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CHAPTER 1

Winter 2018

1. Problem 1

Exercise 1.1 (Perfect sets are uncountable). Let A ⊆ R be closed and perfect, and nonempty. Then A
is uncountable.

Proof. It is first easy to show that A is at least countable. Let x ∈ A and select x1 ∈ B1(x). For each
n = 1, 2, . . . , select

xn+1 ∈ (A ∩Bεn(x)) \ {x} εn = d(xn, x)(1)
This definition implies d(xn, xm) > 0 for n 6= m. Suppose that d(xn, xm) = 0, then

εn = d(xn, x) ≤ d(xn, xm) + d(xm, x) = εm(2)
εm = d(xm, x) ≤ d(xm, xn) + d(xn, x) = εn(3)

Therefore, εn = εm, indicating n = m, since ε strictly decreases. Therefore, A is at least countable.
As a closed subset of R, we know A is a complete metric space, so an application of the Baire Category

Theorem reveals that

A 6=
∞⋃

n=1

{yn}(4)

for any sequence yn, so that A is uncountable. �
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2. Problem 2

Exercise 1.2 (Hölder condition for compactness). Show that the following set is compact
A = {f ∈ C(X) | ‖f‖ ≤ 1,Hα(f) ≤ 1}(5)

where (X, ρ) is a compact metric space and

Hα(f) := sup
x 6=y

|f(x)− f(y)|
ρ(x, y)α

(6)

Proof. To apply Arzelà-Ascoli, lets show A is closed, bounded, and equicontinuous. The first two are
obvious, so we focus on the last. Let ε > 0 be given. If ρ(x, y) < ε1/α, then ρα(x, y) ≤ ε and

Hα(f) ≤ 1 =⇒ |f(x)− f(y)|
ρα(x, y)

≤ 1 ∀f ∈ A =⇒ |f(x)− f(y)| ≤ ρα(x, y) ≤ ε ∀f ∈ A(7)

Therefore, δ = ε1/α is an appropriate equicontinuity constant. �
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3. Problem 3

Exercise 1.3 (Exact Egorov’s Theorem). Suppose fn → f almost everywhere. Find Ek such fn → f
uniformly on Ek and

µ

(
R \

∞⋃
k=1

Ek

)
= 0.(8)

Proof. For each positive integer k and for each integer m, select
Ek

m ⊆ [m,m+ 1](9)

such that fn → f uniformly on Ek
m and µ([m,m+ 1] \ Ek

m) < 1/k2|m|. Then define

Ek =

k⋃
m=−k

Ek
m(10)

To see fn → f uniformly on Ek, let m be fixed and ε > 0. By the uniform convergence of fn → f on
Ek

m, select Nm such that n ≥ Nm implies ‖fn − f‖Ek
m

< ε. Let N = min{−Nk, . . . , Nk} to see that the
convergence is uniform on the union Ek also.

Break apart the complement

R \ Ek =

 ∞⋃
j=−∞

[j, j + 1]

 \
k⋃

m=−k

Ek
m(11)

=

∞⋃
j=−∞

(
[j, j + 1] \

k⋃
m=−k

Ek
m

)
(12)

=

 k⋃
j=−k

[j, j + 1] \ Ek
j

 ∪
⋃

|j|>k

[j, j + 1](13)

The finite union can be measured by hand:

µ

 k⋃
j=−k

[j, j + 1] \ Ek
j

 =

k∑
j=−k

µ([j, j + 1] \ Ek
j ) ≤

∞∑
j=−∞

1/k2|j| = 3/k(14)

To study the infinite union, label

Uk =
⋃

|j|>k

[j, j + 1](15)

From the definition, we know that U1 ⊇ U2 ⊇ · · · and since no element in R is infinite, the intersection
⋂

Uk

is empty. Thence,

R \
∞⋃
k=1

Ek =

∞⋂
k=1

R \ Ek(16)

=

∞⋂
k=1

 k⋃
j=−k

[j, j + 1] \ Ek
j

 ∪
⋃

|j|>k

[j, j + 1]

(17)

=

 ∞⋂
k=1

 k⋃
j=−k

[j, j + 1] \ Ek
j

 ∪

[ ∞⋂
k=1

Uk

]
(18)

