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Abstract. We prove that for every prime p algebraically clean graphs of groups are vir-
tually residually p-finite and cohomologically p-complete. We also prove that they are
cohomologically good. We apply this to certain 2-dimensional Artin groups.

1. Introduction

An algebraically clean graph of free groups is a graph of groups where each vertex group
and edge group are finite rank free groups, and all the inclusion maps are inclusions of free
factors. Examples of the fundamental groups of algebraically clean graph groups include
free-by-cyclic groups, the fundamental groups of clean 2-complexes in the sense of Wise
[Wis00], and certain 2-dimensional Artin groups [Jan22a, Jan22b]. We note that (many
among) the former examples are known to not admit (virtual) cocompact actions on CAT(0)
cube complexes, so they are not virtually cocompactly special. In particular, the family of
algebraically clean graphs of groups is strictly larger than the family of the fundamental
groups of finite clean 2-complexes, which all are virtually special.

1.1. Virtual residual p-finiteness. A group G is residually finite if for every g P G´ t1u
there exists a quotient φ : GÑ K where K is a finite group and φpgq ‰ 1. The fundamental
groups of algebraically clean graph of free groups are known to be residually finite [Wis02,
Thm 3.4].

Let p be a prime number. A group G is residually p-finite if for every g P G ´ t1u there
exists a quotient φ : G Ñ K where K is a finite p-group and φpgq ‰ 1. Clearly, every
residually p-finite group is residually finite, but the converse does not hold.

Theorem 1.1. For every prime p, the fundamental group of an algebraically clean graph of
free groups has a finite index subgroup that is residually p-finite.

We do not know whether algebraically clean graphs of free groups are linear. We note that
linear groups are known to be virtually residually p-finite [Pla68] for all but finitely many
primes p. There have been previous combination theorems concerning residual p-finiteness,
originating in the work of Higman [Hig64], see e.g. [Wil19, Aza17, Sok23] and references
therein.
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1.2. Cohomology of profinite and pro-p completions. For a residually finite group G,

the profinite completion pG of G is defined as

pG “ lim
ÐÝ

rG:Hsă8

G{H,

where the inverse limit is taken over the system of finite quotients of G. For every G, there

is a canonical homomorphism i : G Ñ pG which sends g P G to the cosets gH. A group G
is called cohomologically good (also known as good in the sense of Serre) if for every finite
G-module M the induced homomorphism

H˚
contp

pG,Mq “ lim
ÐÝ

rG:Hsă8

H˚
pG{H,Mq

i˚
Ñ H˚

pG,Mq

is an isomorphism. We always take the cohomology of a profinite group to be its continuous
cohomology. Goodness was introduced in [Ser97, Exercises 2.6]

We can analogously define cohomological p-completeness for a residually p-finite group. In

this case, the pro-p completion pGp of G is given by

pGp “ lim
ÐÝ

G{H

where H varies over all the subgroups of G whose index is a power of p. Then G is cohomo-

logically p-complete if the homomorphism GÑ pGp induces an isomorphism

H˚
contp

pGp,Fpq Ñ H˚
pG,Fpq

where we assume the G-action on Fp is trivial.

Theorem 1.2. The fundamental group of an algebraically clean graph of free groups is

(1) cohomologically good,
(2) for every prime p, virtually cohomologically p-complete.

For each p, the cohomologically complete finite index subgroup is a priori different. General
graphs of free groups do not always satisfy the above theorem. Indeed, there exist examples
of amalgamated products of free groups that are not residually finite [Bha94, Wis96]. There
are even examples of simple groups that split as amalgamated products of free groups [BM97].

1.3. Virtual poly-freeness. A group G is poly-free if it admits a chain of subgroups 1 “
G0 �G1 � ¨ ¨ ¨�Gn “ G such that Gi{GGi´1 is a free group (of possibly infinite rank). We
say G is normally poly-free if additionally all subgroups Gi are normal in G.

Theorem 1.3. Algebraically clean graphs of free groups are normally poly-free.

This has a number of consequences; for instance it implies these groups are locally indi-
cable, hence left-orderable [RR02], and satisfy the K´ and L´theoretic Farrell-Jones Con-
jecture [BFW21, BKW21].

1.4. Applications to Artin groups. An Artin group is given by a presentation

A “ xs1, . . . , sk| sisjsi ¨ ¨ ¨
looomooon

mij terms

“ sjsisj ¨ ¨ ¨
looomooon

mij terms

y
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where mij P t2, 3, . . . u Y t8u. We understand mij “ 8 as no relation involving si and sj.
A triangle Artin group A`mn is an Artin group where k “ 3, and m12 “ `, m23 “ m, and
m13 “ n.

Since finite type Artin groups are linear ([Kra02], [Big01] for braid groups, and [CW02],
[Dig03] in general), it follows that they are also virtually residually p-finite. Moreover, pure
Artin groups of type An, Cn, G2 and I2pnq are residually p and cohomologically p-complete
for all p [AF13], and cohomologically good [Ser97].

