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Abstract. We prove that the Center Conjecture passes to the
Artin groups whose defining graphs are cones, if the conjecture
holds for the Artin group defined on the set of the cone points. In
particular, it holds for every Artin group whose defining graph has
exactly one cone point.

1. Introduction

An Artin group A is given by the presentation

A = ⟨s1, . . . , sn∣ sisjsi⋯
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
mij terms

= sjsisj⋯
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
mij terms

⟩

where mij = mji ≥ 2. The data of an Artin group can be encoded by
its defining graph Γ whose vertex set is V (Γ) = {s1, . . . , sn}, and each
relation involving si, sj with terms of length mij corresponds to an edge
(si, sj) with label mij. The Artin group with defining graph Γ will be
denoted by AΓ. Every Artin group has a naturally associated Coxeter
group quotient AΓ → WΓ obtained by adding relations s2i = 1 for all
i = 1, . . . , n.
An Artin group A is spherical if the corresponding Coxeter group

is finite, and otherwise A is infinite type. A special subgroup of A
is a subgroup generated by some subset of K ⊆ V (Γ), denoted AK .
Each special subgroup AK is itself isomorphic to the Artin group with
defining graph ΓK , where ΓK is the subgraph of Γ induced byK [Lek83].
A 2-labelled join of labelled graphs Γ1,Γ2 is a graph join Γ1∗Γ2 where

every edge (s1, s2), with s1 ∈ V (Γ1) and s2 ∈ V (Γ2), has label 2, and the
labels of edges contained in factors Γ1,Γ2 remain the same. We denote
a 2-labelled join by Γ1 ∗2 Γ2. If Γ = Γ1 ∗2 Γ2, then AΓ = AΓ1 ×AΓ2 . An
Artin group A is irreducible if its defining graph Γ does not split as a
2-labelled join, in which case we also call Γ irreducible.

Each Artin group AΓ admits (a possibly trivial) decomposition into
irreducible factors AΓ = AΓ1 ×⋅ ⋅ ⋅×AΓn , where each Γi ⊆ Γ is irreducible.
Equivalently, this corresponds the maximal decomposition of Γ as an
n-fold 2-labelled join of subgraphs Γ1, . . . ,Γn.
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Every irreducible spherical Artin group A has an infinite cyclic cen-
ter, and furthermore if {s1, . . . , sn} is the standard generating set of A
then Z(A) is generated by a power of s1s2⋯sn [Del72; BS72]. If z is a
central element in a spherical factor AΓi

of AΓ, then z ∈ Z(AΓ). Con-
jecturally, all the central elements of AΓ arise from irreducible factors
that are spherical.

The Center Conjecture. Let AΓ be an Artin group with irreducible
factor decomposition

AΓ = AΓ1 × ⋅ ⋅ ⋅ ×AΓn .

Then Z(AΓ) = Zk where k is the number of spherical factors AΓi
.

When A = B × C then Z(A) = Z(B) × Z(C) so, equivalently, the
Center Conjecture states that every irreducible Artin group of infinite
type has trivial center.

Apart from the spherical Artin groups, the Center Conjecture also
holds for FC-type Artin groups, 2-dimensional Artin groups [GP12b],
and Euclidean Artin groups [MS17]. More generally, every Artin group
that satisfies theK(π,1)-conjecture also satisfies the Center Conjecture
[JS23].
A cone point in a graph Γ is a vertex that is adjacent to every

other vertex of Γ. Charney and Morris-Wright have shown the Cen-
ter Conjecture holds for Artin groups whose defining graphs are not
cones [CM19]. In other words, this is the case where the set of cone
points of Γ is empty. The proof of Charney and Morris-Wright relies
on the geometry of the clique-cube complex, which is a CAT(0) cube
complex associated with Γ. Their result can also be deduced from the
following proposition, whose proof is brief and follows directly from the
presentation of AΓ.

Proposition 1.1. Let AΓ be an Artin group, where T ⊆ V (Γ) is the
set of cone points of Γ. Then Z(AΓ) ⊆ Z(AT ).

In particular, if in the above theorem Z(AT ) = {1}, then Z(AΓ) =
{1}, i.e. AΓ satisfies the Center Conjecture.