Therefore,

µ

(
R \

∞⋃
k=1

Ek

)
< 3/k ∀k(19)
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which implies the measure of this set equals zero. �
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4. Problem 4

Exercise 1.4 (DCT for convergence in measure). Let fn be a sequence of measurable functions converg-
ing in measure to f and pointwise bounded by |fn(x)| ≤ g(x) where g ∈ L1. Then

f ∈ L1 and lim
n→∞

∫
X

|fn − f |dµ = 0(20)

Proof. To proceed, we will prove these in the case that µ(X) < ∞ and then extend the result.
To show f is simply integrable, we show |f(x)| ≤ g(x) almost everywhere. For each ε > 0, define

En
ε := {x ∈ X | |f(x)− fn(x)| ≥ ε}(21)

Define

S =

∞⋂
n=1

En
ε(22)

Then
µ(S) ≤ µ(En

ε ) ∀n(23)
The definition of convergence in measure guarantees µ(S) = 0. Therefore∫

X

|f(x)| =
∫
X\S

|f(x)|(24)

The integrand is then bounded by comparing
|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)|(25)

If x ∈ X \ S, then x /∈ En
ε , so f is bounded by ε and the dominating function

|fn(x)− f(x)| < ε =⇒ |f(x)| ≤ ε+ g(x)(26)
Therefore, ∫

|f(x)| ≤
∫

ε+ g(x) = εµ(X) +

∫
g(x)(27)

Letting ε → 0, we find the desired result.
Now that f ∈ L1, let us show

lim
n→∞

∫
X

|fn(x)− f(x)| = 0(28)

Let ε > 0 be given and define En
ε as above. Select δ > 0 so that µ(B) < δ implies∫

B

2g < ε(29)

We are ready for the limit

lim
n→∞

∫
X

|fn(x)− f(x)| = lim
n→∞

(∫
X\En

ε

|fn(x)− f(x)|+
∫
En

ε

|fn(x)− f(x)|

)
(30)

≤ lim
n→∞

(∫
X\En

ε

|fn(x)− f(x)|+
∫
En

ε

2g

)
(31)

Select N such that n ≥ N implies µ(En
ε ) < δ. This bounds the second integral by ε from the integral

estimate. The first integral has an easy bound by convergence in measure:∫
X\En

ε

|fn(x)− f(x)| ≤
∫
X\En

ε

ε ≤ εµ(X \ En
ε ) ≤ εµ(X)(32)

Since ε > 0 was arbitrary, we have

lim
n→∞

∫
X

|fn(x)− f(x)| = 0(33)
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Now suppose µ(X) = ∞. Let ε > 0 be given. Select F ⊆ X such that µ(F ) < ∞ and∫
X\F

2g < ε(34)

by the integrability of 2g. Then∫
X

|fn(x)− f(x)| =
∫
X\F

|fn(x)− f(x)|+
∫
F

|fn(x)− f(x)|(35)

≤
∫
X\F

2g +

∫
F

|fn(x)− f(x)|(36)

≤ ε+

∫
F

|fn(x)− f(x)|(37)

Since F has finite measure, we can apply the previous result to show

lim
n→∞

∫
X

|fn(x)− f(x)| ≤ ε+ lim
n→∞

∫
F

|fn(x)− f(x)| ≤ ε(38)

The selection of ε was arbitrary, so we know that this limit equals zero. �

For an extra goodie, we look at how the convergence in measure metric ρ might have been used to solve
this problem. Let ε > 0 be given. Bound the integral for a fixed n∫

X

|fn(x)− f(x)| =
∫
X

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

[1 + |fn(x)− f(x)|](39)

= ess sup
|fn − f |

1 + |fn − f |
×
∫
X

[1 + |fn(x)− f(x)|](40)

≤ ess sup
|fn − f |

1 + |fn − f |
× (µ(X) + ‖2g‖)(41)

This essential supremum exists because the ratio in the integrand is bounded by one, so we can find the
ess sup as a limit of Lp norms. Select p such that

ess sup
|fn − f |

1 + |fn − f |
=

(∫ (
|fn − f |

1 + |fn − f |

)p)1/p

+O(ε/(µ(X) + ‖2g‖))(42)

