Proof.
The function

has domain a compact set, so

is bounded.
The domain of integration has finite measure and the
function

is measurable, so the bounded convergence
theorem allows the limit interchange
 |
(6.22) |
As

the function

becomes an indicator function
![$\displaystyle \lim_{n\to\infty} g(x)^n = \begin{cases}
1 \quad x\in E\\
0 \quad x\in[0,1]\setminus E
\end{cases}$](img779.svg) |
(6.23) |
where

.
The continuity of

then reveals

becomes an
indicator function
![$\displaystyle \lim_{n\to\infty} f(g(x)^n) = \begin{cases}
f(1) \quad x\in E\\
f(0) \quad x\in[0,1]\setminus E
\end{cases}$](img781.svg) |
(6.24) |
Therefore,