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Abstract

The Clean Water Act provides around 180 million dollars annually for nonpoint source
pollution programs. We examine how state governments deploy these funds. We
find that watersheds with wealthier and more white populations are less polluted but
more likely to receive pollution project funding. Supporting analyses show that these
disparities can be explained by spatial differences in local government capacity. So-
cioeconomically disadvantaged areas have fewer resources to compete for grants and
constrained match funding for grant proposal requirements. Our findings suggest that
a competitive application process is an inequitable way to determine environmental
funding priorities and could amplify justice concerns.
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1 Introduction

Nonpoint source pollution is the leading cause of water quality problems in the United
States (EPA, 2011). NPS pollutants—including oil, sediment, fertilizer and other agricul-
tural and urban runoff—affect the quality of drinking water supplies and harm fisheries and
wildlife. Surface water pollution also reduces the recreation and amenity value of contam-
inated resources (Kuwayama et al., 2022). To address water pollution from known (point)
sources, policymakers usually utilize regulations and wastewater treatment facilities (Keiser
and Shapiro, 2019a). In contrast, the diffuse nature of nonpoint sources makes NPS water
pollution a considerably more complicated challenge (Chambers and Quiggin, 1996).

Motivated by this concern, Congress amended the Clean Water Act in 1987 to establish
federal funding for nonpoint source pollution management. The Section 319(h) program
allocates funds annually to the designated water quality agency in each state, as well as
to tribes and U.S. territories. Since 1990, more than five billion dollars of federal grants
have been provided; in 2022, the total was $178 million. Congress determines total Section
319 funding, then provides each state a lump sum amount based on fixed proportions. For
example, California always receives 5.34 percent, Texas receives 4.75 percent, and so on
(Figure A1 shows the full distribution). These funds are used by state and local governments
for NPS projects, often in combination with funding from other sources.1

States have broad discretion over Section 319 funds, and scope for potential projects
exceeds available resources, such that funding decisions entail an opportunity cost. To set
funding priorities, states ask local governments to submit project proposals (EPA, 2011).
This competitive funding process could help states to implement projects where they are
most beneficial, especially if local governments have better information about constituent
preferences (Oates, 1999). However, this process might favor wealthier communities. Fed-
eral Section 319 funding requires at least 40 percent match funding, and most states pass
through this requirement. Funding from local sources also helps in the proposal ranking
process. Local governments vary greatly in their resources and capacity to successfully write
grants (Gargan, 1981). Communities also vary in political influence (Becker, 1983). If these
nonenvironmental factors play a large enough role, then socioeconomically advantaged com-
munities may receive an outsized share of the funding.

Our study tests this hypothesis, using the spatial distribution of funded projects to
1Some examples of project deliverables are sediment retention basins, riparian fencing for livestock, and

treatments for algae blooms. Section 319 grants are also used to develop Watershed Restoration Action
Strategies and Total Maximum Daily Load planning needed to obtain larger state and federal grants.
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evaluate racial and socioeconomic disparities in grant awards. Our analysis level is a “sub-
watershed,” the smallest comprehensive hydrologic unit of the U.S. Geological Survey (there
are about 103,000 subwatersheds, more than twice the number of ZIP codes). Measuring
relationships at a granular level helps to avoid attenuation bias from the “ecological fal-
lacy” (Banzhaf et al., 2019). Using EPA data, we determine whether each subwatershed is
included in new Section 319 funding awards annually. We match race and socioeconomic
characteristics for subwatershed populations using decennial censuses and American Com-
munity Surveys, spatially joined at the (most granular) Census Block level. After dropping
unpopulated areas, our study sample contains over 88,000 subwatersheds spanning 1990-
2020, with more than 74,000 project funding awards at the subwatershed-year level.

We find evidence of significant disparities in grant funding rates. For instance, the average
rate of annual funding inclusion is 0.59 percent for subwatersheds with less than 10 percent
white population, compared to three percent for majority-white subwatersheds. Only one
percent of subwatersheds with income per capita in the bottom quartile are funded per award
cycle, while areas with income in the top quartile have a funding rate of almost 4.5 percent.
Using home values, the annual funding rate is 1.35 percent for subwatersheds in the bottom
quartile but over four percent for areas in the top quartile.

This evidence is bolstered by regression analysis. Including statistical controls is con-
troversial in the environmental justice literature, because conditioning on covariates may
obscure the descriptive relationships of primary interest (Banzhaf et al., 2019). However,
it seems sensible to control at least for state-by-year fixed effects, the statutory level of
decision-making in funding allocations. Our most saturated specifications also control for
subwatershed population and rural status. These linear regressions show that a ten per-
centage points increase in white population share is associated with 0.1 percentage points
increase in the likelihood of receiving funding. At the sample average funding rate of 2.9
percent, this amounts to a 3.5 percent increase in funding probability. Similarly, we find that,
at the mean, a ten percent increase in per-capita income (median home value) is associated
with a 1.5 percent (1.3 percent) increase in funding probability.

Numerous economic mechanisms could explain these disparities. As discussed above,
local government capacity is likely an important factor.2 Using data from the Census of
Governments, we find that local governments serving socioeconomically advantaged subwa-
tersheds have significantly larger revenues and tax receipts. These financial resources are

2For instance, a specialized environmental consulting industry exists to help local governments—that can
afford the services—to obtain Section 319 grants, including drafting the grant proposal itself.
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both directly (via match funding requirements) and indirectly valuable in obtaining grants
from state governments. We find no evidence that funding disparities result from an equity-
efficiency tradeoff. Using comprehensive granular measurements of surface water pollution,
we find—perhaps unsurprisingly—that socioeconomically advantaged subwatersheds are less
polluted. We also rule out the importance of spillovers, such as if advantaged populations
were more likely to live in upstream subwatersheds.

Our paper makes several contributions. Most directly, we show how federal nonpoint
source water pollution funding is distributed in the United States. Case studies in the
literature find “mixed results” for racial and socioeconomic disparities in the locations of
wetlands projects (Dernoga et al., 2015). Our study provides the first comprehensive na-
tionwide evaluation of Clean Water Act Section 319 funding. In doing so, we contribute to
a growing literature on water policy, helping to address the “dearth of economic research
on water pollution” (Keiser and Shapiro, 2019a). Evaluations of Clean Water Act and Safe
Drinking Water Act policies focus on information disclosure, polluting facility inspections,
and wastewater treatment plants (e.g. Bennear and Olmstead, 2008; Grooms, 2015; Keiser
and Shapiro, 2019b). We provide evidence for the economics of nonpoint source pollution
programs, a “critical area” for research (Olmstead, 2010). The evidence also sheds light
on some of the “equity and distributional concerns that arise from changing clean water
policies” (Keiser et al., 2022).

More generally, we demonstrate a role for public finance in environmental justice. The
literature distinguishes distributive justice—the distribution of pollution—from procedural
justice—the decision-making process yielding this distribution (Banzhaf et al., 2019). Our
paper speaks to both concerns. We show that poorer populations and people of color live
in areas with more surface water pollution. And, we show that pollution program funding
decisions are an important factor underlying these differences in exposure. Empirical research
on procedural justice has focused primarily on inequitable enforcement of regulation (e.g.
Konisky et al., 2021; Marion and West, 2022). We provide evidence that public funding
decisions can be another source of environmental disparities. The results of this study suggest
that competitive Requests for Proposals and local match funding requirements may be an
inequitable process for deciding where to implement environmental improvement projects.

3



2 Data

Our study uses an annual panel of subwatersheds during 1990-2020. We start with the
U.S. Geological Survey’s (USGS) Watershed Boundary Dataset. The country is divided into
contiguous hydrologic units at various scales using a nested structure: region, subregion,
basin, subbasin, watershed, and subwatershed.3 There are about 103,000 subwatersheds, the
smallest comprehensive unit, with an average area of 106 square kilometers.

