Problem 8

Exercise 9.8 (Sector-based contour integral)   Evaluate

$\displaystyle \int_0^\infty \frac{x^{1/3}}{1+x^2}$ (9.47)

Proof. Substitute $z=x^{1/3}$ to transform the integral into

$\displaystyle 3\int_0^R \frac{z^3}{1+z^6}$ (9.48)

Find the pole at $e^{i\pi/6}$ and integrate around the sector of radius $R$ and $0\leq \theta \leq \pi/3$. The integral can be written as

$\displaystyle \int_0^R f(z) + \int_{\text{arc}} f(z)+\int_R^0 f(re^{i\pi/3})e^{i\pi/3}
= 2\pi i\operatorname{Res}(f,e^{i\pi/6})$ (9.49)

This equation is analyzed in three stages: find the residue, express the backwards integral in terms of the forwards integral, and show the middle integral vanishes as $R\to\infty$.

For the residue:

$\displaystyle \operatorname{Res}(f,e^{i\pi/6}) = \lim_{z\to e^{i\pi/6}}
\frac{(...
...})z^3}{1+z^6}
= \lim_{z\to e^{i\pi/6}} \frac{z^3}{6z^5}=\frac{1}{6}e^{-\pi i/3}$ (9.50)

For the backwards integral

$\displaystyle e^{i\pi/3}\int_R^0 f(re^{i\pi/3})
=e^{i\pi/3}\int_R^0\frac{r^3e^{i\pi}}{1+r^6}
= e^{i\pi/3}\int_0^R\frac{r^3}{1+r^6}=e^{i\pi/3}\int_0^R f(z)$ (9.51)

For the middle integral

$\displaystyle \int_{\text{arc}}f(z) \leq \int_{\vert z\vert=R}f(z)
\leq \int \frac{\vert z\vert^3}{\vert z\vert^6-1} = 2\pi R\frac{R^3}{R^6-1} \to 0$ (9.52)

Letting $R\to\infty$ shows that

$\displaystyle (1+e^{i\pi/3})\int_0^\infty \frac{z^3}{1+z^6}
= 2\pi i \frac{1}{6}e^{-\pi i/3}$ (9.53)

Therefore,

$\displaystyle \int_0^\infty \frac{z^3}{1+z^6}$ $\displaystyle =
\frac{2\pi i}{6}\frac{e^{-\pi i/3}}{1+e^{i\pi/3}}=
\frac{2\pi}{...
...{2\pi}{6}\frac{1}{e^{-i\pi/6}+e^{i\pi/6}}=
\frac{2\pi}{6}\frac{1}{2\cos(\pi/6)}$ (9.54)
  $\displaystyle = \frac{\pi}{3\sqrt{3}}$ (9.55)

This means the original integral equals

$\displaystyle \int_0^\infty \frac{x^{1/3}}{1+x^2} = \frac{\pi}{\sqrt{3}}$ (9.56)

$\qedsymbol$