Problem 8

Exercise 10.8 (Another semicircular contour)   Integrate

$\displaystyle \int_{-\infty}^\infty \frac{\cos x}{x^2+a^2}dx$ (10.40)

Proof. To evaluate this, we integrate the complexified function

$\displaystyle f(z) = \frac{e^{iz}}{z^2+a^2}$ (10.41)

along a semicircular contour which captures the pole $z=ai$. Letting $R\to\infty$ will capture the desired integral in the real part. The residue theorem implies

$\displaystyle \int_{-R}^R \frac{e^{ix}}{x^2+a^2}dx + \int_{\text{arc}} f(z)dz
= 2\pi i \operatorname{Res}(f,ai)$ (10.42)

The arc integral can be shown to vanish

$\displaystyle \left\vert
\int_{\text{arc}} f(z)dz
\right\vert \leq \int \frac{\vert e^{iz}\vert}{\vert z\vert^2-a^2}dz$ (10.43)

When $z=a+bi$, we know $\vert e^{iz}\vert=\vert e^{i(a+bi)}\vert=e^{-b}$, so in the upper half-plane, we know $\sup \vert e^{iz}\vert=1$. Therefore,

$\displaystyle \int \frac{\vert e^{iz}\vert}{\vert z\vert^2-a^2}dz
\leq \int \frac{1}{R^2-a^2}dz
= \frac{\pi R}{R^2-a^2} \to 0$ (10.44)

As $R\to\infty$ we are left with the residue

$\displaystyle \int_{-\infty}^\infty \frac{e^{ix}}{x^2+a^2}dx$ $\displaystyle = 2\pi i \operatorname{Res}(f,ai)$ (10.45)
  $\displaystyle = 2\pi i \lim_{z\to ai}\frac{(z-ai)e^{iz}}{(z-ai)(z+ai)}$ (10.46)
  $\displaystyle = 2\pi i \lim_{z\to ai}\frac{e^{iz}}{z+ai}$ (10.47)
  $\displaystyle = 2\pi i e^{-a}/2ai$ (10.48)
  $\displaystyle = \frac{\pi e^{-a}}{a}$ (10.49)

Taking the real part shows

$\displaystyle \int_{-\infty}^\infty \frac{\cos x}{x^2+a^2}dx = \frac{\pi e^{-a}}{a}$ (10.50)

$\qedsymbol$