 1,
(5.5) {M,N,P} = {2m+ 1, 4, 4} where m ≥ 1,
(5.6) all M,N,P are odd and ≥ 3.
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Figure 5. (M,N,P ) = (2m + 1, 4, 4). The graph on the left is the fiber
product Y 2 = XC ⊗XA

XC . The graph on the right is σβ(Y2)⊗XA
Y 2.

We also consider the case where one of the exponents is 2, and the other two are both strictly
greater than 3:

(5.7) {M,N,P} where M,N ≥ 4 and P = 2.

5.4. Case where at least one of M,N,P ≥ 3 is even and {M,N,P} 6= {2m + 1, 4, 4}.
In the next proof, we continue to use Notation 5.9.

Proposition 5.11. Suppose M,N,P ≥ 3 and at least one of them is even, but {M,N,P} 6=
{2m + 1, 4, 4}. Then GMNP has finite stature with respect to {A}, where A is as in Theo-
rem 5.1.

Proof. By Theorem 5.1 in all the cases listed in the statement, GMNP splits as an amalga-
mated product A∗C B of finite rank free groups where [B : C] = 2, which by Proposition 5.8
is virtually the fundamental group of a monochrome cycles preserving graph of graphs.

By [Jan22a, Lem 5.2, 5.3, 5.4] (see also [Jan22a, Rem 5.5]) ÁY2 is simply-connected, where
Y2 → XC if the core of C ∩Cg with respect to XC , as in Lemma 5.6. By Lemma 5.10 GMNP

has finite stature with respect to {A}. �

We note that the residual finiteness of the Artin groups considered above was also proven
in [Jan22a].

5.5. Case where {M,N,P} = {2m+ 1, 4, 4}. We continue to use Notation 5.9.

Lemma 5.12. Let {M,N,P} = {2m + 1, 4, 4}. Every graph Y 2 is either the left graph in

Figure 5, or has simply connected ÁY2. Every graph Y 3 is either the right graph in Figure 5,

or has simply connected ÁY3. The map Y 4 → Y 2 is always an embedding of a subgraph.

Proof. By Theorem 5.1 in all the cases listed in the statement, GMNP splits as an amalga-
mated product A∗C B of finite rank free groups where [B : C] = 2, which by Proposition 5.8
is virtually the fundamental group of a monochrome cycles preserving graph of graphs.

By Lemma 5.6, Y 2 is computed as a connected component of the fiber product Y 1⊗XA
Y 1,

which has been done in [Jan22a, Lem 5.1]. If ÁY2 is simply-connected, then Y 4 → Y 2 is an
embedding of a subgraph for every Y4, by Lemma 5.10.

In the case where ÁY2 is not simply connected, the resulting map Y 2 → XC is illustrated
as the first vertical arrow in Figure 6. Lemma 5.4 ensures that Y2 → XC can be computed,
which is done in the second vertical arrow in Figure 6. Then the rest of Figure 6 represent
the computation of σβ(Y2) → XC . Finally, by Lemma 5.6, Y 3 is computed as the fiber
product σβ(Y2) ⊗XA

Y 2, i.e. the fiber product of the left top and the right top graphs in
14



Figure 6. (M,N,P ) = (2m + 1, 4, 4). The vertical arrows are respectively:
Y 2 → XC , Y2 → XC , β(Y2)→ XC , and σ · β(Y2)→ XC .

Figure 6. We deduce that Y 3 either has simply connected ÁY3, or it is the right graph in
Figure 5.

If ÁY3 is simply-connected, then so is ÁY4 and Y 4 → Y 2 is an embedding of a subgraph,
as required. Otherwise, Y 4 is a connected component of Y 3 ⊗XA

Y 3 by Lemma 5.6. Note

that each connected component Y 4 is either equal to Y 3, or has simply connected ÁY4, and
in particular, the map Y 4 → Y 2 is an embedding of a subgraph. �

Combining Lemma 5.12 and Lemma 5.7 yields the following.

Corollary 5.13. The Artin group GMNP where M = 2m+ 1 ≥ 3 and N = P = 4 has finite
stature with respect to {A}, where A is as described in Theorem 5.1.