Godelle and Paris showed that if all Artin groups whose defining
graph is a clique satisfy the Center Conjecture, then all Artin groups
satisfy the Center Conjecture [GP12b]. Our second result gives alter-
native proofs of this fact and the Center Conjecture for FC-type Artin
groups, as well as the Center Conjecture for many new Artin groups
(see Figure 1 for some examples).
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Figure 1. New examples of graphs whose associated
Artin groups satisfy the Center Conjecture. The red
subgraphs are spanned by the set of cone points. The
middle graph can have any labels. The diagram on the
right represents an infinite class of such graphs; the dou-
ble edges represent joins, with all labels equal to 3.

Theorem 1.2. Let AΓ be an Artin group, where T ⊆ V (Γ) is the set
of cone points of Γ. If AT satisfies the Center Conjecture, then AΓ

satisfies the Center Conjecture.

To prove Proposition 1.1 we consider splittings of non-clique Artin
groups. This generalizes the result of [CM19] using a different method.
Then to deduce Theorem 1.2 from Proposition 1.1 we use a retraction
map (first used in [CP14] and recently discussed more explicitly in
[BP23]) to prove some combinatorial restrictions on central elements of
irreducible Artin groups; namely that any spelling of a central element
which does not use every generator cannot be strictly positive or strictly
negative.

Acknowledgements. The first author was partially supported by
NSF grants DMS-2203307 and DMS-2238198. The second author was
partially supported by NSF grant number DMS-2317001.

2. Central Elements are Generated by Cone Points

Let Γ a graph and let x, y ∈ V (Γ) so that mx,y = ∞. A direct
consequence of the presentation of AΓ is that it splits as the following
amalgamated product:

AΓ = AΓ−{x} ∗AΓ−{x,y} AΓ−{y}.

The following lemma can be proven by considering normal forms in
amalgamated free products, and was utilized in [GP12b].

Lemma 2.1. Let G = H1 ∗K H2 be the free product of H1,H2 amalga-
mated over K. Then Z(G) = Z(H1) ∩Z(H2) ⊆K.

Using these two results we can prove our first theorem.
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Proposition 1.1. Let AΓ be an Artin group, where T ⊆ V (Γ) is the
set of cone points of Γ. Then Z(AΓ) ⊆ Z(AT ).
Proof. Let R = V (Γ) − T and r ∈ R. There exists some qr ∈ V (Γ) − T
so that mr,qr = ∞. Thus

AΓ = AΓ−{r} ∗AΓ−{r,qr} AΓ−{qr}.

By Lemma 2.1 this implies that for every r ∈ R we have Z(AΓ) ⊆
AΓ−{r,qr} ⊆ AΓ−{r}. In particular we have

Z(AΓ) ⊆ ⋂
r∈R

AΓ−{r}.

In [Lek83] van der Lek showed that for any S,Q ⊆ V (Γ) we have
AS ∩ AQ = AS∩Q. In particular, ⋂r∈RAΓ−{r} = AΓ−R = AT . Since z ∈
Z(AΓ), z is also central in AT . □

We obtain the following corollary immediately.

Corollary 2.2. Suppose that Γ is a graph with cones points T , and
suppose AT has trivial center. Then AΓ has trivial center.

In particular, if T = ∅ then Z(AΓ) = {1} and we recover [CM19, Thm
3.3]. The condition that Z(AT ) = {1} is not a necessary condition: if
T = {t} then AT ≅ Z, so AT does not have trivial center. On the other
hand, if there is any vertex of Γ which does not commute with t then
Z(AΓ) is trivial.
Corollary 2.3. Suppose Γ is a graph with a single cone point t. Then
A(Γ) satisfies the Center Conjecture, i.e. Z(AΓ) = {1} if and only if
there exists s ∈ S so that mst ≠ 2. .
Proof. By Proposition 1.1 z ∈ A{t} = ⟨t⟩. Let z = ti. Since A{t,s} is
spherical, the center of A{t,s} is generated by a power of ts. Hence z is
central in A{t,s} only if i = 0.
If mst = 2 for all s ∈ S − {t}, then AΓ ≅ ⟨t⟩ ×AS, so ⟨t⟩ ≤ Z(AΓ). □

In the following section we generalize this argument to larger sets of
cone points.