With the next corollary in mind, we note that the only spherical triangle Artin groups are
the A22n “ ApI2pnqq ˆ Z for n ě 2, and A23n where n P t3, 4, 5u. Among those, the even
ones, A22n for even n, all are known be cohomologically good and virtually residually p-finite
and cohomologically p-complete for all p.

Corollary 1.4. A triangle Artin A`mn where ` ď m ď n is

‚ residually finite and cohomologically good,
‚ for each prime p, virtually residually p-finite and cohomologically p-complete,
‚ virtually normally poly-free,

provided that

‚ ` “ 2, and m,n ě 4 and at least one of them is even, or
‚ `,m, n ě 4 except for the case where ` “ m “ 4 and n is odd, or

In particular, all even triangle Artin groups and all extra-extra-large triangle Artin groups
(i.e. where `,m, n ě 5) satisfy the above.

Moreover, there are many more 2-dimensional Artin groups that have the above properties.
See [Jan22a] for a combinatorial criterion on the defining graph, which ensure that the
associated Artin group is virtually algebraically clean graph of free groups.

The Artin groups above were shown to virtually split as algebraically clean graphs of free
groups in [Jan22a, Jan22b]. We note that “virtual” in the above statement is necessary.
Indeed, a group G that is residually p-finite for all primes p is bi-orderable [Rhe73] (see also
[KS20]), but the only bi-orderable Artin groups are right-angled Artin groups. However,
it is possible that each Artin groups listed above contains a finite index subgroup that is
residually p-finite for all primes p.

Artin groups that are known to be poly-free are right-angled Artin groups [DK93, How99,
Hv07], even FC-type Artin groups [BGMPP19], and even large type Artin groups [BG21].

Artin groups of types An, Bn “ Cn, Dn, F4, G2 and I2pnq [Bri73], as well as rAn, rBn, rCn, rDn

[Rou20] are known to be virtually poly-free. Independently, Wu-Ye proved that all triangle
Artin groups except A23n where n is odd, are virtually poly-free [WY23]. Wu-Ye also show
that some triangle Artin groups are not poly-free.

Finally, we also establish residual finiteness and cohomological goodness for all even Artin
groups whose defining graphs contains no 4-cliques.

Theorem 1.5. Let Γ be a finite labelled graph with all even labels that does not contain a
4-clique. Then AΓ is residually finite and cohomologically good.

Such Artin groups are also poly-free by [BG21, Wu22].

Acknowledgements. The first author was supported by the NSF grant DMS-2203307 and
DMS-2238198. The second author was supported by the NSF grant DMS-2203325.
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2. Graphs of groups

2.1. Graph of groups notation. We recall the basic definitions and set the notation.
A graph Y consists of a set V pY q of its vertices, and a set EpY q of its edges, and two

maps:

(1) ¨ : EpY q Ñ EpY q satisfying e “ e, where we think of e as the edge e with the
orientation reversed,

(2) τ : EpY q Ñ V pY q, which we think of as taking the endpoint of an edge.

A graph of groups G with underlying graph Y consists of a family of vertex groups tGvuvPV pY q
and edge groups tGeuePEpY q where Ge “ Ge together with maps tfe : Ge Ñ GτpequePEpY q.

Let T Ď EpY q be a set of edges of a spanning tree of Y . The fundamental group π1G of
the graph of groups G is constructed as the quotient

π1G “ p˚vPV pY qGvF pEpY qq{K

where K is a set of the following relations

(1) efepgqe “ fepgq for all e P EpY q and g P Ge, and
(2) e “ e´1, and e “ 1 if and only if e P T .

2.2. Algebraically clean graph of groups. An algebraically clean graph of free groups is
a graph of groups G with finite underlying graph Y , where Gv is a finite rank free group for
all v P V pY q, Ge is finite for all e P EpY q, and the maps fe : Ge Ñ Gτpeq are injective maps
onto free factors.

Let G be a group, and N,M Ď G be two subgroups. We say that an isomorphism
φ : N Ñ M is a partial automorphism, if there exists an automorphism φext : G Ñ G such
that φext

|N “ φ. A partial identity is a partial automorphism that can be extended to the
identity.

Proposition 2.1. Every algebraically clean graph of free groups G admits a splitting as an
algebraically clean graph of groups G 1 where the underlying graph Y 1 has a unique vertex,
and up to renaming e and e, Ge Ď Gτpeq is a free factor, fe is the inclusion map, and fe is a
partial automorphism of Gτpeq.

Proof. Consider a spanning tree T in the underlying graph Y of G. We define a new graph
Y 1 to have the vertex set V pY 1q “ tT u and edge set EpY 1q “ te P EpY q | e R EpT qu. Then
by “collapsing” T in Y , we can identify π1G with the fundamental group of a graph of groups
G 1 with underlying graph Y 1, where

‚ GT “ ˚vPTGv,
‚ for each edge e R EpT q, Ge becomes identified with fepGeq Ď Gτpeq Ď GT which is a

free factor in Gτpeq and therefore also in GT , and the map fe : Ge “ Ge Ñ Gτpeq Ď GT

is an embedding onto some free factor of Gτpeq and again also a free factor of GT . We
can thus think of that map fe as a partial automorphism of GT .

