Problem 6

Exercise 2.6 (Weakly converging operators have a bounded limit)   Suppose $A_n : X \to Y$ is a sequence of bounded linear operators converging weakly to $A$ in the sense that for all $\phi\in Y^*$ and $x\in X$ the following limit holds

$\displaystyle \lim_{n\to\infty} \phi(A_n x) = \phi(A x).$ (2.26)

Then $\sup \Vert A_n\Vert<\infty$ and $A$ is bounded.

Proof. Define a few linear maps

$\displaystyle A_n^*$ $\displaystyle : Y^* \to X^* \quad \phi \mapsto \phi \circ A_n$ (2.27)
$\displaystyle T_n^x$ $\displaystyle : Y^* \to \mathbb{R} \quad \phi \mapsto \phi(A_n x)$ (2.28)
$\displaystyle J_n$ $\displaystyle : X \to Y^{**} \quad x \mapsto T_n^x$ (2.29)

Fixing $x\in X$, we know

$\displaystyle \lim_{n\to\infty} \phi(A_n x) = \phi(A x) \implies
\sup_{n\geq 1}...
...vert = \sup_{n\geq 1} \vert T_n^x(\phi)\vert
< \infty \quad \forall \phi\in Y^*$ (2.30)

Uniform boundedness implies that $\sup_{n\geq 1}\Vert T_n^x\Vert<\infty$. Since $x$ was fixed, this is true for any $x$, so that uniform boundedness can be applied again on

$\displaystyle \sup_{n\geq 1}\Vert T_n^x\Vert = \sup_{n\geq 1}\Vert J_n(x)\Vert<\infty
\quad \forall x\in X$ (2.31)

so that $\sup_{n\geq 1}\Vert J_n\Vert<\infty$.

After we show

$\displaystyle \Vert J_n\Vert$ $\displaystyle = \sup_{\Vert x\Vert=1}\Vert J_n(x)\Vert
= \sup_{\Vert x\Vert=1} ...
...ert\phi\Vert=1}\Vert J_n(x)(\phi)\Vert
= \sup_\phi \sup_x \Vert\phi(A_n x)\Vert$ (2.32)
  $\displaystyle = \sup_\phi \Vert\phi\circ A_n\Vert
= \Vert A_n^*\Vert
= \Vert A_n\Vert$ (2.33)

it is true that $\sup\Vert A_n\Vert = \sup\Vert J_n\Vert<\infty$.

Now we are ready to show $A$ is bounded, working in the double dual.

$\displaystyle \Vert A^*\Vert$ $\displaystyle = \sup_{\Vert\phi\Vert=1} \Vert A^*(\phi)\Vert
= \sup_\phi \sup_x \vert\phi(A x)\vert
= \sup_\phi \sup_x \lim_{n\to\infty} \vert\phi(A_n x)\vert$ (2.34)
  $\displaystyle \leq \liminf_{n\to\infty} \sup_\phi \sup_x \vert\phi(A_n x)\vert
...
...\circ A_n\Vert
\leq \liminf_{n\to\infty} \sup_\phi \Vert\phi\Vert\Vert A_n\Vert$ (2.35)
  $\displaystyle \leq \liminf_{n\to\infty} \Vert A_n\Vert \leq \sup_{n\geq 1} \Vert A_n\Vert < \infty$ (2.36)

Therefore, $\Vert A^*\Vert$ is bounded, proving that $\Vert A\Vert$ is bounded. $\qedsymbol$