3. Cone Sets Satisfying the Center Conjecture

3.1. Retraction map. The main goal of this subsection is Theo-
rem 3.4. Its proof relies on the retraction map πX ∶ A → AX described
in [CP14; BP23]. The definition of the map πX relies on passing to the
Coxeter group WΓ. We re-establish notation here so that we can dif-
ferentiate easily between elements in the Coxeter group and elements
in the Artin group.
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Fix a graph Γ. Let Σ = {σv ∣v ∈ V (Γ)} and S = {sv ∣v ∈ V (Γ)} be gen-
erating sets for the Artin and Coxeter groups AΓ and WΓ, respectively.
Let θ ∶ AΓ →WΓ the natural surjection sending σv ↦ sv. The kernel of θ
is the pure Artin group PAΓ. Let X ⊆ V (Γ). We denote the subgroup
of WΓ generated by X by WX , and similarly for the corresponding
subgroup of PAΓ and subsets of Σ, S.

Let X,Y be two subsets of S. An element w ∈WΓ is (X,Y )-reduced
if it is of minimal length amongst the elements of the double coset
WXwWY . For any element w ∈WΓ the length of w, denoted ∣w∣, is the
shortest length of a word on V (Γ) needed to express w.

Lemma 3.1 (Lemma 2.3 [GP12a]). Let X,Y ⊆ V (Γ) and let w ∈WΓ.
There exists a unique (X,Y )-reduced element in WXwWY . Further-
more, the following are equivalent:

● an element w ∈W is (X,∅)-reduced,
● ∣sw∣ > ∣w∣ for all s ∈X, and
● ∣v ⋅w∣ = ∣v∣ + ∣w∣ for all v ∈WX .

The map is defined as follows.

Definition 3.2 ([BP23]). Let (Σ ∪ Σ−1)∗ denote the free monoid on
Σ ∪Σ−1. Let X ⊆ V (Γ), and let α̂ = σε1

v1σ
ε2
v2⋯σ

εp
vp ∈ (Σ ∪Σ−1)∗.

Set u0 = 1 ∈ WΓ, and for i ∈ {1, . . . , p} set ui = sv1sv2⋯svi ∈ WΓ. We
can write each ui as ui = viwi where vi ∈WX and wi is (X,∅)-reduced.
Now define

ti = {
wi−1sviw

−1
i−1 if ε = 1,

wisviw
−1
i if ε = −1.

If ti ∉ SX we set τi = 1. Otherwise, we have ti ∈ SX , and we set
τi = σεi

xi ∈ Σ ∪Σ−1.
Finally, we define

π̂X(α̂) = τ1 . . . τp ∈ (Σ ∪Σ−1)∗.
We collect in the following proposition several properties of the map

π̂X and the induced map πX (see Proposition 3.3(1)) that will be of
use in later results.

Proposition 3.3. Let X,Y ⊆ V (Γ), and α ∈ (Σ ∪Σ−1)∗.
(1) [BP23, Prop 2.3(1)] The map π̂X ∶ (Σ ∪ Σ−1)∗ → (ΣX ∪ Σ−1X )∗

induces a set-map πX ∶ AΓ → AX .
(2) [BP23, Prop 2.3(2)] For all α ∈ AX we have πX(α) = α.
(3) [BP23, Prop 2.3(3)] The restriction of πX to PAΓ is a homo-

morphism πX ∶ PAΓ → PAX .
(4) [God23, Prop 0.2(vi)] Let A+Γ,A

+

X denote the Artin monoids on
V (Γ),X, respectively. Then πX ∶ A+Γ → A+X .
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(5) [God23, Prop 0.2(ix)] If ω ∈ AY then πX(ω) ∈ AY ∩X .
(6) [God23, Prop 0.3(ii)] For any ω ∈ AX we have πX(ωα) =

ωπX(α).
Theorem 3.4. Let AΓ be an irreducible Artin group and let z be ei-
ther a central element of AΓ of infinite order, or a non-trivial central
element of PAΓ, such that z admits a positive spelling in V (Γ). There
does not exist any K ⊊ V (Γ) so that z ∈ AK.

Proof. Suppose z is central in AΓ and has infinite order, and suppose
that z ∈ AK for some K ⊊ V (Γ). Suppose further that z is a positive
word on K; that is, there exists an α̂ ∈ K∗ so that z = α̂. Since z is
central, θ(z) lies in the center of WΓ. In particular, it has finite order
[Bou02]. By possibly passing to a finite positive power of z, we can
assume that z ∈ Z(PAΓ).