≤ (ρ(fn, f))
1/p

+O(ε/(µ(X) + ‖2g‖))(43)
Combining these estimates shows∫

X

|fn(x)− f(x)| ≤ ρ(fn, f)
1/p(µ(X) + ‖2g‖) +O(ε)(44)

Select N such that n ≥ N implies
ρ(fn, f) = O((ε/(µ(X) + ‖2g‖))p) =⇒ ρ(fn, f)

1/p = O(ε/(µ(X) + ‖2g‖))(45)
This result assumes µ(X) < ∞, so we still have to extend the result as in the previous proof.
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5. Problem 5

Exercise 1.5 (Weak convergence is finite). Suppose {xn} ⊆ X converges weakly to x0 ∈ X. Then
‖x0‖ ≤ lim inf ‖xn‖.

Proof. Recall that limφ(xn) exists for each φ, so we may replace the limit with its lim inf and proceed
in the double dual

‖x0‖ = ‖x∗
0‖ = sup

‖φ‖=1

‖x∗
0(φ)‖ = sup

φ
|φ(x0)| = sup

φ
lim
n

|φ(xn)|(46)

= sup
φ

sup
n≥1

inf
m≥n

|φ(xm)| = sup
n≥1

sup
φ

inf
m≥n

|φ(xm)|(47)

≤ sup
n≥1

inf
m≥n

sup
‖φ‖=1

|φ(xm)| ≤ lim inf
n→∞

‖φ‖‖xn‖ ≤ lim inf
n→∞

‖xn‖(48)

�
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6. Problem 6

Exercise 1.6 (Bounding linear maps via elements in the dual space). Suppose T : E → F is such that
φ ◦ T ∈ E∗ is bounded for every φ ∈ F ∗. Then T is bounded.

Proof. Apply uniform boundedness. Define T ∗ : F ∗ → E∗ by sending φ 7→ φ ◦ T and define J : X →
Y ∗∗ by sending J(x)(φ) = T ∗(φ)(x) = φ(Tx).

The statement is precisely that
‖φ ◦ T‖ = sup

‖x‖=1

|φ(Tx)| = sup
x

|J(x)(φ)| < ∞ ∀φ ∈ Y ∗(49)

Uniform boundedness implies
sup
x

‖J(x)‖ < ∞(50)

Indicating ‖J‖ < ∞.
Now we show ‖T ∗‖ < ∞.

‖T ∗‖ = sup
‖φ‖=1

‖T ∗(φ)‖ = sup
‖φ‖=1

sup
‖x‖=1

‖T ∗(φ)(x)‖ = sup
‖φ‖=1

sup
‖x‖=1

‖J(x)(φ)‖(51)

≤ sup
‖φ‖=1

sup
‖x‖=1

‖J(x)‖‖(φ)‖ ≤ sup
‖φ‖=1

sup
‖x‖=1

‖J‖‖x‖‖‖φ‖ ≤ ‖J‖ < ∞(52)

Therefore, T is bounded. �
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7. Problem 7

Exercise 1.7 (Liouville’s Theorem and a Characterization of Polynomials).
(a) State Liouville’s theorem.
(b) Suppose f is entire and there exists C > 0 and p ∈ N such that |f(z)| ≤ C|z|p for all |z| ≥ 1. Then f is

a polynomial.

For (a):

Theorem 1 (Liouville’s theorem). A bounded entire function is constant.

Now for (b):

Proof. As in the proof of the Liouville theorem, f is entire so it has a power series

f(z) =

∞∑
k=0

akz
k(53)

where the coefficients are given by Cauchy’s differentiation formula

ak =
f (k)(0)

k!
=

1

2πi

∫
γ

f(ξ)

ξk+1
dξ(54)

If k > p, then k + 1− p > 1, proving that∣∣∣∣∫
γ

f(ξ)

ξk+1
dξ

∣∣∣∣ ≤ ∫
γ

|f(ξ)|
|ξ|p

|ξ|p

|ξ|k+1
dξ ≤ C

∫
γ

|ξ|p

|ξ|k+1
dξ = 0(55)

Therefore, ak = 0 for k > p, so f is a polynomial of degree at most p. �
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8. Problem 8

Exercise 1.8 (Gaussian integral with a shift).
(a) Prove that ∫

R
e−(x+ia)2dx =

∫
R
e−x2

dx.(56)

