Problem 8

Exercise 1.8 (Gaussian integral with a shift)  
  1. Prove that

    $\displaystyle \int_{\mathbb{R}} e^{-(x+ia)^2}dx = \int_{\mathbb{R}}e^{-x^2}dx.$ (1.56)

  2. Use part (a) to prove

    $\displaystyle \int e^{-ix\xi-\frac{x^2}{2\sigma^2}}= e^{-\frac{\xi^2\sigma^2}{2}}
\sigma\sqrt{2\pi}.$ (1.57)

Proof. To attack part (a), for $a=0$, we already have the result, so suppose $a>0$. The case $a<0$ is handled similarly. Integrating around the counterclockwise rectangle $\{-R, R, R+ia, -R + ia\}$ captures the nonexisting poles of the function, so we should have

$\displaystyle \int_{-R}^R e^{-x^2}dx + \int_0^a e^{-(R+iy)^2}dy
+ \int_R^{-R} e^{-(x+ia)^2}dx + \int_a^0 e^{-(R+iy)^2}dy=0$ (1.58)

Two of these integrals vanish as $R\to\infty$:

$\displaystyle \left\vert\int_0^a e^{-(R+iy)^2}dy\right\vert
\leq \int_0^a \vert...
...2}\vert dy
= \int_0^a \vert e^{-R^2 - 2Ryi +y^2}\vert dy
\leq ae^{a^2-R^2}\to 0$ (1.59)

Similarly

$\displaystyle \int_a^0 e^{-(R+iy)^2}dy \to 0$ (1.60)

Therefore,

$\displaystyle \int_{-\infty}^\infty e^{-x^2}dx+\int_\infty^{-\infty} e^{-(x+ia)^2}dx=0$ (1.61)

which indicates

$\displaystyle \int_{-\infty}^\infty e^{-(x+ia)^2}dx=\int_{-\infty}^\infty e^{-x^2}dx$ (1.62)

For part (b), let $\sigma>0$ be fixed. Show that

$\displaystyle \int_{\mathbb{R}} e^{-i x\xi}e^{-\frac{x^2}{2\sigma^2}}dx
= \sigma\sqrt{2\pi}e^{-\frac{\sigma^2\xi^2}{2}}$ (1.63)

To apply the previous part, we complete the square:

$\displaystyle \frac{x^2}{2\sigma^2} +ix\xi$ $\displaystyle =\frac{1}{2\sigma^2}(x^2 + ix\xi 2\sigma^2)
= \frac{1}{2\sigma^2}\left[
(x + i\xi\sigma^2)^2-(i\xi\sigma^2)^2
\right]$ (1.64)
  $\displaystyle = \frac{1}{2\sigma^2}(x + i\xi\sigma^2)^2
-\frac{1}{2\sigma^2}(i\xi\sigma^2)^2$ (1.65)
  $\displaystyle = \frac{1}{2\sigma^2}(x + i\xi\sigma^2)^2
+\frac{1}{2\sigma^2}\left[\xi^2\sigma^4\right]$ (1.66)
  $\displaystyle = \frac{1}{2\sigma^2}(x + i\xi\sigma^2)^2
+\frac{1}{2}\xi^2\sigma^2$ (1.67)

Therefore

$\displaystyle \int e^{-ix\xi-\frac{x^2}{2\sigma^2}}= e^{-\frac{\xi^2\sigma^2}{2}}
\int e^{-\frac{1}{2\sigma^2}(x + i\xi\sigma^2)^2}$ (1.68)

In this integral, substitute $u=x/\sqrt{2\sigma^2}$ and simplify by applying the previous result

$\displaystyle \int e^{-\frac{1}{2\sigma^2}(x + i\xi\sigma^2)^2}dx$ $\displaystyle = \int e^{-(x/\sqrt{2\sigma^2}+i\xi\sigma^2/\sqrt{2\sigma^2})^2}d...
...2\sigma^2}\int e^{-(u+i\xi\sigma/\sqrt{2})^2}
= \sqrt{2\sigma^2}\int e^{-u^2}du$ (1.69)
  $\displaystyle = \sqrt{2\sigma^2}\sqrt{\pi}$ (1.70)
  $\displaystyle = \sigma\sqrt{2\pi}$ (1.71)

Therefore,

$\displaystyle \int e^{-ix\xi-\frac{x^2}{2\sigma^2}}= e^{-\frac{\xi^2\sigma^2}{2}}
\sigma\sqrt{2\pi}$ (1.72)

$\qedsymbol$