Without loss of generality, by possibly passing to a smaller subset
of K we can assume that all the letters of K appear in α̂. We claim
that there exists t ∈ K and s ∈ V (Γ) −K so that mst ≠ 2. Indeed, if
there is no such t ∈ K, then Γ = K ∗2 (Γ −K), which contradicts the
assumption that AΓ is irreducible. Let α̂′ denote a cyclic permutation
of α̂ beginning with t. Note that every cyclic permutation of α̂ is a
conjugate of α̂, and therefore α̂ represents z, since z is central. Consider
the map π{s,t} ∶ AΓ → A{s,t}. By Proposition 3.3(6) we know that
π̂{s,t}(α̂′) starts with the letter t, and by Proposition 3.3(4) we know
that π̂{s,t}(α̂′) is a positive word. In particular, π{s,t}(z) is non-trivial.
By Proposition 3.3(5) π(z) ∈ AK∩{s,t} = A{t}, and therefore π(z) is a
positive power of t.

By Proposition 3.3(3) the map π{s,t} ∶ PAΓ → PA{s,t} is a surjective
homomorphism, so π{s,t}(z) is central in PA{s,t}. But since A{s,t} is
spherical, its center is generated by a power of st. In particular, no
non-trivial power of t commutes with any non-trivial power of s in
A{s,t}. Therefore z = 1. □

In the case that Γ is not a clique, together with Proposition 1.1 this
implies that no central element of AΓ admits a positive spelling.

3.2. Proof of Theorem 1.2. We are now ready to prove the main
theorem of this note.

Theorem 1.2. Let AΓ be an Artin group, where T ⊆ V (Γ) is the set
of cone points of Γ. If AT satisfies the Center Conjecture, then AΓ

satisfies the Center Conjecture.

Proof. If Γ is a clique, then V (Γ) = T , so by assumption AΓ satisfies
the Center Conjecture. Suppose instead that Γ is not a clique.
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It suffices to prove the theorem for irreducible Γ. Indeed, if Γ = Γ1∗2
⋅ ⋅ ⋅ ∗2 Γn then Z(AΓ) = Z(AΓ1) × ⋅ ⋅ ⋅ ×Z(AΓn) so the Center Conjecture
holds for Γ if and only if it holds for each irreducible factor Γi. The
set of cone-points T of Γ is the union of the sets Ti = T ∩V (Γi) of cone
points in each Γi. Furthermore, if T splits as T = T ′1 ∗2 ⋯ ∗2 T ′n then
each Ti is a union of sets T ′i1 , . . . , T

′

ij
. Hence ATi

satisfies the Center

Conjecture for each i because AT satisfies the Center Conjecture.
Suppose that Γ is irreducible. By Proposition 1.1 Z(AΓ) ⊆ Z(AT ).

Let AT = AT1×⋯×ATm×⋯×ATn be the irreducible factor decomposition
of AT , where the factor ATi

is spherical if and only if i ≤ m. Since AT

satisfies the Center Conjecture, Z(AT ) = ⟨z1, . . . , zm⟩ ≃ Zm where zi is
a positive element of A(Ti) generating Z(ATi

) such that any spelling
of zi uses every letter of Ti at least once. Thus z = zk11 ⋯zkmm for some
ki ∈ Z for i = 1, . . . ,m. Since z is non-trivial, we know that at least
one of the ki is non-zero. Up to renumbering the factors and replacing
z with z−1, we may assume that k1 > 0. There is some k > 0 so that

zk ∈ PAΓ. Let x = zkk11 and y = zkkj+12 ⋯zkkmm so that zk = xy. Let α̂x, α̂y

denote minimal spellings of x, y, respectively. Note that α̂x is positive.
There must exist some r ∈ V (Γ)−T, t ∈ T1 so that mrt ≠ 2. Indeed, if

this is not the case then Γ = (Γ−T1)∗2T1, contradicting the irreducibility
of Γ. Since all cyclic permutations of α̂x represent x, we may take t to be
the initial letter of α̂xα̂y. Now consider the map πT1∪{r} ∶ AΓ → AT1∪{r}.
We have πT1∪{r}(zk) ∈ Z(PAT1∪{r}).
By Proposition 3.3(6) πT1∪{r}(xy) = xπT1∪{r}(y), since x ∈ AT1∪{r}.

Since y ∈ AT−{T1∪{r}}, by Proposition 3.3(5) we have πT1∪{r}(y) = 1.
So πT1∪{r}(zk) = x. Thus x is a positive central element of PAT1∪{r}

which does not use every letter of T1 ∪ {r}. By Theorem 3.4 x = 1,
contradicting the choice of k1.

□
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