�

3. Residual p-finiteness

Throughout this section p is a fixed prime.
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3.1. Well-known basics on residual p-finiteness. We start with stating some easy facts
that we will use later.

Lemma 3.1.
(1) Let N � G be a subgroup whose index is a power of p. Then there exists a charac-

teristic subgroup K �G whose index is a power of p, such that K Ď N .
(2) Let G fit in a short exact sequence

1 Ñ N Ñ GÑ QÑ 1

where Q is a finite p-group, and N is residually p-finite. Then G is residually p-finite.

Proof.
(1) Let K be the intersection

Ş

H of all the normal subgroups H of G of index rG : N s.
Note that K is also the kernel of a homomorphism G Ñ

ś

H G{H, since the order
of each G{H is a power of p, so is the order of

ś

H G{H. In particular, the index
rG : Ks is a power of p.

(2) Let g P G. If g survives in Q, then Q is the required finite p-quotient of G. Suppose
g P N . Since N is residually p-finite, then using (1) we know that there exists a
characteristic subgroup K Ď N such that g R K and whose index is a power of p.
Since K is characteristic in N , it is normal in G, and rG : Ks is a power of p.

�

3.2. Basics on lower central p-series. Let G be a finitely generated group. For subgroup
H,K Ď G we denote:

‚ Hp “ xhp | h P Hy,
‚ rH,Ks “ xrh, ks | h P H, k P Ky, and we use the convention that rh, ks “ hkh´1k´1,
‚ HK “ xhk | h P H, k P Ky.

Let G be a finitely generated group. A filtration of G is a collection pGnqnPN of subgroups
of G where G1 “ G, and Gn`1 Ď Gn for each n P N. A filtration pGnqnPN is normal if Gn�G
is normal for each n P N, and it is separating if

Ş

nPNGn “ t1u.
The lower p-central filtration tγpnpGqun of G is defined as:

γp1pGq :“ G, γpn`1pGq :“ pγpnpGqq
p
rG, γpnpGqs.

We also denote LpnpGq “ γpnpGq{γ
p
n`1pGq. In particular, Lp1pGq “ H1pG,Fpq. The lower

p-central filtration of G is a normal filtration, and it is separating if and only if G is residually
p-finite. We note a couple of basic well-known properties of the lower p-central series. For
completeness, we provide proofs.

Lemma 3.2.
(1) For each n we have pγpnpGqq

p Ď γpn`1pGq.
(2) For each n,m we have rγpmpGq, γ

p
npGqs Ď γpn`mpGq.

(3) Each γpnpGq is a characteristic subgroup of G. In particular, for each i there are nat-
ural homomorphisms θn : AutpGq Ñ AutpLpnpGqq and σn : AutpGq Ñ AutpG{γpnpGqq.

Proof.
(1) Follows immediately from the definition.
(2) We induct on m. For m “ 1 the statement follows directly from the definition for

every n. Suppose that rγpm´1pGq, γ
p
npGqs Ď γpn`m´1pGq for every n.
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First we claim that rpγpm´1pGqq
p, γpnpGqs Ď γpn`mpGq. Given k P γpnpGq and h P

γpm´1pGq we need to show that rhp, ks P γpn`mpGq. First note that rhp, ks “ hpup

where u “ kh´1k´1. By the inductive assumption u “ h´1` for some ` P γpn`m´1pF q.
We have

rh, ksp “ phkh´1k´1
q
p

“ hpph´pp´1quhpp´1q
qph´pp´2quhpp´2q

q . . . ph´1uhqu.

By substituting u “ h´1` we get

h´pp´iquhpp´iq “ h´pp´iqh´1`hpp´iq “ h´1h´pp´iq`hpp´iq “ h´1``i “ u`i

for some `i P γn`m where the equality h´pp´iq`hpp´iq “ ``i follows from rG, γn`m´1s Ď

γn`m. Thus we have

rh, ksp “ hpu`p´1u`p´2 . . . , u`1u P ph
pupqγpn`mpGq,

and in particular rhp, ksγpn`mpGq “ ph
pupqγpn`mpGq “ rh, ks

pγpn`mpGq. Since rh, ks P
γpn`m´1pGq by induction, we have rh, ksp P γpn`mpGq by Lemma 3.2(1). We conclude
that rhp, ks P γpn`mpGq, as claimed.

Now we claim that rrG, γpm´1pGqs, γ
p
npGqs Ď γpn`mpGq. By the three subgroup

lemma (see e.g. [Isa09, Cor 8.28])

rrG, γpm´1pGqs, γ
p
npGqs Ď rrγ

p
m´1pGq, γ

p
npGqs, Gs ¨ rrG, γ

p
npGqs, γ

p
m´1pGqs

Ď rγpn`m´1pGq, Gs ¨ rγ
p
n`1pGq, γ

p
m´1pGqs

Ď γpn`mpGq

and the second and third line follow from the inductive hypothesis. Thus we conclude
that rγpmpGq, γ

p
npGqs “ rpγ

p
m´1pGqq

prγpm´1pGq, Gs, γ
p
npGqs Ď γpn`mpGq, as desired.