(b) Use part (a) to prove ∫
e−ixξ− x2

2σ2 = e−
ξ2σ2

2 σ
√
2π.(57)

Proof. To attack part (a), for a = 0, we already have the result, so suppose a > 0. The case a < 0 is
handled similarly. Integrating around the counterclockwise rectangle {−R,R,R+ ia,−R+ ia} captures the
nonexisting poles of the function, so we should have∫ R

−R

e−x2

dx+

∫ a

0

e−(R+iy)2dy +

∫ −R

R

e−(x+ia)2dx+

∫ 0

a

e−(R+iy)2dy = 0(58)

Two of these integrals vanish as R → ∞:∣∣∣∣∫ a

0

e−(R+iy)2dy

∣∣∣∣ ≤ ∫ a

0

|e−(R+iy)2 |dy =

∫ a

0

|e−R2−2Ryi+y2

|dy ≤ aea
2−R2

→ 0(59)

Similarly ∫ 0

a

e−(R+iy)2dy → 0(60)

Therefore, ∫ ∞

−∞
e−x2

dx+

∫ −∞

∞
e−(x+ia)2dx = 0(61)

which indicates ∫ ∞

−∞
e−(x+ia)2dx =

∫ ∞

−∞
e−x2

dx(62)

For part (b), let σ > 0 be fixed. Show that∫
R
e−ixξe−

x2

2σ2 dx = σ
√
2πe−

σ2ξ2

2(63)

To apply the previous part, we complete the square:

x2

2σ2
+ ixξ =

1

2σ2
(x2 + ixξ2σ2) =

1

2σ2

[
(x+ iξσ2)2 − (iξσ2)2

]
(64)

=
1

2σ2
(x+ iξσ2)2 − 1

2σ2
(iξσ2)2(65)

=
1

2σ2
(x+ iξσ2)2 +

1

2σ2

[
ξ2σ4

]
(66)

=
1

2σ2
(x+ iξσ2)2 +

1

2
ξ2σ2(67)

Therefore ∫
e−ixξ− x2

2σ2 = e−
ξ2σ2

2

∫
e−

1
2σ2 (x+iξσ2)2(68)
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In this integral, substitute u = x/
√
2σ2 and simplify by applying the previous result∫

e−
1

2σ2 (x+iξσ2)2dx =

∫
e−(x/

√
2σ2+iξσ2/

√
2σ2)2dx =

√
2σ2

∫
e−(u+iξσ/

√
2)2 =

√
2σ2

∫
e−u2

du(69)

=
√
2σ2

√
π(70)

= σ
√
2π(71)

Therefore, ∫
e−ixξ− x2

2σ2 = e−
ξ2σ2

2 σ
√
2π(72)

�
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CHAPTER 2

Spring 2018

1. Problem 1

Exercise 2.1 (Fundamental Limit Interchange). Suppose fn → f uniformly and limx→x0
fn(x) exists

for each fn. Then
lim

x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x)(73)

Proof. Let Ln := limx→x0
fn(x). Then we are going to show

lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

Ln(74)

Equivalently
lim

x→x0

lim
n→∞

|fn(x)− Ln| = 0(75)

Select N so that ‖fn − fm‖ < ε/3 for all n,m ≥ N . Select δ > 0 so that |fN (x) − LN | < ε/3 for all
0 < |x− x0| < δ. For any n > N , another distance can be estimated:

|fn(x)− Ln| = |fn(x)− fN (x) + fN (x)− LN + LN − Ln|(76)
≤ |fn(x)− fN (x)|+ |fN (x)− LN |+ |LN − Ln|(77)

The first summand and the second summand are bounded by convergence and continuity, respectively. The
final summand is bounded by Cauchiness. Verify:

|LN − Ln| = lim
x→x0

|fN (x)− fn(x)| ≤ ‖fN − fn‖(78)

Therefore
lim

x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x)(79)

�

25



2. Problem 2

Exercise 2.2 (Arzelà-Ascoli on smooth functions). Let {fn : [0, 1] → R} be twice differentiable such that
fn(0) = f ′

n(0) = 0 and |f ′′
n (x)| ≤ 1 uniformly. Then there exists a subsequence which converges uniformly.

