Problem 5

Exercise 11.5 (Scaling Mean Operator)   Let $X=C([0,1])$ be the Banach space of all continuous complex-valued functions on $[0,1]$ with the maximum norm. Consider the linear operator $A : X\to X$ defined by

$\displaystyle (Af)(x) = x\int_0^1 f(y)dy, x\in[0,1].$ (11.11)

  1. Show that $A$ is bounded and determine its operator norm.
  2. Determine the spectrum of the operator $A$.

Proof. To show $A$ is bounded, estimate

$\displaystyle \Vert A\Vert$ $\displaystyle = \sup_{\Vert f\Vert _\infty=1}\Vert Af\Vert _\infty$ (11.12)
  $\displaystyle = \sup_{\Vert f\Vert _\infty=1}\sup_{x\in[0,1]}\left\vert x\int_0^1 f(y)dy\right\vert$ (11.13)
  $\displaystyle \leq \sup_{\Vert f\Vert _\infty=1}\sup_{x\in[0,1]}\vert x\vert\int_0^1 \vert f(y)\vert dy$ (11.14)
  $\displaystyle \leq \sup_{\Vert f\Vert _\infty=1}\int_0^1 \vert f(y)\vert dy$ (11.15)
  $\displaystyle \leq 1.$ (11.16)

To compute the operator norm, consider $A:L^2([0,1])\to L^2([0,1])$, extended by density. By applying Fubini's theorem

$\displaystyle \langle Af, g\rangle$ $\displaystyle = \int_0^1 \left(x\int_0^1f(y)dy\right)
\overline{g(x)}dx$ (11.17)
  $\displaystyle = \int_0^1 \int_0^1 xf(y)dy\overline{g(x)}dx$ (11.18)
  $\displaystyle = \int_0^1 \int_0^1 xf(y)\overline{g(x)}dxdy$ (11.19)
  $\displaystyle = \int_0^1 f(y) \int_0^1 x\overline{g(x)}dxdy$ (11.20)
  $\displaystyle = \int_0^1 f(y) \overline{\int_0^1 \overline{x} g(x)}dxdy$ (11.21)
  $\displaystyle = \int_0^1 f(y) \overline{\int_0^1 x g(x)}dxdy$ (11.22)
  $\displaystyle = \langle f, A^*g\rangle$ (11.23)

we can find the adjoint of $A$ is equal to

$\displaystyle A^*f = \int_0^1 yf(y)dy.$ (11.24)

which we can also verify is bounded. To apply the formula $\Vert A\Vert=\sqrt{\Vert A^*A\Vert}$, determine the composed operator

$\displaystyle A^*Af$ $\displaystyle = \int_0^1 y \left(y \int_0^1 f(x)dx\right) dy$ (11.25)
  $\displaystyle = \int_0^1 y^2dy \int_0^1 f(x)dx$ (11.26)
  $\displaystyle = \frac{1}{3} \int_0^1 f(x)dx$ (11.27)

Taking norms shows

$\displaystyle \Vert A^*A f\Vert \leq \frac{\Vert f\Vert _1}{3}$ (11.28)

with equality on constant functions, so that $\Vert A^*A\Vert=1/3$ and $\Vert A\Vert=1/\sqrt{3}$.

To find the spectrum, we first prove that $A$ is a compact operator. Let $\{f_n\}$ be a sequence in the unit ball. Then $A(\{f_n\})$ is bounded because $A$ is bounded. To prove the sequence is equicontinuous, let $\epsilon>0$ be given. If $\vert x-y\vert<\epsilon$, then the estimate

$\displaystyle \vert Af_n(x)-Af_n(y)\vert$ $\displaystyle = \left\vert
x\int_0^1f(t)dt - y\int_0^1 f(t)dt
\right\vert$ (11.29)
  $\displaystyle \leq \vert x-y\vert\int_0^1\vert f(t)\vert dt$ (11.30)
  $\displaystyle \leq \vert x-y\vert$ (11.31)
  $\displaystyle < \epsilon$ (11.32)

is true for any $f_n$. Therefore the hypotheses of ArzelĂ -Ascoli apply, so that a converging subsequence exists, proving that $A$ is compact. Therefore it suffices to find the eigenvalues of $A^*$, which we do now. Let

$\displaystyle A^*f = \lambda f$ (11.33)

Because $A^*f$ is constant, this means $f(y)\equiv f$ is constant, so we in fact have

$\displaystyle A^*f = \int_0^1 yfdy = f\int_0^1 ydy = \frac{f}{2}$ (11.34)

so that $\lambda=1/2$. Therefore, $\sigma(A)=\{0,1/2\}$. $\qedsymbol$