5.6. Case where M,N,P ≥ 3 are all odd. First consider the case where M = N = P = 3.

Proposition 5.14. Let (M,N,P ) = (3, 3, 3), and let T be the Bass-Serre tree of the splitting
G333 = A ∗C B. Then for every path ρ in T , Stab(ρ) = C.

Proof. Indeed, in this case C is normal in both A and B, so all G333-conjugates of C are
equal C. This proves that all edge stabilizers in the action of G333 on T are equal C. �

For the remaining cases, we will apply Lemma 5.7 to deduce that GMNP has finite stature
with respect to {A}, similarly as in Section 5.5 We now consider the case where M,N,P are
all at least 5. We continue to use Notation 5.9.

Lemma 5.15. Let M,N,P ≥ 5 be all odd. Every graph Y 2 is either the left graph in

Figure 7, or has simply connected ÁY2. Also, every graph Y 3 is either the right graph in

Figure 7, or has simply connected ÁY3. The map Y 4 → Y 2 is always an embedding of a
subgraph.

Proof. We write M = 2m + 1, N = 2n + 1, and P = 2p + 1. The first part of the lemma
was proven in [Jan22a, Lem 5.1]. In order to prove the second part we start with computing
σβ(Y2), which is illustrated in Figure 8. We note that there are two connected components
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Figure 7. (M,N,P ) = (2m+ 1, 2n+ 1, 2p+ 1). The graph on the left is the
fiber product Y 2 = XC ⊗XA

XC . The graph on the right is σβ(Y2)⊗XA
Y 2.

Figure 8. (M,N,P ) = (2m+1, 2n+1, 2p+1). Each of the two rows of vertical
arrows corresponds to respectively: Y 2 → XC , Y2 → XC , β(Y2) → XC , and
σβ(Y2)→ XC .

Y2 of the fiber product XC ⊗XA
XC for which ÁY3 is not simply connected. They are both

color-preserving isomorphic to the left graph in Figure 7, but their maps to XC are different.
The first column of Figure 8 shows the two precovers Y 2 → XC (they are determined by
the coloring of the vertices). For each Y2, we compute σβ(Y2), in a similar manner as in
Lemma 5.12, see the rest of Figure 8. In each case, we deduce that each connected component

Y 3 of Y 2⊗XA
σβ(Y2) either has simply connected ÁY3, or it is the right graph in Figure 7. In

either case, we every map Y 4 → Y 2 is an embedding of a subgraph by a reasoning similar
to one in Lemma 5.12. �
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Figure 9. (M,N,P ) = (2m + 1, 2n + 1, 2p + 1). A connected component of
XC ⊗XA

XC , when M = 3 and N,P ≥ 5 (left), M = N = 3 and P =≥ 5
(right).

We now move to the case where one or two of M,N,P are equal to 3. Unlike in the previous
case, the computation of the fiber product XC ⊗XA

XC in such cases was not included in
[Jan22a]. We start with that computation.

Lemma 5.16. Suppose one or two of M,N,P are equal to 3. Every connected component

Y2 of XC ⊗XA
XC either has simply connected ÁY2 or is

• the left graph in Figure 9, when M = 3 and N,P ≥ 5,
• the right graph in Figure 9, when M = N = 3 and P ≥ 5,

Proof. This is a direct computation. We remind that the graph XC is the middle graph in
the first row of Figure 2. In Figure 9 we bi-colored the vertices of the graphs (i.e. colored
with a pair of colors) to make it easier for the reader to verify the computation. �

Now our goal is to show that Y `+2 → Y ` is an embedding of a subgraph for some `, so we
can apply Lemma 5.7. The case where exactly one of M,N,P is equal 3 is considered first.

Lemma 5.17. Let N,P ≥ 5 be odd, and M = 3. Every Y 3 is either a single monochrome

cycle or one of the graphs in Figure 10, and in particular has simply connected ÁY3.