We use Section 319 funding data from the EPA’s Grants Reporting and Tracking System
(GRTS). For each sponsored project, the database records details such as the state, award
year, and project status. States report total grant awards by project but do not disaggregate
funding per subwatershed.4 Because multiple subwatersheds are often included in the same
project, we focus on the extensive margin of whether a subwatershed is included in an award
year, rather than funding amounts. Project locations are sparsely available for early years of
the data, before a 2002 EPA requirement that projects be geolocated. We provide additional
discussion and evidence considering this policy change in Section 3.

For characteristics of subwatershed populations, we use Census Bureau data provided by
the Integrated Public Use Microdata Series (IPUMS, Manson et al., 2021). We use the com-
plete count tabulations of population by race at the Census Block level from the 1990, 2000,
2010 and 2020 decennial censuses.5 We use income per capita and median home values at the
Census Tract level from the 1990 and 2000 census long forms and the twelve American Com-
munity Survey (ACS) 5-year waves, 2005-2009 through 2016-2020. We merge this race and
socioeconomic data to subwatershed units by spatially joining the subwatershed and Census
Block geodatabases, using subwatershed-block population weights to assign characteristics.
To have coverage in non-census years, we impute census characteristics within-subwatershed
using the last observation carried forward method. For example, we assign a subwatershed’s
1990 white population share to observations for years 1991-1999.

We use the Census Bureau’s Census of Governments and Annual Survey of State and
Local Government Finances for data on individual county and municipal/township govern-
ments during 1990 through 2019, accessed via the Government Finance Database (Pierson
et al., 2015). The Census Bureau surveys the compete count of governments every five years
(for our study: 1992, 1997, 2002, 2007, 2012, 2017) and uses a sample in the intervening

3Technically, our unit of analysis is a 12-digit Hydrologic Unit Code. Appendix B has additional details.
4Not all grants relate to specific subwatersheds. Section 319 funding can also be used for hiring and other

more general nonpoint source water pollution activities.
5The United States has over eight million unique Census Blocks with an average population of 41 people.
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years. By spatially joining subwatersheds to government jurisdictions, we determine the rev-
enue and tax receipts for local governments serving each subwatershed. We exclude federal
and state government revenue, and use data fields that isolate resources sourced locally and
exclude any intergovernmental transfers.

To quantify pollution, we follow related literature in selecting dissolved oxygen as the
measure of water quality (Keiser and Shapiro, 2019b). Our analysis uses dissolved oxygen
deficit, defined as 100 minus dissolved oxygen saturation and expressed as a percentage.
Nonpoint source pollution increases dissolved oxygen deficits as microorganisms decompose
pollutants. A larger value indicates more polluted water. We include data from USGS’s
National Water Information System, EPA’s Storet, and EPA’s Storet Legacy Data Center.
The data provides fairly comprehensive coverage, and we impute missing dissolved oxygen
values for about 28 percent of subwatershed-years. Finally, we use the National Hydrography
Dataset Plus, an EPA-USGS collaboration, to determine the presence and extent of any water
(downstream) outflows for each subwatershed within the national stream network.

We restrict our analysis to subwatershed-year observations with census population and
nonmissing data on income, home values, and pollution.6 This sample includes 2,554,099
observations covering 88,437 subwatersheds during 1990-2020. Appendix B provides addi-
tional discussion of the data preparation and Table A1 presents the summary statistics of key
variables. On average, 2.9 percent of subwatersheds receive a grant per year. Subwatershed
populations are on average 86.5 percent white, with a mean income per capita of 26,791
(2020$). The average subwatershed has a median home value of 147,924 (2020$).

3 Results

3.1 Socioeconomically advantaged areas receive more grants

As discussed in Section 1, states have broad discretion in distributing Section 319 funds.
Evidence of these decisions is provided in Figure 1, a map of subwatershed-level funding
frequency during 1990-2020. Note that a subwatershed being included in multiple years of
funding means that the subwatershed had grant awards in multiple years—not that the same
grant-funded project took multiple years (which is also often the case). The same project
can receive multiple rounds of funding, however. Some states spread Section 319 funding
broadly within their jurisdictions, while others provided funding more narrowly. Overall, the

6We drop 637,134 observations (about 14,500 subwatersheds) in total from the balanced panel of all U.S.
subwatersheds during 1990-2020. The vast majority are dropped due to having no human population.

5



map shows broad spatial heterogeneity in funding allocations. Our analysis below explores
whether these funding decisions are related to racial and socioeconomic characteristics.

First, we consider the average grant funding rate for different subsets of subwatersheds.
Figure 2 presents these results, showing a clear pattern. Panel (a) groups subwatersheds
by white population share. The average rate of annual funding inclusion is 0.59 percent for
subwatersheds with less than 10 percent white population, 1.56 percent for subwatersheds
with between 10 to 20 percent white population, 2.75 percent for areas with between 20 to
50 percent white population, and 3.0 percent for majority-white subwatersheds.7 Panel (b)
shows funding rates by quartile of income per capita (using 2020$), which are 0.96 percent,
2.44 percent, 3.77 percent, and 4.44 percent. For quartiles of subwatershed median home
values (in 2020$), the respective rates in Panel (c) are 1.35, 2.79, 3.33, and 4.14 percent. For
all three characteristics shown in Figure 2, the funding rate for the most socioeconomically
advantaged group is three to five times that for the most disadvantaged group. Altogether,
these unadjusted relationships suggest significant disparities in grant awards.

We use regression analysis to further explore these patterns. The raw averages shown
in Figure 2 do not account for any intertemporal or cross-state variation, which might be
important. For one, there may be aggregate time-varying factors that are correlated both
with socioeconomic characteristics and with funding probability. Furthermore, the statutory
level of decision making is at the state level each year. States vary substantially in the
racial and socioeconomic composition of their subwatersheds (as maps in Figure A2 show).
If states also differ in their funding priorities, then there may be cross-state correlations
between socioeconomic characteristics and subwatershed funding probability. To address
these potential confounders, the regression models include state-by-year fixed effects. Our
more saturated specifications also include rural area-by-year fixed effects and log-population
controls, as these factors may influence the scope for pollution projects.8 The regression
specification is:

I{funding}isrt = βsocioeconomic_factorit + θst + ϕrt + γln(population)it + ϵisrt (1)

where I{funding}isrt is an indicator for whether subwatershed i in state s with rural des-
ignation r is included in the awarded grants for year t, socioeconomic_factorit is the race
or socioeconomic variable of interest (examined using separate regressions), θst are state-by-

7Panel (a) of Figure 2 groups subwatersheds by white population share using these ad hoc bins, instead
of using quartiles, because even the 8th percentile subwatershed has a majority-white population.

8We use the Census Bureau’s binary definition for rural or urban status. Because a subwatershed’s rural
status might be endogenous with its grant funding, we define all rural areas as of 1990.
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year fixed effects, ϕrt are rural area-by-year fixed effects, ln(population)it is the natural log
of the subwatershed’s population at time t, and ϵisrt is the idiosyncratic error term.

Table 1 presents the regression results. An observation is a subwatershed-year tuple
and standard errors are two-way clustered by subwatershed and year. Each panel shows
results using the indicated socioeconomic characteristic. The first three columns use the full
sample and include different sets of fixed effects and controls. All coefficients are positive and
statistically significant at the 10 percent level. For the most saturated specification, Column
(3), all estimates are significant at the one percent level. These estimates show that a ten
percentage points increase in white population share is associated with 0.1 percentage points
increase in a subwatershed’s funding inclusion rate, a 3.5 percent increase at the mean. A ten
percent increase in per-capita income (median home value) is associated with 0.043 (0.038)
percentage points increase in the funding rate, a 1.5 (1.3) percent increase at the mean.