Proof. This is a direct application of Arzela-Ascoli. Include the derivatives in an ambient space
{f ′

n}∞n=1 ⊆ C([0, 1])(80)
If we show the sequence is bounded and equicontinuous, then the uniformly converging subsequence will be
summoned by Ascoli himself.

For boundedness, compute the sup norm of each derivative

‖f ′
n‖ = sup

x∈[0,1]

|f ′
n(x)| ≤ sup

x∈[0,1]

∫ x

0

|f ′′
n (y)|dy ≤ 1(81)

For equicontinuity, we can show the sequence of derivatives is Lipschitz. Bound the derivative

|f ′
n(y)− f ′

n(x)| ≤
∫ y

x

|f ′′
n (z)|dz ≤ y − x(82)

Therefore,

sup
x 6=y

|f ′
n(x)− f ′

n(y)|
|x− y|

≤ 1(83)

Therefore, we may select f ′
nk

a subsequence converging uniformly to f ′, which we now prove equals the
derivative.

Define a function

f(x) =

∫ x

0

f ′(y)dy(84)

We will show that fnk
→ f uniformly.

The definition of integration in R begets

fn(x) =

∫ x

0

f ′
n(y)dy(85)

Now for the limit

sup
x∈[0,1]

|fnk
(x)− f(x)| = sup

x∈[0,1]

∣∣∣∣∫ x

0

f ′
nk
(y)− f ′(y)dy

∣∣∣∣ ≤ sup
x∈[0,1]

∫ x

0

|f ′
nk
(y)− f ′(y)|dy(86)

≤
∫ 1

0

|f ′
nk
(y)− f ′(y)|dy ≤ ‖f ′

nk
− f ′‖(87)

Therefore, the convergence is uniform. �
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3. Problem 3

Exercise 2.3 (Integration and uniform continuity).
(a) Show that if f ∈ L1(R) and f is uniformly continuous, then limx→∞ f(x) = 0.
(b) Was the assumption of uniform continuity necessary to conclude that f decays?

Proof. Part (a): to show that limx→∞ f(x) = 0, suppose otherwise. First select δ > 0 such that
|x − y| < δ implies |f(x) − f(y)| < ε. Let x1 = 0 and for each n = 2, 3, . . . select xn > xn−1 + δ such that
|f(xn)| > 2ε. If x ∈ Bδ(xn), then |f(x)− f(xn)| < ε, so that |f(x)| > ε.

Therefore, the integral on a single ball is positive:∫
Bδ(xn)

|f(x)| ≥ εδ(88)

There are infinitely many of these balls contained in the real line, so this shows∫
|f | ≥

∞∑
n=1

∫
Bδ(xn)

|f(x)| = ∞(89)

Part (b): The assumption of uniform continuity is necessary to conclude that f decays, as the following
function demonstrates:

f(x) =

{
1 x ∈ Q
0 x ∈ R \Q

(90)

Certainly,
∫
f = 0, because µ(Q) = 0 but limx→∞ 6= 0 and in fact this limit does not exist. �
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4. Problem 4

Exercise 2.4 (DCT on convergence in measure). See Winter 2018 Exercise 4.
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5. Problem 5

Exercise 2.5 (Perturbed compact operators have closed range). Let K : X → X be a compact operator
and suppose A = I +K has a trivial kernel. Then A(X) is closed.

Proof. We can show A(X) is weakly closed. Suppose {Axn}∞n=1 ⊆ A(X) converges weakly. We will
find a subsequence {xnk

} such that Kxnk
→ Kx.

Let φ ∈ X∗. By assumption the limit |φ(Axn)| is finite, so that we can deteremine
sup
n≥1

|φ(xn)| = sup
n≥1

|φ(A−1Axn)| ≤ ‖A−1‖ sup
n≥1

|φ(Axn)| < ∞(91)

where ‖A−1‖ := ‖(A|A(X))
−1‖ < ∞ because the open mapping theorem applies once we realize the trivial

kernel makes A|A(X) a surjection. This means the sequence is uniformly bounded, so by the compactness of
K, select a subsequence Kxnk

→ Kx.
Now it remains to prove that

φ(Axnk
) → φ(Ax) ∀φ ∈ X∗(92)