Proof. We write N = 2n + 1 and P = 2p + 1. By Lemma 5.16, every Y2 either has simply

connected ÁY2 or is the left graph in Figure 9. There are two components of XC ⊗XA
XC

color-preserving isomorphic to the left graph in Figure 9. We compute σβ(Y2) similarly as
in Lemma 5.15 and Lemma 5.17. This is illustrated in Figure 11. Next, for each of the two
choices of σβ(Y2) (as illustrated in Figure 9) we compute the fiber product Y 2⊗σβ(Y2). The
labelling of the vertices in the top left, top right and the bottom right graph in Figure 9,
will help the reader to verify that all the connected components of those fiber products are
either pictured in Figure 10 or consist of a single monochrome cycle. Finally, we conclude

that for every Y 3, the complex ÁY3 is simply connected. �

In the remaining case exactly two of M,N,P are equal 3.

Lemma 5.18. Let P ≥ 5 be odd, and M = N = 3. Every Y 3 either has simply connectedÁY3, or is one of the graphs in Figure 12. Moreover, the map Y 5 → Y 3 is always an embedding
of a subgraph.

Proof. We write P = 2p+ 1. By Lemma 5.16, every Y2 either has simply connected ÁY2 or is
color-preserving isomorphic to the right graph in Figure 9.

We compute σβ(Y2) similarly as in Lemma 5.17. This is illustrated in Figure 13. Once
again, for each of the two choices of σβ(Y2) we compute the fiber product Y 2 ⊗ σβ(Y2).
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Figure 10. (M,N,P ) = (3, 2n + 1, 2p + 1). All the connected components
of Y 2 ⊗XA

σβ(Y2) is either a cycle or one of the graphs pictured above. Each
green loop has length 2n + 1, and each blue loop has length 2p + 1. The top
row here corresponds to σβ(Y2) in the top row of Figure 11, and the bottom
row here corresponds to σβ(Y2) in the bottom row of Figure 11. We include
labels of vertices as 1c, 2b etc, where the number corresponds to a vertex of
Y 2 and the letter corresponds to a vertex of σβ(Y2).

Figure 11. (M,N,P ) = (3, 2n+ 1, 2p+ 1). Each of the two rows of vertical
arrows corresponds to respectively: Y 2 → XC , Y2 → XC , β(Y2) → XC , and
σβ(Y2)→ XC .
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Figure 12. (M,N,P ) = (3, 3, 2p+ 1). Each unlabelled blue loop has length
2p+ 1.

Figure 13. (M,N,P ) = (3, 3, 2p+1). Each of the two rows of vertical arrows
corresponds to respectively: Y 2 → XC , Y2 → XC , β(Y2)→ XC , and σβ(Y2)→
XC .

As a result we obtain that Y 3 is either a monochrome (blue) cycle, or it is color-preserving
isomorphic to one of the graphs in Figure 12.

We now note that the collection of graphs in Figure 12:

• has the property that the fiber product of any two graphs is a subgraph of one of the
graphs in the collection, and
• is invariant under β, see Figure 14.

The first fact implies that every Y 4 is a subgraph of some Y 3. The second fact implies that
this is also the case for Y 5. In particular, every Y 5 → Y 3 is an embedding. �

We now summarize what we have proven in this subsection.

Corollary 5.19. The Artin group GMNP where M,N,P ≥ 3 are odd has finite stature with
respect to {A}, where A is as described in Theorem 5.1.
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Figure 14. Each unlabelled blue loop has length 2p+ 1

Proof. When M = N = P = 3, the statement follows from Proposition 5.14. The case where
M = N = 3, and P = 2p+ 1 ≥ 5 follows from Lemma 5.18 and Lemma 5.7. The case where
M = 3, N = 2n + 1 ≥ 5, and P = 2p + 1 ≥ 5 follows from Lemma 5.17 and Lemma 5.7.
Finally, the case where M = 2m + 1 ≥ 5, N = 2n + 1 ≥ 5, and P = 2p + 1 ≥ 5 is a
consequence of Lemma 5.15 and Lemma 5.7. �

We note that the residual finiteness of G333 follows from [Squ87]. The residual finiteness
of GMNP where M,N,P ≥ 5 was proven in [Jan22a]. However, the methods of [Jan22a] do
not cover the cases where one or two of M,N,P are equal 3.