The final two columns subset the data by time period. As noted in Section 2, the EPA
changed regulations starting in 2002 to require states to report geolocation information for
funded projects. During the first twelve years of data, relatively few grant awards are defined
at the subwatershed level. As shown in the bottom panel of Table 1, the 1990-2001 period
has 124 subwatershed funding inclusions per year on average, while 2002-2020 has 3,824 per
year on average. Although it is possible that states selectively reported project locations
prior to 2002 in order to mask socioeconomic disparities, classical attenuation bias is much
more likely. Still using Equation (1), Column (4) estimates results for the 1990-2001 period,
finding small and insignificant relationships. Column (5) uses the 2002-2020 period and shows
estimates that are about 60 to 90 percent larger than those in Column (3). 9 We view these
subsample results as a convincing robustness check of our full sample evidence. Collectively,
these regression findings reinforce the evidence shown above that a disproportionate share
of grants are awarded to socioeconomically advantaged communities.10

9Figure A3 plots the coefficients from estimating regressions separately for each year of data. Other than
the obvious differences between the 1990-2001 and 2002-2020 periods, there are no discernible time trends.

10As shown in Figure 1, almost every subwatershed is included in funding during 1990-2020 in Arkansas,
Connecticut, Delaware, Louisiana, Virginia, and West Virginia. Specifically, these six states each funded
more than 96 percent of subwatersheds. Our examination of state records indicates this is primarily driven by
institutional details of these states, such as the Chesapeake Bay and Virginia Waters Clean-Up and Oversight
Act of 2006. Because such comprehensive funding provides essentially no cross-sectional identifying variation,
Table A2 replicates Table 1 after dropping these six states. Removing the attenuation bias from these states,
the estimated socioeconomic disparities in Section 319 funding rates are robust and quantitatively larger.
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3.2 Local government capacity can explain funding disparities

Next, we evaluate potential mechanisms for these disparities. Section 319 funding decisions
are made by state water quality agencies each year. However, almost all states allocate grants
to local projects using an annual application process, such as Requests for Proposals (EPA,
2011).11 Socioeconomically advantaged communities arguably have a competitive advantage
in this process. Some of the advantage might be political, if wealthier populations can use
political connections to influence grant funding decisions (Becker, 1983).

More likely, the advantage is financial (Gargan, 1981). One stylized fact of funding
awards is the requirement of matching funds from grant applicants. Federal Section 319
funding requires at least a 40 percent match from state and local sources, and most states
pass through all or part of this requirement. Even if match funding is not explicitly required,
pledging local funds helps an application in the proposal evaluation process.12 Moreover,
pollution projects are often capital-intensive, and financial revenue is a major determinant
of local governments’ ability to secure bond financing (Butler and Yi, 2022). Financial
resources are also indirectly valuable, increasing the capacity to dedicate staff to writing
grant proposals or to hire consultants to craft more competitive applications.

We empirically test the importance of a local government capacity mechanism, finding
that government resources are significantly greater in socioeconomically advantaged subwa-
tersheds. To do so, we estimate versions of Equation (1) for measures of revenue of the local
governments—counties, municipalities, and townships—that serve each subwatershed. To
better quantify local capacity, we exclude federal and state government revenue and inter-
governmental transfers. This analysis uses our panel of subwatersheds matched to annual
data for 1990-2019 from six Census of Governments years and the intervening Annual Surveys
of State and Local Government Finances.13

Table 2 presents these estimates. The first two columns use measures of local government
revenue as the dependent variable. Column (1) shows that the three socioeconomic terms
have a strong positive relationship with log-revenue from all sources. Because total revenue
includes revenue from providing specific services (such as utilities and public transit), we
also estimate relationships using tax receipts, which should more closely represent a gov-

11The exception is Oklahoma, which coordinates funding decisions with local conservation districts.
12For example, Massachusetts, North Carolina, and Texas require awardees to cover at least 40 percent of

the project cost. California requires a minimum local match of 25 percent, with few exceptions. Florida and
Ohio do not require match funding, but local funding contributes to a higher proposal ranking.

13Public finance data is not available for every subwatershed-year in our primary sample, which drops by
609,660 observations (about 24 percent). In Table A3, we reproduce the estimates from Table 1 using this
reduced sample. Results remain statistically significant and quantitatively show slightly larger disparities.

8



ernment’s fungible resources. These results in Column (2) show an even greater association
with the socioeconomic characteristics. Quantitatively, we estimate a semi-elasticity of 0.32
between tax receipts and subwatersheds’ white population share. The elasticity between tax
receipts and income per capita is 0.56. The elasticity of tax receipts to home value is 0.13. In
Columns (3) and (4), respectively, we use local government log-revenue and log-tax receipts
as the explanatory terms. As in Table 1, the dependent variable is an indicator for subwa-
tershed inclusion in the grant awards for the year. These estimates are also positive and
significant, both statistically and economically, showing that areas served by higher-resource
governments are more likely to be awarded grant funding.14

It may be unsurprising that more affluent areas have better-funded local governments,
and we emphasize that these are descriptive patterns—not causal estimates. Likely, other
mechanisms are also factors for why socioeconomically advantaged areas receive a dispropor-
tionate share of Section 319 grant awards. Nonetheless, these findings provide compelling
evidence supporting that a local government capacity mechanism could drive the disparities
in grant awards documented above.

3.3 No evidence that disparities are an equity-efficiency tradeoff

A second possibility is that socioeconomic disparities are an unintended consequence of
distributing funding to locations where grants are most beneficial. Despite its severity,
nonpoint source water pollution remains largely unregulated in the United States (Keiser
and Shapiro, 2019a). The Section 319 program is the country’s primary policy addressing
this concern. We find in Ren and West (2022) that funded projects significantly reduce
pollution in treated subwatersheds, arguably providing substantial benefit. If the social
marginal benefit of a project is larger in socioeconomically advantaged subwatersheds, it
could be economically efficient to award more grants to these areas.

To assess this potential mechanism, we first evaluate the relationship between water
pollution levels and socioeconomic characteristics.15 There are diminishing marginal benefits
from reducing water pollution (Olmstead, 2010). So, project funding should generally be
more impactful in more polluted areas. We estimate Equation (1) for a dependent variable
of dissolved oxygen deficit, where a larger DO deficit indicates more polluted water.

Table 3 presents these results, using the same specifications as Table 1. All estimates
14The point estimates might seem small, but government revenues vary dramatically. For example, local

government revenue for the 75th percentile subwatershed is more than 950 percent that of the median.
15Figure A4 provides a map of subwatershed average dissolved oxygen deficit during 1990-2020.
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are negative, statistically significant, and robust across the three columns. The estimates
show that a ten percentage points increase in white population share is associated with
about 0.32 percentage points reduction in DO deficit, or 2.6 percent of the sample mean.
A direct interpretation of this magnitude is challenging because most effects of DO deficits
are nonlinear, such as thresholds at which aquatic species can no longer survive. As one
point of comparison, the average annual change in DO deficit for our panel is 0.1 percentage
points reduction per year. Thus, in a manner of speaking, subwatersheds with more white
populations have water quality that is effectively years ahead in pollution reductions.

Compared to the racial disparity, the estimates for income and home values are somewhat
more muted. Regardless, we can rule out that the disparities in grant awards are because
affluent communities are more polluted. A ten percent increase in subwatershed income per
capita is associated with about 0.05 percentage points reduction in DO deficit. A ten percent
increase in median home values corresponds to about 0.03 percentage points reduction. This
evidence shows that—within state-year and controlling for population and rural status—
socioeconomically advantaged populations live in relatively less polluted subwatersheds.