(3) We now induct on n. For n “ 1, clearly γp1pGq “ G is characteristic in G. We
assume that the statements in true for n ´ 1 and prove it for n. Let h P γpnpGq “
γpn´1pGqrG, γ

p
n´1pGqs, i.e. h “ hp1 ¨ rk, h2s where h1, h2 P γ

p
n´1pGq and k P G. Let

φ P AutpGq. Then

φphq “ φphp1 ¨ rk, h2sq “ φph1q
p
¨ rφpkq, φph2qs.

Since γpn´1pGq is characteristic, φph1q, φph2q P γ
p
n´1pGq, so φphq P γpn´1pGqrG, γ

p
n´1pGqs “

γpnpGq. Thus γpnpGq is characteristic.
Since γpnpGq is characteristic in G, every automorphism φ : GÑ G preserves γpnpGq,

and therefore σnpφq : G{γpnpGq Ñ G{γpnpGq is well-defined. It is clear that σn is a
homomorphism. The automorphism φ restricts to φ|γpnpGq : γpnpGq Ñ γpnpGq, and to
φ|γpnpGq : γpn`1pGq Ñ γpn`1pGq. Thus φ descends to a well-defined automorphism of
LpnpGq. The map θn is clearly a homomorphism.

�

Proposition 3.3 ([HB82, Chap VIII.1]). Let φ P AutpGq such that θ1pφq “ IdLp
1pGq

.

(1) We have θnpφq “ IdLp
npGq for all n.

(2) The order of σnpφq is a power of p.

Proof. (1) We induct on n. The case of n “ 1 is immediate. We assume that the
statement holds for n´ 1.
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Let first h P γpn´1pGq. Then by assumption φphq “ hkn where kn P γ
p
npGq. We have

φphp γpn`1pGqq “ phknq
p γpn`1pGq

“ hpph´pp´1qknh
p´1
qph´pp´2qknh

p´2
q ¨ ¨ ¨ ph´1knhqki γ

p
n`1pGq

“ hpkn`p´1kn`p´2 ¨ ¨ ¨ kn`1kn γ
p
n`1pGq

“ hpkpnpk
´pp´1q
n `p´1k

p´1
n qpk´pp´2q

n `p´2k
p´2
n q . . . pk´1

n `1knq γ
p
n`1pGq

“ hpkpn γ
p
n`1pGq

“ hp γpn`1pGq

where `1, . . . , `p´1, `, `
1 are some elements of γpn`1pGq. Indeed, the fact that h´jknh

j “

kn`j follows from the fact that rγpn´1pGq, γ
p
npGqs Ď rG, γpnpGqs Ď γpn`1pGq (Proposi-

tion 3.2(2)). Finally, the fact that kpn P γ
p
n`1 follows from Proposition 3.2(1).

Now let g P G. Then φpgq “ g`2 for some `2 P γ
p
2pGq. We have

φprg, hs γpn`1pGqq “ rg`2, hkns γ
p
n`1pGq

“ gp`2hkn`2
´1
qg´1kn

´1h´1 γpn`1pGq

“ ghpkndn`1g
´1kn

´1
qh´1 γpn`1pGq

“ ghdn`1g
´1d1n`1h

´1 γpn`1pGq

“ ghg´1h´1 γpn`1pGq

“ rg, hs γpn`1pGq

where we used Proposition 3.2(2) to write `2hkn`2
´1
“ hkndn`1 for some dn`1 P

γpn`1pGq since rγp2pGq, γ
p
n´1pGqs Ď γpn`1pGq, and kndn`1g

´1kn
´1
“ dn`1g

´1d1n`1 for
some d1n`1 P γ

p
n`1pGq since rγpnpGq, Gs Ď γpn`1pGq.

Finally, every generator h of γpnpGq is of the form h “ hp1rg, h2s for some h1, h2 P

γpn´1pGq. We have

φphγpn`1pGqq “ φphp1qφprg, h2sqγ
p
n`1pGq “ hp1rg, h2sγ

p
n`1pGq.

for some ` P γpi`1pGq. This proves that θipφq “ IdLp
i pGq

as claimed.

(2) We prove by induction on n that σnpφ
pn´1

q “ IdG{γpnpGqq. The case of n “ 1 is
immediate as σ1 “ θ1. We assume that the statement holds for n ´ 1, in particular
for every h P G we have φp

n´2
phγpn´1pGqq “ hγpn´1pGq, i.e. there exists k P γpn´1pGq

such that φp
n´2
phq “ hk. We have

φp
n´1

phq “ pφp
n´2

q
p
phq “ pφp

n´2

q
p´1

´

φp
n´2

phq
¯

“ pφp
n´2

q
p´1
phkq.