5.7. The case where {M,N, 2} where M,N ≥ 4. We first focus on the case where M,N
are both even. We recall that, unlike in the previous cases, GMNP splits as an HNN-extension
A∗B, as in Theorem 5.2.
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Figure 15. P = 2. All the graphs Y ` are either wedges of circles, or one
of the graphs above, when (a) M,N ≥ 5 are both odd and P = 2, and (b)
exactly one of M,N ≥ 4 is odd and P = 2.

Figure 16. (M,N, 2) = (2m + 1, N, 2). In case (a) N = 2n + 1, and in case
(b) N = 2n. If Y is the rightmost graphs, then it is isometric to σβ(Y ).

Lemma 5.20. Let M = 2m,N = 2n and P = 2. The graphs φ1XB and φ2XB are (unbased)
color-preserving isomorphic. In particular, the stabilizer of every finite path in the Bass-Serre
tree of the splitting of GMNP = A∗B is conjugate to a subgroup of A represented by φ1XB

or a wedge of monochrome cycles.

Proof. The graphs φ1XB and φ2XB are computed in Theorem 5.2, and it is easy to see that
the two graphs are color-preserving isomorphic. Every connected component Y of the fiber
product φ1XB ⊗XA

φ1XB is either color-preserving isomorphic to φ1XB or is a wedge of
monochrome cycles. �

Next, we consider the cases where at both M,N are odd.

Lemma 5.21. Let P = 2 and M = 2m + 1, N = 2n + 1 ≥ 5. Every graph Y 2 either is
color-preserving isomorphic to the left graph in Figure 15(a) or it is a wedge of monochrome
cycles. If Y is the left graph in Figure 15(a), then σβ(Y ) is (unbased) isometric to Y .
Therefore, every graph Y i either one of the two graphs in Figure 15(a), or it is a wedge of
monochrome cycles.

Proof. The first statement was proven in [Jan22b, Rem 3.5]. The proof of the second state-
ment is illustrated in Figure 16(a). Let Y 2 be the left graph in Figure 15(a). Then every
connected component Y 3 of the fiber product Y 2 ⊗XA

σβ(Y2) = Y 2 ⊗XA
Y 2 is a wedge of

monochrome cycles, is isomorphic to Y 2 or to the right graph in Figure 15(a). We also note
that if Y is the right graph in Figure 15(b), then σβ(Y ) is isometric to Y . We conclude that
every graph Y ` either one of the two graphs in Figure 15(a), or it is a wedge of monochrome
cycles. �

Finally, we consider the cases where exactly one of M,N is odd.
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Lemma 5.22. Let P = 2, M = 2m + 1 ≥ 5, and N = 2n ≥ 4. Every graph Y 2 either is
isometric to the graph in Figure 15(b) or it is a wedge of monochrome cycles. If Y is the
graph in Figure 15(b), then σβ(Y ) is (unbased) isometric to Y . Therefore, every graph Y i

either one of the graph in Figure 15(b), or it is a wedge of monochrome cycles.

Proof. The first statement was proven in [Jan22b, Prop 3.4]. The proof of the second state-
ment is illustrated in Figure 16(b). Let Y denote the graph in Figure 16(b). Every connected
component of the fiber product Y ⊗XA

Y is either isometric to Y or it is a wedge of mono-
chrome cycles. �

Corollary 5.23. The Artin group GMN2 where M,N ≥ 4 has finite stature with respect to
{A}, where A is as described in Theorem 5.1.

Proof. All the cases can be deduced from Lemma 5.7 together with

• Lemma 5.20 when M,N are both even;
• Lemma 5.22 when exactly one of M,N is odd;
• Lemma 5.21 when both M,N are odd. �

Residual finiteness of GMN2 where at least one of M,N is even was proven in [Jan22b],
but the case of both M,N odd is a new result.

5.8. Triangle Artin groups with label ∞. Note that all of the above proofs are valid if
any of the labels M,N,P are equal to ∞.
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