Social marginal benefits could also differ due to spillovers. Given the watershed-based
nature of our study, there should be relatively little potential for spillover effects from most
Section 319 projects. By definition, a watershed is an area of land where all water drains
to a common location. However, surface water does flow within a network of rivers and
streams. We use data mapping the flow of water within the continental United States to
determine downstream outflows between subwatersheds.16 In total, there are about 19,000
rivers and streams with inter-subwatershed flow, and about 56 percent of subwatersheds in
our sample are upstream of at least one other subwatershed. We construct three measures of
outflows. First, we define a binary indicator for whether a subwatershed has any downstream
outflows into another subwatershed(s). Second, we determine the total number of outflows
per subwatershed, i.e. the count of rivers and streams that flow into another subwatershed(s).
Finally, conditional on a subwatershed having outflows, we determine the total number of
downstream subwatersheds, including non-adjacent subwatersheds.

We estimate regressions using these three measures of subwatershed spillovers as de-
pendent variables in Equation (1). There is no evidence that downstream spillovers are
associated with subwatersheds’ socioeconomic characteristics. The estimates (shown in Ta-
ble A4) are minuscule and statistically insignificant for all three outflow measures and all
three socioeconomic terms. For instance, we find that a ten percentage point increase in

16We verified that the funding results in Table 1 are virtually unchanged without Alaska and Hawaii.
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white population share corresponds to only 0.01 percentage points increase in subwater-
shed outflow probability—on a mean of 56.3 percent. Evidently, wealthier and more white
populations do not systematically live in more upstream subwatersheds.

The results in this section imply that socioeconomically advantaged populations do not
live in areas where water pollution projects are more effective. Whether advantaged popu-
lations obtain greater social benefit from Section 319 funding depends also on preferences,
which are unobserved. One might be tempted to interpret their disproportionate share of
grant awards as evidence of a stronger revealed preference for addressing water pollution.
We caution that such an interpretation conflates differences in willingness to pay with the
significant differences in ability to pay that are demonstrated above. Empirically, we find no
evidence that the funding disparities are an equity-efficiency tradeoff.

4 Conclusions

For a variety of reasons, both technical and political, the United States addresses nonpoint
source water pollution primarily by funding local public works projects. This study has
examined where state governments use these Clean Water Act Section 319 funds. We find
that watersheds with socioeconomically advantaged populations are less polluted but more
likely to receive pollution project funding. We demonstrate that this disparity can be ex-
plained by differences in local government capacity. The funding is usually awarded through
a competitive application process, such as Requests for Proposals. Governments that serve
poorer communities and people of color generally have fewer resources to craft a competitive
proposal application or to meet match funding requirements.

These findings have several policy implications. Most directly, this evidence suggests
that the benefits of surface water pollution programs are inequitably distributed. Although
it is state government agencies that directly make Section 319 funding decisions, federal
policymakers can encourage these awards to account for disparate local capacities. As one
step towards a more equitable process, some states now waive match funding requirements for
grants to disadvantaged communities. Recent guidance from the Environmental Protection
Agency asks other states do to the same (Hall, 2021). However, if a state waives a local
match requirement, the state must then contribute the statutory 40 percent match, which
puts the onerous on state governments to fund environmental justice. Instead, match funding
waivers for disadvantaged communities could be implemented systematically.

More broadly, our study indicates that a competitive application process may be an
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inequitable way to determine environmental funding priorities. Requests for Proposals and
match funding requirements are ubiquitous facets of the project selection processes that gov-
ernments and other organizations rely on to make funding decisions. The funding available
for environmental improvement projects is often scarce, and a competitive process encour-
ages applicants to be vocal about why projects in their communities should be prioritized.
A competitive process also favors those with the resources to make their voice heard.
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Figures and tables

Figure 1: Map of subwatershed grant award frequency during 1990-2020
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Figure 2: Relationships between socioeconomic characteristics and grant funding rates
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Table 1: Estimated relationships between socioeconomic characteristics and grant funding

Dependent variable:
100 × indicator for subwatershed inclusion in grant awards for the year

Full sample: 1990-2020 Subset by time periods

(1) (2) (3)
1990-2001

(4)
2002-2020

(5)

Panel [A]: White population share 0.500* 0.742** 1.005*** -0.021 1.633***
(0.274) (0.284) (0.308) (0.033) (0.460)

Panel [B]: Log(income per capita) 0.878*** 0.635*** 0.432*** 0.043 0.719***
(0.177) (0.153) (0.141) (0.028) (0.211)

Panel [C]: Log(median home value) 0.705*** 0.556*** 0.383*** 0.021 0.714***
(0.160) (0.136) (0.108) (0.019) (0.174)

State × year fixed effects Yes Yes Yes Yes Yes
I{1990 rural area} × year FE Yes Yes Yes Yes
Population controls Yes Yes Yes
Dependent variable mean 2.903 2.903 2.903 0.146 4.737
Total subwatershed funding awards 74,144 74,144 74,144 1,486 72,658
Number of subwatersheds 88,437 88,437 88,437 87,176 85,762
Observations 2,554,099 2,554,099 2,554,099 1,020,150 1,533,949

Notes: Each observation is a subwatershed-year tuple. All dollar values are in 2020$. Standard errors are two-way
clustered by subwatershed and year.
*** p<0.01, ** p<0.05, * p<0.1
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Table 2: Estimated relationships between socioeconomic characteristics and public finances
and estimated relationships between public finances and grant funding

Dependent variable

Natural log of local government revenue 100 × indicator for subwatershed inclusion
in grant awards for the year

All revenue
(1)

Tax receipts
(2) (3) (4)

Panel [A]: White population share 0.083*** 0.315***
(0.026) (0.059)

Panel [B]: Log(income per capita) 0.372*** 0.556***
(0.025) (0.036)

Panel [C]: Log(median home value) 0.074*** 0.129***
(0.009) (0.009)

Panel [D]: Log(all revenue) 0.064*
(0.035)

Panel [E]: Log(tax receipts) 0.084**
(0.040)

State × year fixed effects Yes Yes Yes Yes
I{1990 rural area} × year FE Yes Yes Yes Yes
Population controls Yes Yes Yes Yes
Dependent variable mean 3.150 3.150
Number of subwatersheds 84,262 84,262 84,262 84,262
Observations 1,944,439 1,944,439 1,944,439 1,944,439

Notes: Each observation is a subwatershed-year tuple. Data covers years 1990-2019 and includes only “own source” revenue
to local governments such as counties, cities, and townships. Intergovernmental transfers from federal and state sources are
excluded. All dollar values are in 2020$. Standard errors are two-way clustered by subwatershed and year.
*** p<0.01, ** p<0.05, * p<0.1
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Table 3: Estimated relationships between socioeconomic characteristics and water pollution

Dependent variable: dissolved oxygen deficit

(1) (2) (3)

Panel [A]: White population share -3.111*** -3.136*** -3.246***
(0.434) (0.438) (0.432)

Panel [B]:Log(income per capita) -0.543*** -0.518*** -0.449**
(0.175) (0.174) (0.177)

Panel [C]: Log(median home value) -0.336*** -0.325*** -0.266**
(0.104) (0.101) (0.101)

State × year fixed effects Yes Yes Yes
I{1990 rural area} × year FE Yes Yes
Population controls Yes
Dependent variable mean 12.513 12.513 12.513
Number of subwatersheds 88,437 88,437 88,437
Observations 2,554,099 2,554,099 2,554,099

Notes: Each observation is a subwatershed-year tuple. Data covers years 1990-2020. Dissolved oxygen deficit equals 100
minus dissolved oxygen saturation, measured as a percentage. A larger value indicates more polluted water. All dollar
values are in 2020$. Standard errors are two-way clustered by subwatershed and year.
*** p<0.01, ** p<0.05, * p<0.1
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A Appendix figures and tables