We will need
lim
k→∞

|φ(xnk
− x)| = lim

k→∞
|φ(A−1Axnk

−A−1Ax)| ≤ ‖A−1‖ lim
k→∞

|φ(Axnk
−Ax)|(93)

≤ ‖A−1‖ lim
k→∞

|φ((K + I)xnk
− (K + I)x)|(94)

≤ ‖A−1‖ lim
k→∞

[
φ(Kxnk

−Kx)|+ |φ(xnk
− x)|

]
(95)

The first limit equals zero since Kxnk
→ Kx, leaving us with

lim
k→∞

|φ(xnk
− x)| ≤ ‖A−1‖ lim

k→∞
|φ(xnk

− x)|(96)

This inequality proves that this limit equals zero since ‖A−1‖ < 1. Therefore,
lim
k→∞

φ(Axnk
) = lim

k→∞
φ(xnk

+Kxnk
) = φ(x+Kx) = φ(Ax)(97)

See Lemma 7.3.1 of [4] for a proof that does not suppose kerA = 0. �
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6. Problem 6

Exercise 2.6 (Weakly converging operators have a bounded limit). Suppose An : X → Y is a sequence
of bounded linear operators converging weakly to A in the sense that for all φ ∈ Y ∗ and x ∈ X the following
limit holds

lim
n→∞

φ(Anx) = φ(Ax).(98)

Then sup ‖An‖ < ∞ and A is bounded.

Proof. Define a few linear maps
A∗

n : Y ∗ → X∗ φ 7→ φ ◦An(99)
T x
n : Y ∗ → R φ 7→ φ(Anx)(100)
Jn : X → Y ∗∗ x 7→ T x

n(101)
Fixing x ∈ X, we know

lim
n→∞

φ(Anx) = φ(Ax) =⇒ sup
n≥1

|φ(Anx)| = sup
n≥1

|T x
n (φ)| < ∞ ∀φ ∈ Y ∗(102)

Uniform boundedness implies that supn≥1 ‖T x
n‖ < ∞. Since x was fixed, this is true for any x, so that

uniform boundedness can be applied again on
sup
n≥1

‖T x
n‖ = sup

n≥1
‖Jn(x)‖ < ∞ ∀x ∈ X(103)

so that supn≥1 ‖Jn‖ < ∞.
After we show

‖Jn‖ = sup
‖x‖=1

‖Jn(x)‖ = sup
‖x‖=1

sup
‖φ‖=1

‖Jn(x)(φ)‖ = sup
φ

sup
x

‖φ(Anx)‖(104)

= sup
φ

‖φ ◦An‖ = ‖A∗
n‖ = ‖An‖(105)

it is true that sup ‖An‖ = sup ‖Jn‖ < ∞.
Now we are ready to show A is bounded, working in the double dual.

‖A∗‖ = sup
‖φ‖=1

‖A∗(φ)‖ = sup
φ

sup
x

|φ(Ax)| = sup
φ

sup
x

lim
n→∞

|φ(Anx)|(106)

≤ lim inf
n→∞

sup
φ

sup
x

|φ(Anx)| ≤ lim inf
n→∞

sup
φ

‖φ ◦An‖ ≤ lim inf
n→∞

sup
φ

‖φ‖‖An‖(107)

≤ lim inf
n→∞

‖An‖ ≤ sup
n≥1

‖An‖ < ∞(108)

Therefore, ‖A∗‖ is bounded, proving that ‖A‖ is bounded. �
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7. Problem 7

Exercise 2.7 (Complex Fundamental Theorem of Algebra). State Rouché’s theorem and prove the
fundamental theorem of algebra.

Theorem 2 (Rouché’s Theorem). If h = f + g and
|f | > |g|(109)

on the contour C, then h and f have the same number of roots inside C.

Theorem 3 (Complex Fundamental Theorem of Algebra). Prove that a polynomial

P (z) =

n∑
k=0

akz
k(110)

has exactly n roots and the radius of the disk about zero containing all the roots may be estimated.