Since k P γpn´1pGq and θnpφ
pn´2

q “ θnpφq
pn´2

“ IdLp
npGq, using Proposition 3.3(1),

we get

pφp
n´2

q
p´1
phkq “ pφp

n´2

q
p´2
pφp

n´2

phqφp
n´2

pkqq

P pφp
n´2

q
p´2
phk ¨ kγpnpGqq

“ pφp
n´2

q
p´3
phk3γpnpGqq “ ¨ ¨ ¨ “ hkpγpnpGq.

In particular, since kp P γpnpGq by Proposition 3.2(1), we conclude φp
n´1
phq P hγpnpGq

as required.
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Corollary 3.4. Let A Ď AutpGq be a subgroup.

(1) The image θ1pAq Ď AutpLp1pGqq is a finite p-group if and only if θnpAq Ď AutpLpnpGqq
is a finite p-group for every n ě 1.

(2) The image θ1pAq Ď AutpG{γp1pGqq is a finite p-group if and only if σnpAq Ď AutpG{γpnpGqq
is a finite p-group for every n ě 1.

Proof.
(1) Fix n ě 1, and suppose that θ1pAq is a finite p-group. By Proposition 3.3(1) for every

φ P A, if θ1pφq “ IdLp
1pGq

, then θnpφq “ IdLp
i pGq

. Thus θipAq is a quotient of θ1pAq. In

particular, θipAq is a finite p-group as required.
(2) Fix n ě 1, and suppose that σ1pAq “ θ1pAq is a finite p-group. For every φ P A

there exists k ě 1 such that θ1pφ
pkq “ θ1pφq

pk “ IdLp
1pGq

. By Proposition 3.3(2) the

order of σnpφ
pkq is a power of p, and therefore the order of σnpφq is a power of p. We

conclude that σnpAq is a p-group. As a subgroup of the automorphism group of a
finite group σnpAq is also finite.

�

The above corollary implies that for every subgroup K of kerpAutpGq Ñ AutpLp1pGqq
(which has finite index in AutpGq), all the images σipKq are finite p-groups. This observation
is crucial in the proof of Theorem 1.1.

We note the following observation that the operators θi and σi can be extended to partial
automorphisms.

Lemma 3.5. A partial automorphism φ : N Ñ M induces a partial automorphism N X

γpnpGqq Ñ M X γpnpGq of γpnpGq. In particular, it descends to the following partial automor-
phisms

(1) σnpφq : N{N X γpnpGq ÑM{M X γpnpGq, and
(2) θnpφq : N X γpnpGq{N X γ

p
n`1pGq ÑM X γpnpGq{M X γpn`1pGq.

Proof. Since φ is a partial automorphism of G, there exists φext P AutpGq such that φext
|N “ φ.

By Proposition 3.2(3), γpnpGq is a characteristic subgroup of G, so φextpγpnpGqq “ γpnpGq for
every n. Thus φpN X γpnpGqq “ φextpN X γpnpGqq “ M X γpnpGq for every n. The lemma
follows. �

3.3. Residual p-finiteness criterion for graphs of groups. We generalize a theorem of
[AF13] that every graph of virtually residually p-groups, where edge group inclusions are
isomorphisms, are virtually residually p-finite. Their result, in particular, applies to free-
by-cyclic groups. We will use a criterion for residual p-finiteness of graphs of groups stated
therein.

A filtration G of a graph of groups G is a collection tGvuv of compatible filtrations Gv “

tGv,nun of Gv for each v P V pΓq, in the sense that for all n

f´1
e pGτpeq,nq “ f´1

e pGτpeq,nq.

For a given property X (e.g. normal, separating), we say that G is X if for every v P V pY q
the filtration Gv is X. We say that a filtration G of a graph of groups G separates edge
groups if fepGeq “

Ş

nGτpnq,n ¨ fepGeq for all edges e.
8



Let Gn be the n-th depth subgroups of the filtration G of G, i.e. Gn “ pGv,nqvPV pY q. Since
the filtrations of the vertex groups are compatible, there exists a natural graph of groups
quotient G{Gn which has Y as it underlying graph and vertex groups Gv{Gv,n.

The following will be used to prove Theorem 1.1.

Theorem 3.6 ([AF13, Cor 3.14]). Let G be a normal separating filtration of G which
separates edge groups of G, such that π1pG{Gnq is residually p-finite for every n ě 1. Then
π1G is residually p-finite.

3.4. Main proof. The following lemma can be deduced from [Wil19] but in this case it is
easy to prove it directly.

Lemma 3.7. Let P be a finite p-group. Let G be a graph of p-groups where each vertex
group comes with an injective homomorphism ψv : Gv Ñ P , and each edge group comes
with an inclusion ψe : Ge Ñ P such that ψe “ ψe. Moreover, assume that for each edge e
the composition ψτpeq ¨ fe “ ψe. Then π1G is residually p-finite.

Proof. The assumption on G imply that there exists an epimorphism ψ : π1G Ñ P which is
an isomorphism on each vertex group. Indeed, ψ is defined as ψv on each vertex group Gv,
and sending all edge generators (not edge groups) to the identity. The kernel kerψ is thus a
finite index subgroup of π1G and splits as a finite graph of trivial groups, i.e. kerψ is a finite
rank free group. By Lemma 3.1(2) π1G is residually p-finite. �

We are now ready to prove the main theorem.

