Problem 6

Exercise 1.6 (Bounding linear maps via elements in the dual space)   Suppose $T : E\to F$ is such that $\phi\circ T\in E^*$ is bounded for every $\phi\in F^*$. Then $T$ is bounded.

Proof. Apply uniform boundedness. Define $T^* : F^* \to E^*$ by sending $\phi \mapsto \phi \circ T$ and define $J : X \to Y^{**}$ by sending $J(x)(\phi) = T^*(\phi)(x) = \phi(Tx)$.

The statement is precisely that

$\displaystyle \Vert\phi\circ T\Vert = \sup_{\Vert x\Vert=1}\vert\phi(Tx)\vert
= \sup_{x} \vert J(x)(\phi)\vert < \infty \quad \forall \phi \in Y^*$ (1.49)

Uniform boundedness implies

$\displaystyle \sup_x \Vert J(x)\Vert < \infty$ (1.50)

Indicating $\Vert J\Vert<\infty$.

Now we show $\Vert T^*\Vert<\infty$.

$\displaystyle \Vert T^*\Vert$ $\displaystyle = \sup_{\Vert\phi\Vert=1}\Vert T^*(\phi)\Vert
= \sup_{\Vert\phi\V...
...i)(x)\Vert
= \sup_{\Vert\phi\Vert=1}\sup_{\Vert x\Vert=1} \Vert J(x)(\phi)\Vert$ (1.51)
  $\displaystyle \leq \sup_{\Vert\phi\Vert=1}\sup_{\Vert x\Vert=1} \Vert J(x)\Vert...
...\Vert=1} \Vert J\Vert\Vert x\Vert\Vert\Vert\phi\Vert
\leq \Vert J\Vert < \infty$ (1.52)

Therefore, $T$ is bounded. $\qedsymbol$