Figure A1: Clean Water Act Section 319 funding allocations to states each year
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Notes: One-third percent of total funding is provided to tribes. The figure shows 98.35 percent of the
remaining national allocation. The other 1.65 percent is provided to U.S. territories: Puerto Rico receives
0.56 percent and American Samoa, Guam, Marianas, and the Virgin Islands each receive 0.27 percent.
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Table A1: Summary statistics

Median Mean SD Observations

100×I{grant in year} 0.000 2.903 16.789 2,554,099
White population share 0.963 0.865 0.223 2,554,099
Income per capita (2020$) 25,421 26,791 9,112 2,554,099
Median home value (2020$) 120,273 147,924 106,027 2,554,099

Notes: Each observation is a subwatershed-year tuple. Data covers years 1990-
2020. I{grant in year} indicates whether a subwatershed is included in the
awarded grants during the year.
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Figure A2: Maps of subwatershed racial and socioeconomic characteristics during 1990-2020
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Figure A3: Annual estimates relating socioeconomic characteristics and grant funding
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Notes: The figure plots coefficients from estimating regressions separately for each year of data. The
dependent variable is 100 × an indicator for subwatershed inclusion in grant awards for the year. The re-
gressions control for state fixed effects, subwatershed rural area indicators, and subwatershed population.
The horizontal lines show the average of estimates for each characteristic during 2002-2020. In total,
1,486 grant awards are matched to subwatersheds during 1990-2001 and 72,658 awards during 2002-2020.
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Table A2: Estimated relationships between socioeconomic characteristics and grant
funding: using the sub-sample of states with cross-sectional identifying variation

Dependent variable:
100 × indicator for subwatershed inclusion in grant awards for the year

Full sample: 1990-2020 Subset by time periods

(1) (2) (3)
1990-2001

(4)
2002-2020

(5)

Panel [A]: White population share 0.516** 0.746*** 1.019*** -0.031 1.666***
(0.246) (0.258) (0.285) (0.033) (0.414)

Panel [B]: Log(income per capita) 1.215*** 0.974*** 0.777*** 0.054 1.295***
(0.223) (0.190) (0.166) (0.031) (0.209)

Panel [C]: Log(median home value) 0.872*** 0.727*** 0.558*** 0.022 1.057***
(0.199) (0.175) (0.144) (0.020) (0.224)

State × year fixed effects Yes Yes Yes Yes Yes
I{1990 rural area} × year FE Yes Yes Yes Yes
Population controls Yes Yes Yes
Dependent variable mean 2.348 2.348 2.348 0.141 3.820
Total subwatershed funding awards 56,585 56,585 56,585 1,360 55,225
Number of subwatersheds 83,756 83,756 83,756 82,515 81,083
Observations 2,410,022 2,410,022 2,410,022 964,420 1,445,602

Notes: This table replicates Table 1 after dropping all subwatersheds in Arkansas, Connecticut, Delaware, Louisiana, Virginia,
and West Virginia. More than 96 percent of subwatersheds in each of these states are included in grant awards during 1990
to 2020, providing essentially no cross-sectional variation. Standard errors are two-way clustered by subwatershed and year.
*** p<0.01, ** p<0.05, * p<0.1
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Table A3: Estimated relationships between socioeconomic characteristics and grant
funding: using the sample with available public finance data

Dependent variable:
100 × indicator for subwatershed inclusion in grant awards for the year

Full sample: 1990-2019 Subset by time periods

(1) (2) (3)
1990-2001

(4)
2002-2019

(5)

Panel [A]: White population share 0.630* 0.919** 1.270*** -0.001 1.939***
(0.328) (0.337) (0.362) (0.039) (0.513)

Panel [B]: Log(income per capita) 1.032*** 0.771*** 0.592*** 0.051* 0.948***
(0.203) (0.177) (0.164) (0.029) (0.234)

Panel [C]: Log(median home value) 0.722*** 0.573*** 0.419*** 0.018 0.769***
(0.169) (0.146) (0.120) (0.023) (0.195)

State × year fixed effects Yes Yes Yes Yes Yes
I{1990 rural area} × year FE Yes Yes Yes Yes
Population controls Yes Yes Yes
Dependent variable mean 3.150 3.150 3.150 0.166 5.078
Total subwatershed funding awards 61,253 61,253 61,253 1,264 59,989
Number of subwatersheds 84,262 84,262 84,262 83,360 81,300
Observations 1,944,439 1,944,439 1,944,439 763,005 1,181,434

Notes: Each observation is a subwatershed-year tuple. The full sample in this table is the same as the public finance sample
used in Table 2. All dollar values are in 2020$. Standard errors are two-way clustered by subwatershed and year.
*** p<0.01, ** p<0.05, * p<0.1
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Figure A4: Map of subwatershed average dissolved oxygen deficit during 1990-2020
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Table A4: Estimated relationships between socioeconomic characteristics and spillovers

Indicator that subwatershed
has downstream outflows

(1)

Total number of
downstream outflows

(2)

Number of downstream
subwatersheds if any

(3)

Panel [A]: White population share 0.001 -0.005 0.065
(0.009) (0.009) (0.581)

Panel [B]:Log(income per capita) -0.003 -0.006 -0.477
(0.006) (0.006) (0.328)

Panel [C]: Log(median home value) -0.002 -0.003 -0.097
(0.003) (0.003) (0.171)

State × year fixed effects Yes Yes Yes
I{1990 rural area} × year FE Yes Yes Yes
Population controls Yes Yes Yes
Dependent variable mean 0.563 0.571 7.986
Number of subwatersheds 80,209 80,209 44,881
Observations 2,396,406 2,396,406 1,349,382

Notes: Alaska and Hawaii are not included in the flowline data. The outcome in Column (1) equals one if the subwatershed
has any river or stream flowing out into another subwatershed(s), and is otherwise zero. Column (2) uses the total number
of outflowing rivers or streams. Column (3) conditions on the subwatershed having outflow and uses the total number of
downstream subwatersheds. All dollar values are in 2020$. Standard errors are two-way clustered by subwatershed and year.
*** p<0.01, ** p<0.05, * p<0.1
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B Data appendix

This appendix provides additional details on the collection and cleaning of the data used in
our study. We use administrative datasets from several sources and organize the data at the
subwatershed level, the unit of analysis in this study. We then match data from different
sources together to construct a panel of subwatersheds spanning from 1990 to 2020.

B.1 Subwatersheds as the unit of analysis

The spatial area of the United States is divided and sub-divided into cross sections of succes-
sively smaller “hydrologic units” in the Watershed Boundary Dataset (WBD), a seamless,
national dataset developed by U.S. Geological Survey (USGS). Hydrologic units are a nested
hierarchical system based on surface hydrologic features. Technically, any hydrologic unit at
any aggregation is a watershed, in the general sense of the term: an area of land where all wa-
ter drains to a common location. However, for more specific purposes, there are six primary
levels of hydrologic units: region, subregion, basin, subbasin, watershed, and subwatershed.
Each polygon area is identified by a unique hydrologic unit code (HUC) consisting of two
to twelve digits: 2-digit HUC for region, 4-digit HUC for subregion, 6-digit HUC for basin,
8-digit HUC for subbasin, 10-digit HUC for watershed, and 12-digit HUC for subwatershed.
In some cases, USGS provides HUC identifiers down to a 16-digit level, but the 12-digit
subwatershed code (HUC12) is the most granular level with full coverage nationally. Our
study data consists initially of all 102,943 HUC12-identified subwatersheds.

B.2 Clean Water Act Section 319 grants data

We use Section 319 funding data from the U.S. Environmental Protection Agency’s Grants
Reporting and Tracking System (GRTS). GRTS is designed to be the primary tool for mon-
itoring and maintaining the funded nonpoint source pollution targeting programs sponsored
by Section 319 grants. GRTS directly pulls grant information from EPA databases and
grantees are required to report project progress annually. The system provides public “In-
teractive Reports” at the subwatershed level, which include details about the funded projects.
We make use of these reports in our study, obtaining the report for each project. Consis-
tently reported details include the state, project identifier, award fiscal year, grant award
amount, and project status. Many projects report additional information as well.