Theorem 3.8. For every prime p, the fundamental group of an algebraically clean graph of
free groups has a finite index subgroup that is residually p-finite.

To illustrate the proof, we first consider the special case of free-by-free groups.

Proof for F ¸Q. Let F,Q be finite rank free groups. In particular, F and Q are residually
p-finite. Let α : Q Ñ AutpF q be a homomorphism associated to the semi-direct product.
By Lemma 3.2(3) γp2pNq is characteristic in N , so every automorphism φ P AutpF q descends
to an automorphism of Lp1pF q, i.e. there is a well-defined homomorphism β : AutpF q Ñ
AutpLp1pF qq. By composing α with β, we obtain a homomorphism to a finite group β ¨ φ :
Q Ñ AutpLp1pF qq. Let Q1 be its kernel. Then F ¸ Q1 is a finite index subgroup of F ¸ Q,
which we claim is residually p-finite.

By Corollary 3.4(2) the image σipQ
1q is a p-group for every i. In particular pF {γpi q ¸ Q1

is residually p-finite. Indeed if g P pF {γpi q ¸Q
1 survives in Q1, then we can use the fact that

Q1 is residually p-finite. Otherwise, when g P kerppF {γpi q ¸ Q1 Ñ Q1q, then g must survive
in the quotient pF {γpi q ¸ σipQ

1q, which is a p group as its order is a power of p. Since every
element g P F ¸Q1 survives in F {γpi pF q¸Q

1 for some i, we conclude that F ¸Q1 is residually
p-finite. �

We now move to the general case. Let F be a finite rank free group, and let N,M be two
subgroups of the same rank, each being a free factor of F . Every isomorphism φ : N Ñ M
can be extended to an automorphism φext : F Ñ F , i.e. φext

|N “ φ, which we call an extension
of φ to F . Note that an extension of φ is far from being unique. Indeed, it is only unique if
N “M “ F .
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Proof in general case. Let G1 be a fundamental group of an algebraically clean graph of free
groups. By Proposition 2.1 we can think of G1 as the fundamental group of a graph of
groups G 1 where the underlying graph Y 1 of G 1 is a wedge of k oriented circles te1, . . . , enu.
The unique vertex group of G 1 is identified with a finite rank free group F , and for each
1 ď i ď k the edge groups Gei can be identified with a free factor Ni so that fei “ IdNi

and
fei “ φi : Ni Ñ Mi is a partial automorphism onto a free factor Mi of F . Let Q1 be a free
group freely generated by tφ1, . . . , φku, which can be naturally identified with π1pY q.

Step 1. We construct a finite index normal subgroup Q of Q1 such that θnpQq is trivial.

Let tφext1 , . . . , φextk u be a choice of extensions of tφ1, . . . , φku, i.e. for each 1 ď i ď k
φexti P AutpF q such that φexti |Ni

“ φi. Recall the homomorphism θ1 : AutpF q Ñ AutpLp1pF qq

from Proposition 3.2(3). We construct a subgroup Q of Q1 as

Q “ kerpQ1 Ñ AutpF q Ñ AutpLp1pF qq

where the first map sends φi to φexti P AutpF q, and the second map is θ1. Since AutpLp1pF qq
is a finite group, the index rQ1 : Qs is finite.

By Corollary 3.4(1), the image of Q in AutpLpnpF qq is trivial for every n.

Step 2. We construct the corresponding finite index normal subgroup G of G1 and realize it
as the fundamental group of a graph of groups G covering the graph of groups for G 1.

Consider the finite index subgroup G of G1 corresponding to Q, i.e. G “ kerpG1 Ñ Q1 Ñ
Q1{Qq. The group G is the fundamental group of the following graph of groups G. The
underlying graph Y of G is the finite covering space of Y 1 corresponding to Q Ď Q1. Each
vertex group of G is a copy of F . The edge groups of edges labelled with ei are copies of
Ni with the maps IdNi

and φi into the respective vertex groups. We note that G is still an
algebraically clean graph of finite rank free groups, with a natural quotient Q.

Step 3. There is a natural filtration G of G where Gv “ tγ
p
npGvqun of Gv for each v P V pY q.

The filtration is normal, separating, and it separates the edge groups.

Lemma 3.5 implies that the filtrations Gv on the individual vertex groups are compatible
and indeed define a filtration on G. It is immediate that G is normal. Since all the vertex
groups are free groups, hence residually p-finite, their lower p-central series are separating.
Since the edge groups are retracts of the vertex groups, and vertex groups are residually
p-finite, [AF13, Lem 1.6] implies that the filtration separates the edge groups.

Step 4. For each n, π1pG{Gnq is residually p-finite.

