Problem 2

Exercise 6.1 (Metric for Closed Sets)   Suppose $(X,d)$ is a bounded metric space. Let

$\displaystyle d(x,A) := \inf\{d(x,a) \;\vert\; a\in A\}.$ (6.1)

And define

$\displaystyle d_H(A,B) := \inf\{\epsilon>0 \;\vert\;$    $A \subseteq N_\epsilon(B)$ and $B \subseteq N_\epsilon(A)$$\displaystyle \}$ (6.2)

where

$\displaystyle N_\epsilon(A) := \{x \in X \;\vert\; d(x,A) < \epsilon\}.$ (6.3)

Show that $d_H$ is a distance function on the space of all closed subsets in $X$.

Proof. To see that zero distance implies equality, suppose $d_H(A,B)=0$. Select $\epsilon>0$ such that $A \subseteq N_\epsilon(B)$ and $B \subseteq N_\epsilon(A)$. Sending $\epsilon\to 0$, $N_\epsilon(B)\to B$ by closure and similarly $N_\epsilon(A)\to A$. The inclusions then indicate that $A\subseteq B$ and $B\subseteq A$, so that $A=B$.

For symmetry, statements around a logical `and' may be commuted, so that

$\displaystyle d_H(A,B)$ $\displaystyle = \inf\{\epsilon>0 \;\vert\;$    $A \subseteq N_\epsilon(B)$ and $B \subseteq N_\epsilon(A)$$\displaystyle \}$ (6.4)
  $\displaystyle = \inf\{\epsilon>0 \;\vert\;$    $B \subseteq N_\epsilon(A)$ and $A \subseteq N_\epsilon(B)$$\displaystyle \}
= d_H(B,A)$ (6.5)

For the triangle inequality, we will prove the estimate

$\displaystyle d_H(A,C) \leq d_H(A,B) + d_H(B,C).$ (6.6)

Let $\epsilon>0$ satisfy

$\displaystyle A \subseteq N_\epsilon(B)$ (6.7)
$\displaystyle B \subseteq N_\epsilon(A)$ (6.8)

and $\epsilon'>0$ satisfy

$\displaystyle B \subseteq N_{\epsilon'}(C)$ (6.9)
$\displaystyle C \subseteq N_{\epsilon'}(B)$ (6.10)

The $N$ operator acts convexly, so

$\displaystyle A \subseteq N_\epsilon(B) \subseteq N_\epsilon(N_{\epsilon'}(C))
\subseteq N_{\epsilon+\epsilon'}(C).$ (6.11)

Therefore, $A\subseteq N_{\epsilon+\epsilon'}(C)$. For the reverse inclusion, note that

$\displaystyle C \subseteq N_{\epsilon'}(B) \subseteq N_{\epsilon'}(N_{\epsilon}(A))
\subseteq N_{\epsilon'+\epsilon}(A)$ (6.12)

so that $C\subseteq N_{\epsilon'+\epsilon}(A)$. Therefore,

$\displaystyle d_H(A,C) \leq \epsilon + \epsilon'.$ (6.13)

Taking the infimum over the indicated $\epsilon$ and $\epsilon'$ yields

$\displaystyle d_H(A,C) \leq d_H(A,B) + d_H(B,C).$ (6.14)

$\qedsymbol$