Problem 4

Exercise 8.4 (Convergence in measure metric)   Let $f_n : E\to\mathbb{R}$ be a sequence of measurable functions where $\mu(E)<\infty$. Then $f_n\to 0$ in measure if and only if

$\displaystyle \lim_{n\to\infty} \int \frac{\vert f_n\vert}{1+\vert f_n\vert} = 0$ (8.11)

Proof. Suppose the limit is zero. Let $\epsilon>0$ be given. Select $N$ such that

$\displaystyle n\geq N \implies \int \frac{\vert f_n\vert}{1+\vert f_n\vert} < \epsilon^2$ (8.12)

We are going to prove that the following set has small measure for such $n$.

$\displaystyle F = \{ x\in E \;\vert\; \vert f_n(x)\vert>\epsilon\}$ (8.13)

Measure by integrating. If $x\in F$, then $1<\vert f_n(x)\vert/\epsilon$, so we have

$\displaystyle \mu(F) = \int_Fd\mu$ $\displaystyle < \int_F \frac{\vert f_n(x)\vert}{\epsilon}$ (8.14)
  $\displaystyle = \frac{1}{\epsilon}\int_F \vert f_n\vert$ (8.15)
  $\displaystyle \leq \frac{1}{\epsilon}\int_F \frac{\vert f_n\vert}{1+\vert f_n\vert}$ (8.16)
  $\displaystyle \leq \frac{1}{\epsilon}\int \frac{\vert f_n\vert}{1+\vert f_n\vert}$ (8.17)
  $\displaystyle \leq \frac{1}{\epsilon} \epsilon^2$ (8.18)
  $\displaystyle \leq \epsilon$ (8.19)

Suppose convergence in measure holds. Let $\epsilon>0$ be given and define $\epsilon'=\epsilon/(2\mu(E))$ and define

$\displaystyle F = \{x \in E \;\vert\; \vert f_n(x)\vert>\epsilon'\}$ (8.20)

Break up the norm integral:

$\displaystyle \int \frac{\vert f_n\vert}{1+\vert f_n\vert} = \int_{E\setminus F...
...rt f_n\vert}{1+\vert f_n\vert}
+ \int_F \frac{\vert f_n\vert}{1+\vert f_n\vert}$ (8.21)

If $x \in E\setminus F$, then

$\displaystyle \vert f_n(x)\vert \leq \epsilon' \implies \frac{\vert f_n(x)\vert}{1+\vert f_n(x)\vert}<\epsilon'$ (8.22)

Also, $\vert f_n\vert/(1+\vert f_n\vert)<1$, so each integral can be bounded

$\displaystyle \int \frac{\vert f_n\vert}{1+\vert f_n\vert} < \mu(E\setminus F)\epsilon' + \mu(F)$ (8.23)

By convergence in measure, select $N$ such that $n\geq N$ implies $\mu(F)<\epsilon/2$. Then we are done. $\qedsymbol$