The graph of groups G{Gn has all the vertex groups naturally isomorphic to F {γpnpF q and
the edge groups are pNi{pNi X γpnpF qq for respective i, with the respective edge maps being
partial identities and partial automorphisms φi. We construct a further subgroup Qn of Q
as

Qn “ kerpQÑ AutpF q Ñ AutpF {γpnpF qq

the first map sends φi to φexti P AutpF q, and the second map is the map σn defined in
Lemma 3.2(3). By Corollary 3.4(2), the image of Q in AutpF {γpnpF qq is a finite p-group,
and therefore rQ : Qns is a p-power. We now claim that the kernel Kn “ kerpπ1pG{Gnq Ñ

Q Ñ Q{Qnq is the fundamental group of a graph of groups satisfying the assumptions of
Lemma 3.7, and therefore is residually p-finite. Indeed, Kn is a finite cover Gn of the graph of
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groups G{Gn whose all the vertex groups are still naturally isomorphic to F {γpnpF q, and edge
groups are pNi{pNi X γpnpF qq for respective i, with the respective edge maps being partial
identities and partial automorphisms φi. We fix a vertex group Gv0 of Gn and for each
v P V pY q we construct a map φv : Gv Ñ Gv0 . We describe each map as an automorphism
ψv P AutpF {γpnpF qq using the natural identification of each Gv with F {γpnpF q. First, ψv0 “

IdF {γpnpF q. For v such that there is a path from v to v0 is labelled by edges ei1 . . . eik we define
ψv “ σnpφ

ext
ik
¨ ¨ ¨φexti1

q.
We claim that ψv does not depend on the choice of the path from v to v0. Indeed, given

some other path with labels ej1 . . . ejk1 we get that

θnpφ
ext
ik
¨ ¨ ¨φexti1

qθnpφ
ext
jk1
¨ ¨ ¨φextj1

q
´1
“ θnpφ

ext
ik
¨ ¨ ¨φexti1

pφextj1
q
´1
¨ ¨ ¨ pφextjk1

q
´1
q “ IdGv0

by our choice of Qn. This proves that θnpφ
ext
ik
¨ ¨ ¨φexti1

q “ θnpφ
ext
jk1
¨ ¨ ¨φextj1

q. For any edge e with
label i, we set ψe “ ψe “ ψτpeq|Ge , and easily verify that this choice is compatible with both
ψτpeq and ψτpeq. By Lemma 3.7 Gn is residually p-finite. By Lemma 3.1, so is G{Gn since it
has a power-p subgroup that is residually p-finite.

Step 5. The group π1pGq is residually p-finite.

Residual p-finiteness of π1pGq follows from Theorem 3.6 and Steps 3 and 4. �

4. Cohomological p-completeness and goodness

In this section we prove Theorem 1.1. The proofs are nearly identical for goodness/p-
completeness. Therefore, we will just prove the p-completeness statements, and mention in
the last subsection how the same arguments work for goodness.

4.1. Cohomological p-completeness. Recall from the introduction that a discrete group

G is cohomologically p-complete if the canonical homomorphism GÑ pGp to the pro-p com-
pletion induces an isomorphism

H˚
contp

pGp,Fpq Ñ H˚
pG,Fpq.

Theorem 4.1. The following groups are cohomologically p-complete for all p:

(1) Free groups [LS07]
(2) Finitely generated nilpotent groups [Lor08]
(3) Right-angled Artin groups [Lor08]
(4) Free products and direct products of cohomologically p-complete groups[LS07].
(5) Retracts of cohomologically p-complete groups [LS07].

We refer to [LS07] for further details on cohomologically p-complete groups. The idea
behind our proof is simple. We are considering multiple HNN extensions of a free group
F , and the cohomology of these can be computed by a Mayer-Vietoris sequence. It is
well-known that free groups are cohomologically p-complete for every p, hence four out of
every five terms in the Mayer-Vietoris sequence are cohomology groups of cohomologically p-
complete groups, and the remaining term is H˚pG,Fpq. If there was a similar exact sequence

for the cohomology of the pro-p completion pGp, then we would be done by the Five Lemma
(this is essentially the argument for right-angled Artin groups used in [Lor08]). The following
property of a graph of groups is a sufficient condition for this pro-p Mayer-Vietoris sequence
[AF13, Lem 5.11]. A profinite version can be found in [WZ10, Prop 4.3].
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Definition 4.2. Let G be the fundamental group of a graph of groups, and suppose G is
residually p-finite. The pro-p topology on G is p-efficient if the vertex and edge groups of G
are closed in the pro-p topology of G and if the pro-p topology on G induces the full pro-p
topologies on the vertex and edge groups of G.

In general, if H ă G and G is residually p-finite, the pro-p topology on G induces the full
pro-p topology on H if and only if for every pn-index subgroup K ă H, there is a pm-index
subgroup J ă G with J XH Ă K. A subgroup H ă G is closed in the pro-p topology if it
is the intersection of pn-index subgroups.

Lemma 4.3. Let G be a graph of groups where the edge groups are retracts of the vertex
group. Then π1G is p-efficient if and only if

(1) G “ π1G is residually p-finite,
(2) the pro-p topology on G induces the pro-p topology on Gv for all vertices v, and
(3) every vertex group Gv is closed in the pro-p topology of G.