GRTS is a dynamic database, and we use the data version as of September 2021. We
keep projects with award years during 1990 to 2020. There are 9,824 projects that match
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to a specific subwatershed(s), which covers 33,446 subwatersheds, about one third of all
subwatersheds. In earlier years of the data, relatively few projects report the specific (sub-
watershed) location within the state, before an EPA requirement that spatial information be
reported starting in 2002. The same project can receive newly-awarded funding in multiple
award cycles, and the same subwatershed can benefit from multiple distinct projects.

States report total grant awards by project each year but do not disaggregate funding per
subwatershed. Also, multiple subwatersheds are often included in the same project. For these
reasons, we focus on the extensive margin of whether a subwatershed is included in a funding
year, rather than funding amounts. We treat the award fiscal year as the funding year. For
example, we treat all subwatersheds that were included in funding awards made during fiscal
year 2020 as being included in funding for year 2020. For our study, it is reasonable to treat
the fiscal year as the funding year, as states usually announce the decisions of grant awards
for a given fiscal year during the same year, though in different months depending on the
state (e.g. March in Delaware, May in California, and June in Illinois).

The average annual funding inclusion rate is 2.4 percent for the full balanced panel of
3,191,233 observations covering all of the United States’ 102,943 subwatersheds spanning
years 1990-2020. In our filtered study sample of 2,554,099 (populated) subwatershed-year
observations, the mean annual funding inclusion rate is 2.9 percent. Details on the sample
construction are provided below in Section B.7.

B.3 Race and socioeconomic data

This section describes our process to transform the census race and socioeconomic data at
block level or tract level into subwatershed-level data. The data are provided by Integrated
Public Use Microdata Series (IPUMS, Manson et al., 2021). Our study focuses on three
characteristics of populations: white population share, income per capita and median home
value. We selected these characteristics because there is comprehensive and standardized
coverage across the decennial census forms and American Community Survey waves during
our study period of 1990 through 2020.

We use the most spatially granular measurement of each characteristic. Specifically, we
collect the complete count tabulations of population by race at Census Block level from the
four decennial censuses (1990, 2000, 2010 and 2020) and income per capita and housing
values at Census Tract level from two decennial census long forms (1990 and 2000) and the
twelve waves of American Community Survey (ACS) 5-year estimates, which are 2005-2009,
2006-2010, 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017,
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2014-2018, 2015-2019 and 2016-2020. ACS replaced the long form starting in 2010 and has
been released annually since then.

B.3.1 Spatial crosswalks between subwatersheds and Census Blocks

We spatially join subwatersheds to Census Blocks using the related geodatabases. We use
the subwatershed boundary polygons from the Watershed Boundary Dataset (WBD) dis-
cussed above. We use the Census Block polygons in geodatabases for the four decennial
censuses (1990, 2000, 2010 and 2020) as provided by IPUMS. Each subwatershed, the small-
est comprehensive hydrologic unit in WBD and the unit of analysis in this study, is uniquely
identified by a 12-digit Hydrologic Unit Code (HUC12). Each Census Block for each census
year is uniquely identified in the data by a Federal Information Processing Standards (FIPS)
code and by an IPUMS GISJOIN code. The United States has over eight million unique
Census Blocks and about 103,000 HUC12 subwatersheds.

We spatially join subwatersheds with Census Blocks for each census year to form spacial
crosswalks between subwatershed(s) and block(s), including the size of their overlapping area.
For each intersection, we calculate the intersection area ratio, which is the total intersecting
area of an intersecting subwatershed-block divided by the total area of the Census Block, i.e.
the fraction of the block’s area located within the subwatershed. Note that, because there
are far more Census Blocks than subwatersheds, the majority of blocks (about two-thirds)
spatially intersect with only a single subwatershed.

B.3.2 Population and white population share at subwatershed level

We use the intersection area ratios calculated above as weights to calculate the weighted
population counts for each intersection. For example, if a particular Census Block has 20
percent of its area intersecting one subwatershed and 80 percent of its area in a second sub-
watershed, we would assign 20 percent of the block’s population to the first subwatershed and
80 percent to the second. We then add up the weighted population counts by subwatershed
to determine population counts at the subwatershed level.

Importantly, our use of these intersection area ratios ensures that the total United States
population for a given census is the same when measured at the Census Block level as
when measured at the subwatershed level. That is, we map population from blocks to
subwatersheds, holding total population constant. And, because Census Blocks are quite
small—the average block has a total population of 41 people—this approach should have
very little measurement error of subwatershed-level population. We apply the same process
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for white population counts to determine subwatershed-level white population totals. The
subwatershed-level white population share is then defined as the white population divided
by the total population for each subwatershed.

B.3.3 Income per capita and median home value at subwatershed level

We construct subwatershed-block population weights to assign Census Tract-level income
per capita and median home values to subwatersheds. A subwatershed-block population
weight is the population of the subwatershed-block intersection divided by the total sub-
watershed population. That is, we determine what share of a subwatershed’s (calculated)
population is contained within each intersecting Census Block—and by extension, what share
of subwatershed population is contained within each intersecting Census Tract.

Using these subwatershed-block population weights, we calculate the weighted income
per capita for each subwatershed-tract intersection. Then we use these calculated weighted
income per capita values for each subwatershed-tract to generate income per capita at the
subwatershed level. As a simple example, suppose that 25 percent of a subwatershed’s
population lives in Census Tract A and the other 75 percent lives in Census Tract B. Suppose
that the income per capita is $20,000 in Tract A and that income per capita is $30,000 in
Tract B. Our process calculates the subwatershed-level income per capita as $27,500 (i.e.
0.25 × 20,000 + 0.75 × 30,000). The same process applies to median home value. Because
we are taking a weighted average of Tract-level median values, our measure of subwatershed-
level median home value is technically not the median value of homes in the subwatershed.
We use the phrase “median home value” throughout our paper to be consistent with the
term as defined in the original census data source.

As with the weighted population calculations, this method maps tract-level character-
istics to subwatersheds in a way that generally maintains overall data properties. For in-
stance, the sum total of income should be the same if calculated at the tract-level or at the
subwatershed-level. Moreover, by using the block level data to calculate subwatershed-block
population weights, our approach minimizes the measurement error of assigning Tract-level
characteristics to subwatersheds (compared to, say, taking the simple average value across
all overlapping tracts and assigning that average value to the subwatershed).

B.3.4 Imputing race and socioeconomic characteristics within subwatershed

Our panel ranges from 1990 to 2020. To have coverage in non-census years, we impute the
three race and socioeconomic characteristics within-subwatershed using the last observation
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carried forward (LOCF) method. For example, we assign a subwatershed’s year 2000 white
population share to observations for the same subwatershed in years 2001-2009 (and then use
the 2010 census value for 2010). As another example, we assign a subwatershed’s year 2000
income per capita to observations for the subwatershed in years 2001-2004 (and then use
the 2005-2009 ACS value for the subwatershed in 2005). This sort of practice is extremely
common in research using census data. After this imputation, we then adjust all dollar
values to be in 2020$ using the CPI-U price deflator. Figure A2 in Appendix A presents the
maps of white population share, income per capita (2020$), and median home value (2020$)
at the subwatershed level, averaged across time during 1990-2020.

B.4 Local government finance data

We use the Census Bureau’s Annual Survey of State and Local Government Finances and
Census of Governments for local public finance data, conveniently organized into a single
Government Finance Database (GFD, Pierson et al., 2015). GFD contains all of the Annual
Survey of State and Local Government Finances and Census of Governments data from
1967-2019. The Census of Governments is conducted for the compete count of governments
every five years starting from 1967. The annual survey uses a sample in the intervening
years, e.g. the four years between 2012 and 2017. In this study, we use the data of six census
years (1992, 1997, 2002, 2007, 2012, 2017) and survey years from 1990 through 2019, the
most recent year of available GFD data. We focus on local governments by restricting the
types of government to county, municipal and township. We take several steps to organize
the public finance data at the subwatershed level, described just below.

