Problem 4

Exercise 10.4 (DCT in two ways)   Evaluate the limit

$\displaystyle \lim_{n\to\infty} \int_0^1 \frac{ndx}{(1+nx)^2(1+x+x^2)}$ (10.19)

Proof. Substitute $u=nx$ in the integral

$\displaystyle \int_0^1 \frac{ndx}{(1+nx)^2(1+x+x^2)}$ $\displaystyle = \int_0^n \frac{du}{(1+u)^2(1+u/n+(u/n)^2)}$ (10.20)
  $\displaystyle = \int_{\mathbb{R}} \frac{1_{[0,n]}(u)du}{(1+u)^2(1+u/n+(u/n)^2)}$ (10.21)

We have the inequality

$\displaystyle u\in [0,n] \implies 1/(1+u/n+(u/n)^2)$ $\displaystyle <1$ (10.22)

Therefore, the integrand is bounded by $1/(1+u)^2\cdot 1_{[0,\infty)}$, which is integrable, so we may apply DCT.

$\displaystyle \lim_{n\to\infty} \int_{\mathbb{R}}
\frac{1_{[0,n]}(u)du}{(1+u)^2(1+u/n+(u/n)^2)}=
\int_0^\infty \frac{1}{(1+u)^2}du=1$ (10.23)

This could also have been proven with integration by parts as follows. Separate with some parentheses

$\displaystyle I_n = \int_0^1 \left(\frac{n}{(1+nx)^2}\right)\frac{1}{1+x+x^2}dx$ (10.24)

to reveal that the integrand can be rewritten for an integration by parts as follows:

$\displaystyle I_n$ $\displaystyle = \int_0^1 \left(-\frac{1}{1+nx}\right)'\frac{1}{1+x+x^2}dx$ (10.25)
  $\displaystyle = \left.\left(-\frac{1}{1+nx}\right)\frac{1}{1+x+x^2} \right\vert...
...1
-\int_0^1 \left(-\frac{1}{1+nx}\right)
\left(-\frac{1+2x}{(1+x+x^2)^2}\right)$ (10.26)
  $\displaystyle = \left(-\frac{1}{1+n}\right)\frac{1}{1+1+1^2} + 1
- \int_0^1 \frac{1+2x}{(1+nx)(1+x+x^2)^2}$ (10.27)

The integrand decays in $n$ which is not tied to $1/x^2$, so that limit/integral interchange applies, proving that

$\displaystyle \lim_{n\to\infty} I_n = 1$ (10.28)

If one desires a concrete dominating function to supply to the DCT, they can take 2. $\qedsymbol$