Proof. Every homomorphism φ : Ge Ñ P to a finite p-group P extends to a homomorphism
from Gv. This proves that the pro-p topology on Gv induces to the pro-p topology on Ge,
and it follows that the pro-p topology on G induces the pro-p topology on Gv. When the
edge group Ge is a retract of a vertex group Gv, then it is closed in the pro-p topology of Gv

by [AF13, Lem 1.6]. Thus if Gv is closed in the pro-p topology of G, then so is Ge. �

We state the criterion.

Theorem 4.4 ([AF13, Cor 5.12]). Let G be a p-efficient graph of finitely generated groups,
where all vertex and edge groups are cohomologically p-complete. Then π1G is cohomologi-
cally p-complete.

Theorem 4.5. For every prime p, the fundamental group of an algebraically clean graph of
free groups has a finite index subgroup which is cohomologically p-complete

Proof. We have already constructed in the proof of Theorem 3.8 a finite index subgroup π1pGq
of π1pG 1q which is residually p-finite. We claim that the corresponding decomposition as a
graph of free groups is efficient. Recall that the pro-p topology on vertex groups is generated
by the filtration γpnpGvq. By construction, for every n, π1pGq admits a homomorphism to a
finite p-group which restricts to Gv Ñ Gn{γ

p
npGvq. This combined with Lemma 4.3 shows

that the pro-p topology on π1pGq is efficient, so we are done by Theorem 4.4. �

4.2. Goodness. Cohomological goodness is a bit easier to establish; we will give a more
straightforward proof without restating the relevant definitions (which essentially involves re-
placing the pro-p completion/topology everywhere with the profinite completion/topology).

Theorem 4.6. The fundamental group G of an algebraically clean graph of free groups is
cohomologically good.

Proof. We know G decomposes as an iterated HNN extension of a free group F , where the
edge maps extend to automorphisms of F . We claim these decompositions are efficient. To
see this, take a finite index characteristic subgroup C of F . There is an induced homomor-
phism from G to an iterated HNN extension of F {C, denoted by G1. Since F {C is finite, G1

is virtually free, so let H” be any finite index free subgroup which intersects F {C trivially.
The preimage H of H 1 hence intersects F inside of C. This shows the HNN extension is
efficient, so we are done by the profinite Mayer-Vietoris sequence [WZ10, Prop 4.3]. �
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Since finite extensions of good groups are good, this implies that any Artin group satisfying
the conditions of Corollary 1.4 is good as well.

5. Virtual poly-freeness

Proof of Theorem 1.3. Let G be an algebraically clean graph of finite rank free groups over
a finite graph Γ. By Proposition 2.1, we can assume that Γ has a unique vertex v, and some
finite number of loops. Then the fundamental group of G fits in the following short exact
sequence

1 Ñ xxGvyy Ñ π1pGq Ñ π1Γ Ñ 1.

We claim that xxGvyy is a (possibly infinite rank) free group. Indeed, the induced graph of
groups decomposition of xxGvyy is an infinite tree of Gv, amalgamated along free factors. The
chain 1 � xxGvyy� π1pGq is a chain witnessing the normal poly-freeness of π1pGpΓqq. �

6. Even Artin groups

Lemma 6.1. Let Γ be a graph labelled by even numbers ě 2, and let Λ Ď Γ be any induced
subgraph. Then AΓ retracts onto AΛ.

Proof. The retraction is obtained by mapping each generator s P V pΛq to itself, and each
generator s P V pΓq ´ V pΛq to 1. �

Proof of Theorem 1.5. The proof is an induction on the number of non-edges in the defining
graph Γ of AΓ. If Γ is a full graph, then by the assumption on no 4-cliques Γ has at most three
vertices. If Γ has one vertex, then AΓ “ Z is residually finite and cohomologically good. If Γ
has two vertices, then AΓ is virtually F ˆ Z (see e.g. [HJP16, Lem 4.3]), which is residually
finite and cohomologically good. Since residual finiteness and cohomological goodness pass
to finite index supergroups [GJZZ08, Lem 3.2], AΓ has those properties. Finally, when Γ has
three vertices then AΓ is residually finite and cohomologically good by Corollary 1.4.

We now prove the inductive step. Let Γ has a non-edge tu, vu. Then AΓ splits as an
amalgamated product AΓ´tuu˚AΓ´tu,vu

AΓ´tvu. By the inductive assumption AΓ´tuu and AΓ´tvu

are residually finite and cohomologically good. By Lemma 6.1, AΓ is an amalgamated
product along retracts, so AΓ is residually finite by [BE73], and cohomologically good by
[GJZZ08, Prop 3.5]. �

More generally, the argument in the proof above shows that for even Artin groups being
residually finite and cohomologically good are “free-of-infinity properties”, in the sense that
if we prove that all even Artin groups whose defining graphs are cliques are residually finite
and cohomologically good, then we will be able to deduce that the same holds for all even
Artin groups.
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