Problem 8

Exercise 2.8 (Complex integral involving a $\cosh$)   Evaluate

$\displaystyle \int_{-\infty}^\infty \frac{e^{-2\pi i x \xi}}{\cosh(\pi x)}dx$ (2.46)

Proof. This integral can be evaluated by appealing to the residues of the complexified function at $z=\pm i/2$. For any $R$, enclose these residues in the rectangle with vertices in counter-clockwise order

$\displaystyle \{R-i, R+i, -R+i, -R-i\}$ (2.47)

Then the integral over this rectangle is given by either the residue theorem or directly

$\displaystyle \int_\gamma f(z)dz$ $\displaystyle = I_1 + I_2 + I_3 + I_4$ (2.48)
  $\displaystyle = \int_{-R}^R f(x-i) + \int_{-1}^1 f(R+iy)dy
+ \int_{R}^{-R}f(x+i) + \int_1^{-1} f(R+iy)dy$ (2.49)

The important contributions are given by

$\displaystyle I_1 = \int_{-R}^R f(x-i)
=\int_{-R}^R \frac{e^{-2\pi i(x-i)\xi}}{\cosh(\pi(x-i))}
= -e^{-2\pi \xi} \int_{-R}^R\frac{e^{-2\pi i x\xi}}{\cosh(\pi x)}$ (2.50)

and similarly

$\displaystyle I_3 = \int_R^{-R} f(x+i)
=-\int_{-R}^R \frac{e^{-2\pi i(x+i)\xi}}{\cosh(\pi(x+i))}
= e^{2\pi \xi} \int_{-R}^R\frac{e^{-2\pi i x\xi}}{\cosh(\pi x)}$ (2.51)

As $R\to\infty$, they each converge to a constant multiple of the desired integral.

The other integrals vanish as $R\to\infty$, and this can be seen:

$\displaystyle \vert I_2\vert = \left\vert\int_{-1}^1 f(R+iy)dy\right\vert \leq
\int_{-1}^1 \frac{\vert e^{-2\pi i(R+iy)\xi}\vert}{\vert\cosh(\pi(R+iy))\vert}$ (2.52)
$\displaystyle \leq \int_{-1}^1 \frac{e^{2\pi y\xi}}{\vert\cosh(\pi(R+iy))\vert}$ (2.53)

Given $\epsilon>0$, select by uniform continuity $\delta>0$ such that

$\displaystyle \left\vert
\frac{1}{\vert\cosh(\pi(R+iy))\vert} - \frac{1}{\vert\cosh(\pi R)\vert}
\right\vert < \epsilon$ (2.54)

Also realize that on this interval $e^{2\pi y \xi}\leq e^{2\pi \xi}$. Then break the integral into pieces of size $\delta$.

$\displaystyle \int_{-1}^1 \frac{e^{2\pi y\xi}}{\vert\cosh(\pi(R+iy))\vert}$ $\displaystyle \leq \left(
\sum_{k=0}^n \int_{-1+k\delta}^{-1+(k+1)\delta} +
\in...
...^1 \right)
e^{2\pi \xi}\left(\frac{1}{\vert\cosh(\pi R)\vert} + \epsilon\right)$ (2.55)
  $\displaystyle \leq \int_{-1}^1 e^{2\pi \xi}\left(\frac{1}{\vert\cosh(\pi R)\vert}
+ \epsilon\right)$ (2.56)
  $\displaystyle = 2e^{2\pi \xi}\left(\frac{1}{\vert\cosh(\pi R)\vert} + \epsilon\right)$ (2.57)

Send $\epsilon\to 0$ and $R\to 0$ to see the quantity vanish as $R\to\infty$. Similar for the other integral.

The residue theorem says that

$\displaystyle \lim_{R\to\infty}\left[
I_1 + I_2 + I_3 + I_4 \right] = 2\pi i \operatorname{Res}(f, \pm i/2)
=2(e^{\pi\xi}-e^{-\pi\xi})$ (2.58)

But we know $I_2$ and $I_4$ vanish so we are left with

$\displaystyle 2(e^{\pi\xi}-e^{-\pi\xi}) = \lim_{R\to\infty} I_1 + I_3
= e^{2\pi\xi}I - e^{-2\pi\xi} I
= (e^{\pi\xi} - e^{-\pi\xi})(e^{\pi\xi} + e^{-\pi \xi})I$ (2.59)

This implies

$\displaystyle I(\xi) = \frac{2}{e^{\pi\xi}+e^{-\pi\xi}}=\frac{1}{\cosh(\pi\xi)}$ (2.60)

Let us compute these residues directly

$\displaystyle \lim_{z\to i/2}(z-i/2)f(z)$ $\displaystyle =
\lim_{z\to i/2}\frac{(z-i/2)e^{-2\pi i z \xi}}{\cosh(\pi z)}
=\...
...2\pi i z\xi} + (z-i/2) \times
e^{-2\pi i z \xi} (-2\pi i \xi)}{\pi\sinh(\pi z)}$ (2.61)
  $\displaystyle = \frac{e^{-2\pi i(i/2)\xi}}{\pi i}
= \frac{e^{\pi \xi}}{\pi i}$ (2.62)

Similarly

$\displaystyle \lim_{z\to -i/2}(z+i/2)f(z)$ $\displaystyle =
\lim_{z\to -i/2}\frac{(z+i/2)e^{-2\pi i z \xi}}{\cosh(\pi z)}
=...
...2\pi i z\xi} + (z+i/2) \times
e^{-2\pi i z \xi} (-2\pi i \xi)}{\pi\sinh(\pi z)}$ (2.63)
  $\displaystyle = \frac{e^{-2\pi i(-i/2)\xi}}{\pi i}
= \frac{e^{-\pi \xi}}{\pi i}$ (2.64)

$\qedsymbol$