B.4.1 Matching subwatersheds to counties, municipalities, and townships

As discussed in Section B.3 above, we spatially join subwatersheds and Census Blocks for the
four decennial censuses (1990, 2000, 2010 and 2020). The subwatershed geodatabase comes
from WBD, as discussed in Section B.1. The Census Block geodatabases are from IPUMS,
as introduced in Section B.3. This provides the full set of Census Blocks that spatially
intersect with each subwatershed for each of the four census years. By the structure of Federal
Information Processing Standards (FIPS) codes, Census Blocks are nested within counties
and Census Blocks are also nested within Census Places (municipalities and townships).
So, the spatial join from subwatersheds to Census Blocks also provides a spatial join from
subwatersheds to the three types of local government units. Note that, while counties do not
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spatially overlap with other counties, counties do overlap with Census Places, e.g. Harris
County in Texas overlaps with the city of Houston, Texas. Thus, a subwatershed may be
served by two “layers” of local governments: county(ies) FIPS and Census Place(s) FIPS.

B.4.2 Calculating revenue per capita measures for each local government

We focus on two types of government revenue: total revenue and total tax receipts. We isolate
revenue from the impact of potentially endogenous intergovernmental transfers by using the
“own source” version of the revenue measure. Excluding intergovernmental transfers also
provides a better proxy for variation in local government capacity. We then calculate total
revenue per capita (unit: $) and tax receipts per capita (unit: $), which are the total reported
values divided by the population served by the specific government unit, using the population
listed in the GFD data for each government unit by year. The result of this process is that
for each (available) county FIPS by year and Census Place FIPS by year, we have the value
for the total government revenue per capita and total tax receipts per capita. As with the
Section 319 grants, we treat the fiscal year as the year of our subwatershed-year panel.

B.4.3 Local government financial data at subwatershed level

We assign a decennial census year to each county FIPS by year and Census Place FIPS by
year to use in merging to the subwatershed panel. For example, we assign GFD data for years
1990-1999 a decennial census year of 1990. Using the subwatershed-FIPS crosswalk for each
decennial census year, we merge the local governmental financial data to the subwatershed-
year panel, separately for county FIPS and for Census Place FIPS. This links the public
finance data to subwatersheds. At this point, an observation is either a subwatershed-year-
county FIPS tuple or a subwatershed-year-Census Place FIPS tuple.

Because a subwatershed can overlap with the area served by multiple county governments
and/or multiple municipality/township governments, we take the average of the per-capita
revenue values by subwatershed-year at the county level and (separately) at the munici-
pal/township level, which yields two panels of subwatershed-year observations. In other
words, we determine the average revenue (and tax receipts) per capita for each “layer” of
government for each subwatershed. We then add the county-level value and the munic-
ipal/township value for each subwatershed-year to obtain the total revenue per capita of
local governments for each subwatershed-year in our panel.

There are 1,986,302 subwatershed-year tuples with government revenue data, covering
87,243 subwatersheds during years 1990-2019. We convert the two revenue per capita terms
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to 2020$ using the CPI-U price deflator. The average subwatershed-year total local gov-
ernment revenue per capita is 2,278.88 (2020$). The average for tax receipts per capita is
1,196.89 (2020$). Most of this difference is because total revenue includes revenue from spe-
cific public services, such as utilities and public transit. Finally, we multiply the per-capita
values by subwatershed population to calculate the subwatershed-year-level total local gov-
ernment revenue and total local government tax receipts. The average subwatershed-year-
level revenue is 24,394,930 (2020$) and the average tax receipts are 9,714,997 (2020$).

B.5 Water pollution data

This section describes how we collect and clean the data on water pollution used in this
study. The data comes from three sources: EPA’s Storet; EPA’s Storet Legacy Data Center;
and USGS’s National Water Information System (NWIS), accessed via the Water Quality
Portal (WQP). We use dissolved oxygen (DO) to quantify water pollution. As discussed in
Keiser and Shapiro (2019b), DO has appealing properties as a measure of water pollution.
Specifically, DO saturation is “among the most common omnibus measures of water quality
in research, it responds to a wide variety of pollutants, and it is a continuous (rather than
binary) measure of pollution.” Following Keiser and Shapiro (2019b), we use a variation of
DO saturation that they term as “dissolved oxygen deficit” (DO deficit), which is defined
as 100 minus dissolved oxygen saturation and expressed as a percentage. Nonpoint source
pollution increases dissolved oxygen deficits as microorganisms decompose pollutants. A
larger DO deficit value indicates more polluted water.

We use several conversions to make the DO deficit measurements comparable across
the three data sources, which have some variation in water pollution measurement, such
as using different methods or units. For example, Storet Legacy and NWIS assign a single
parameter code to each measurement, while Storet does not use a parameter code. We use a
matching (crosswalk) table provided by EPA to make the measurements comparable across
the databases. For Storet data, we also calculate “dissolved oxygen saturation” (unit: %)
from “dissolved oxygen (DO)” (unit: mg/l), based on a formula described below.

B.5.1 Restricting to surface waters

We restrict the sample to surface waters based on the type of monitoring site, as listed in
the databases. There is a minor difference between WQP and Storet Legacy in the sets of
possible monitoring sites. In WQP, we restrict the site types to: Aggregate surface-water-use,
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Estuary, Spring, Lake, Reservoir, Impoundment, and Stream. In Storet Legacy, we restrict
site types to: RESERV, ESTURY, LAKE, SPRING, STREAM, RUNOFF and IMPDMT.
These restrictions exclude types of monitoring sites such as underground pools. We exclude
sites at dams using regular expressions to test for the word “dam” in the station name.

B.5.2 Dissolved oxygen deficit

The EPA and USGS quantify water pollution using a variety of types of measurements.
Storet Legacy and NWIS assign a single parameter code to each measurement. For exam-
ple, 00301 indicates “dissolved oxygen saturation” with the unit of percent. The data also
provides details about each parameter code, such as the Result Temperature Basis. The full
list of parameter codes is provided by the USGS. However, no parameter codes are avail-
able in Storet. Instead, the EPA provides a matching table between Storet and NWIS. We
use this crosswalk table to ensure that the DO deficit measures of water pollution we use
are comparable across the three data repositories. We apply standard characteristic names
“dissolved oxygen (DO)” and “dissolved oxygen saturation” to extract data from Storet.

For measurements of DO saturation, we can directly calculate DO deficit, which equals
100 minus DO saturation, measured in percentage points. We use a formula to convert DO
with the unit of milligrams-per-liter to DO saturation (percent). The conversion formula
is DOpercent = DOmg/L

4.68/(31.5+T emp) , where Temp indicates water temperature in Celsius. We
then pool all DO deficit measurements from the three sources, along with the corresponding
monitoring site locations (latitude and longitude). In a few cases, the same reading appears
in both Storet and Storet Legacy, and we drop the duplicates. To limit the influence of
outliers, we winsorize readings above the 99th percentile of the distribution to the 99th
percentile and readings below the 1st percentile of the distribution to the 1st percentile.

