Problem 6

Exercise 5.6 (Sequence of Bounded Operators on a Banach space)  
  1. Let $\{A_n:X\to X\}_{n=1}^\infty$ be a sequence of bounded linear operators on a Banach space $X$ such that $A_n x$ converges for every $x\in X$. Show the following operator on $X$ is bounded:

    $\displaystyle Ax := \lim_{n\to\infty} A_n x.$ (5.25)

  2. Can the same conclusion be drawn if $X$ is not a Banach space?

Proof. We can argue that $\Vert A\Vert<\infty$ using uniform boundedness. The convergence hypothesis implies that

$\displaystyle \sup_{n\geq 1} \Vert A_nx\Vert <\infty \quad \forall x \in X$ (5.26)

Uniform boundedness says

$\displaystyle \sup_{n\geq 1}\Vert A_n\Vert<\infty$ (5.27)

We will use this estimate to prove that

$\displaystyle \Vert A\Vert = \sup_{\Vert x\Vert=1}\lim_{n\to\infty}\Vert A_n x\Vert < \infty$ (5.28)

The limit within the supremum always exists by the convergence hypothesis, so for any $x$ it is true that

$\displaystyle \lim_{n\to\infty}\Vert A_n x\Vert = \liminf_{n\to\infty}\Vert A_n x\Vert
= \sup_{n\geq 1}\inf_{m\geq n} \Vert A_m x\Vert$ (5.29)

This is substituted into the equation for $\Vert A\Vert$, and we interchange some limits to see

$\displaystyle \Vert A\Vert = \sup_{\Vert x\Vert=1}\lim_{n\to\infty}\Vert A_n x\Vert$ $\displaystyle = \sup_{\Vert x\Vert=1}\sup_{n\geq 1}\inf_{m\geq n} \Vert A_m x\Vert$ (5.30)
  $\displaystyle = \sup_{n\geq 1}\sup_{\Vert x\Vert=1}\inf_{m\geq n} \Vert A_m x\Vert$ (5.31)
  $\displaystyle \leq \sup_{n\geq 1}\inf_{m\geq n}\sup_{\Vert x\Vert=1} \Vert A_m x\Vert$ (5.32)
  $\displaystyle = \sup_{n\geq 1}\inf_{m\geq n} \Vert A_m\Vert$ (5.33)
  $\displaystyle \leq \sup_{n\geq 1} \Vert A_n\Vert$ (5.34)
  $\displaystyle < \infty$ (5.35)

Consider the sequence of bounded operators

$\displaystyle T_n$ $\displaystyle : C(\mathbb{R}) \to \mathbb{R}$ (5.36)
$\displaystyle f$ $\displaystyle \mapsto \int_{-n}^n f(x)dx$ (5.37)

Each integration $T_n$ is over a compact domain, so the operators are bounded. But the limit operator is integration over the whole real line, which is unbounded, for example in the case of constant functions. $\qedsymbol$