Problem 8

Exercise 7.8 (Semi-circular contour integral)   Evaluate

$\displaystyle \int_0^\infty \frac{1+x^2}{1+x^4}$ (7.41)

Proof. Consider the zeroes of the denominator lying in the top-half plane:

$\displaystyle \theta_1 = \frac{i+1}{\sqrt{2}} \quad \theta_2 = \frac{i-1}{\sqrt{2}}$ (7.42)

Enclose them in a semicircular path of radius $R$ and apply the residue theorem

$\displaystyle \int_{-R}^R f(z) + \int_\gamma f(z)
= 2\pi i \operatorname{Res}(z=\theta_1,\theta_2)$ (7.43)

Setting $\gamma(t)=Re^{it}$ for $t\in[0,\pi]$, we can see the arc integral vanishes as $R\to\infty$:

$\displaystyle \left\vert\int_0^\pi f(\gamma(t))\gamma'(t)dt\right\vert$ $\displaystyle = \left\vert\int_0^\pi
\frac{1+(Re^{it})^2}{1+(Re^{it})^4}Rie^{it} dt\right\vert$ (7.44)
  $\displaystyle \leq \int_0^\pi \frac{1+R^2}{R^4-1}Rdt$ (7.45)
  $\displaystyle = \pi \frac{1+R^2}{R^4-1}R\to 0$ (7.46)

Let us compute the residues now

$\displaystyle \operatorname{Res}(f,\theta_1)$ $\displaystyle = \lim_{z\to \theta_1}
\frac{(z-\theta_1)(1+z^2)}{1+z^4}
= \lim \frac{1+z^2}{4z^3}$ (7.47)
  $\displaystyle = \frac{1+i}{4i\frac{1+i}{\sqrt{2}}} = \frac{\sqrt{2}}{4i}$ (7.48)
$\displaystyle \operatorname{Res}(f,\theta_2)$ $\displaystyle =
\frac{1-i}{4i\frac{1-i}{\sqrt{2}}} = \frac{\sqrt{2}}{4i}$ (7.49)

By taking limits we can see

$\displaystyle \int_{-\infty}^\infty f(z) = 2\pi i \left[\frac{\sqrt{2}}{2i}\right]
=\pi\sqrt{2}$ (7.50)

The integral in question is half this because the integrand is even:

$\displaystyle \int_0^\infty \frac{1+x^2}{1+x^4} = \frac{\pi\sqrt{2}}{2}$ (7.51)

$\qedsymbol$