B.5.3 Water pollution data at subwatershed level

In total, we have 8,365,470 unique readings for DO deficit in years 1990-2020. We link each
DO deficit reading to the corresponding subwatershed (a polygon) based on the geographical
location (latitude and longitude) of the monitoring site. Then we take the average by subwa-
tershed and year to form a panel of DO deficit values at the subwatershed-year level. This
panel has 313,399 nonmissing values for years 1990-2020, covering 39,143 subwatersheds.
For subwatershed-year observations with missing (local) DO deficit readings, we assign DO
deficit readings from the subbasin level (HUC8) to those subwatersheds that fall within the
subbasin but are not covered by direct pollution readings. The DO deficit at the subbasin
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level is calculated by taking the average of all pollution readings that fall within the sub-
basin for each year. At this point, we have 1,987,095 nonmissing values for years 1990-2020,
covering 91,932 subwatersheds. We then use the LOCF method to impute missing values
over time within subwatershed.

After these steps, we have 2,984,711 nonmissing values of DO deficit, a nearly balanced
panel for all subwatershed-years from 1990 to 2020. Whereas the full balanced panel for all
of the United States’ 102,943 subwatersheds spanning years 1990-2020 should have 3,191,233
observations, our nonmissing values of DO deficit account for 93.5 percent of the sample. In
our main study sample (N=2,554,099), 27.57 percent of DO deficit values are determined
using the LOCF imputation. We verify that the use of subbasin-level measurements and
within-subwatershed imputation should not be a concern. For one, the average DO deficit
for the subwatershed-year panel is 14.65 when using only the subwatershed-level readings,
compared to 12.42 when also using subbasin-level readings, and 12.51 after the LOCF im-
putation. More broadly, we plot the density distributions for these three sets of DO deficit
readings, as shown in Figure B1. The subwatershed-level readings have a somewhat thicker
right tail—as expected, given these more granular measurements have a larger variance.
However, the three distributions overlap closely. Additionally, we observe that DO deficit
follows an approximately normal distribution, a very similar pattern as that documented in
Keiser and Shapiro (2019b). Figure A4 in Appendix A shows the map of average DO deficit
at the subwatershed level. There is large variation across the nation’s subwatersheds.

B.6 Subwatershed downstream spillover measures

We construct three subwatershed-level measures to capture the potential for spillovers across
subwatersheds. They are: 1) an indicator for whether a subwatershed has any downstream
outflow into another subwatershed(s), 2) the total number of outflowing rivers or streams into
another subwatershed(s), and 3) the total number of downstream subwatersheds, including
those that are non-adjacent, conditional on the subwatershed having any outflows. To form
these measures, we use data from the National Hydrography Dataset Plus (NHDPlus). The
NHDPlus is a national geospatial surface water framework—a high-resolution map of the
river and stream network—developed and maintained by the EPA in collaboration with
USGS. We utilize the NHDPlus national seamless flowline geodatabase and a NHDPlus-
provided crosswalk between flowline features and subwatersheds (HUC12) in the WBD.

There are 2,691,339 features in the national seamless flowline geodatabase, and each is
identified by a unique “comid.” These features form 1,013,033 “levelpathi.” A levelpathi in
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the NHDPlus is what would more commonly be called a river or stream. Each levelpathi is
composed of one or more comid, or river segments. For each comid, the data indicate the
“pathlength” distance to the terminal feature downstream along the main path of the river.
Thus, within the same levelpathi, a comid with a larger pathlength is comparatively more
upstream. This also indicates the direction of water flow.

We use the NHDPlus-provided crosswalk to determine which subwatershed(s) each co-
mid river segment intersects. After this merge, we have 1,012,930 intersecting levelpathi.
We restrict the data to only rivers and streams by keeping flowline types designated as
“streamriver” or “artificialpath”, excluding other types such as “coastline.” This restriction
excludes 2.8 percent of the sample, leaving 1,056,454 unique subwatershed-levelpathi tuples
covering 1,008,335 unique levelpathi. As these observation counts indicate, the vast majority
of levelpathi exist in only a single subwatershed, consistent with how watersheds are defined.
We drop the levelpathi that have only a single comid segment, which leaves 475,073 unique
subwatershed-levelpathi tuples covering 426,954 unique levelpathi. In total, there are 19,348
rivers or streams that flow across or between multiple subwatersheds.

We determine whether a subwatershed has an outflow into another subwatershed(s) based
on the sequence of river segments along the river or stream through subwatersheds, using
the pathlength term discussed above. Figure B2 shows one example. San Fernando Creek
in Texas flows through three subwatersheds. We highlight the Middle San Fernando Creek
subwatershed as an example. Although various other flowlines are within this subwatershed,
San Fernando Creek is the only outflow from the Middle San Fernando Creek into another
subwatershed, i.e. the Lower San Fernando Creek subwatershed. Thus, for Middle San
Fernando Creek subwatershed, the binary measure “whether a subwatershed has any down-
stream outflow into another subwatershed(s)” takes a value of one. The measure of the “total
number of outflowing rivers or streams into another subwatershed(s)” is also one, as there is
only one outflow (San Fernando Creek). The third measure is constructed by counting “the
total number of downstream subwatersheds, including those that are non-adjacent.” Again
in the example, this value is also one, as there is only one subwatershed that is downstream of
the Middle San Fernando Creek subwatershed. If the San Fernando Creek instead continued
to flow beyond the Lower San Fernando Creek subwatershed and into other subwatersheds,
then the first two measures would retain a value of one while the third would increase to
count these additional downstream subwatersheds.

For each subwatershed, we calculate these three measures of downstream spillovers. Our
final sample has 47,480 subwatersheds with outflow to another subwatershed(s). Conditional
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on having any outflows, the mean number of outflows downstream to another subwatershed(s)
is 1.01, ranging from one to five. On average, 7.77 subwatersheds are downstream of a
subwatershed with outflows, ranging from one to 267.

B.7 Forming the panel of subwatersheds as the study sample

The full balanced panel of all 102,943 subwatersheds spanning years 1990-2020 has 3,191,233
observations. Our primary (unbalanced) analysis panel has 2,554,099 subwatershed-year
observations. We first restrict the sample to observations with census population. This
restriction drops 537,615 observations, 84.4 percent of the total decrease. We require non-
missing (imputed) pollution data, which drops another 92,752 observations, 14.6 percent of
the total decrease. We also drop a handful of observations with missing income per capita
or missing median home value. Finally, we drop the 31 observations for the District of
Columbia, which has only one subwatershed—and hence no variation conditional on state-
by-year fixed effects. Our study sample with 2,554,099 observations is around 80 percent of
the original full balanced panel. Because the NHDPlus does not include flowline data for
Alaska and Hawaii, we drop those two states for our spillovers analysis, keeping the 2,396,406
subwatershed-year observations located within the continental United States.

We use a subset of our primary subwatershed-year panel for the public finance analyses.
As discussed in Section B.4, the Census of Governments is conducted for the compete count of
governments every five years, and the Census Bureau surveys a sample of local governments
in the intervening years. In total, 609,660 observations (23.9 percent) from the main study
sample are not covered by the local government finance data, reducing the subwatershed-
year count from 2,554,099 observations to 1,944,439 observations. The Census Bureau uses a
stratified random sampling framework to include local governments in the non-census years,
so subwatersheds’ socioeconomic characteristics should be orthogonal to the probability of
inclusion in this reduced panel. We additionally verify that our main results showing the
relationship between socioeconomic characteristics and grant funding are similar when using
this reduced panel that has available public finance data.
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Figure B1: Density of water pollution data in the unbalanced subwatershed-year panel

Notes: Data covers years 1990-2020. Dissolved oxygen deficit equals 100 minus dissolved oxygen satura-
tion, measured in percentage points. A negative deficit value is possible since dissolved oxygen saturation
can exceed 100 percent due to photosynthetically active plants and algae.
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Figure B2: Map of Middle San Fernando Creek subwatershed in Texas

Notes: The figure shows a map of Middle San Fernando Creek subwatershed (in light orange) in Texas.
The red line is the San Fernando Creek flowline, and the green lines depict other flowlines (streams and
river segments). The black arrow indicates the flow direction of San Fernando Creek.
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