Proof. Reduce the polynomial to a monic

p(z) =

n∑
k=0

ckz
k(111)

where cn = 1 by dividing by an. Select

R >

n−1∑
k=0

|ck|(112)

Then for |z| = R, we have
|p(z)− zn| = |cn−1z

n−1 + · · ·+ c1z + c0|(113)
≤ |cn−1||z|n−1 + · · ·+ |c1||z|+ |c0|(114)
= |cn−1|Rn−1 + · · ·+ |c1|R+ |c0|(115)
≤ |cn−1|Rn−1 + · · ·+ |c1|Rn−1 + |c0|Rn−1(116)
< Rn = |z|n(117)

Then taking h = p(z), f = zn and g = p(z) − zn in Rouché’s theorem, we see that p(z) and zn have the
same number of zeroes inside the disk of radius R about the origin.

We scaled the polynomial to be monic, so when we unscale it, we can see all the roots lie in the disk of
radius R|an| about the origin. �
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8. Problem 8

Exercise 2.8 (Complex integral involving a cosh). Evaluate∫ ∞

−∞

e−2πixξ

cosh(πx)
dx(118)

Proof. This integral can be evaluated by appealing to the residues of the complexified function at
z = ±i/2. For any R, enclose these residues in the rectangle with vertices in counter-clockwise order

{R− i, R+ i,−R+ i,−R− i}(119)

Then the integral over this rectangle is given by either the residue theorem or directly∫
γ

f(z)dz = I1 + I2 + I3 + I4(120)

=

∫ R

−R

f(x− i) +

∫ 1

−1

f(R+ iy)dy +

∫ −R

R

f(x+ i) +

∫ −1

1

f(R+ iy)dy(121)

The important contributions are given by

I1 =

∫ R

−R

f(x− i) =

∫ R

−R

e−2πi(x−i)ξ

cosh(π(x− i))
= −e−2πξ

∫ R

−R

e−2πixξ

cosh(πx)
(122)

and similarly

I3 =

∫ −R

R

f(x+ i) = −
∫ R

−R

e−2πi(x+i)ξ

cosh(π(x+ i))
= e2πξ

∫ R

−R

e−2πixξ

cosh(πx)
(123)

As R → ∞, they each converge to a constant multiple of the desired integral.
The other integrals vanish as R → ∞, and this can be seen:

|I2| =
∣∣∣∣∫ 1

−1

f(R+ iy)dy

∣∣∣∣ ≤ ∫ 1

−1

|e−2πi(R+iy)ξ|
| cosh(π(R+ iy))|

(124)

≤
∫ 1

−1

e2πyξ

| cosh(π(R+ iy))|
(125)

Given ε > 0, select by uniform continuity δ > 0 such that∣∣∣∣ 1

| cosh(π(R+ iy))|
− 1

| cosh(πR)|

∣∣∣∣ < ε(126)

Also realize that on this interval e2πyξ ≤ e2πξ. Then break the integral into pieces of size δ.∫ 1

−1

e2πyξ

| cosh(π(R+ iy))|
≤

(
n∑

k=0

∫ −1+(k+1)δ

−1+kδ

+

∫ 1

−1+(n+1)δ

)
e2πξ

(
1

| cosh(πR)|
+ ε

)
(127)

≤
∫ 1

−1

e2πξ
(

1

| cosh(πR)|
+ ε

)
(128)

= 2e2πξ
(

1

| cosh(πR)|
+ ε

)
(129)

Send ε → 0 and R → 0 to see the quantity vanish as R → ∞. Similar for the other integral.
The residue theorem says that

lim
R→∞

[I1 + I2 + I3 + I4] = 2πiRes(f,±i/2) = 2(eπξ − e−πξ)(130)

But we know I2 and I4 vanish so we are left with

2(eπξ − e−πξ) = lim
R→∞

I1 + I3 = e2πξI − e−2πξI = (eπξ − e−πξ)(eπξ + e−πξ)I(131)
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This implies

I(ξ) =
2

eπξ + e−πξ
=

1

cosh(πξ)
(132)

Let us compute these residues directly

lim
z→i/2

(z − i/2)f(z) = lim
z→i/2

(z − i/2)e−2πizξ

cosh(πz)
= lim

z→i/2

e−2πizξ + (z − i/2)× e−2πizξ(−2πiξ)

π sinh(πz)
(133)

=
e−2πi(i/2)ξ

πi
=

eπξ

πi
(134)

Similarly

lim
z→−i/2

(z + i/2)f(z) = lim
z→−i/2

(z + i/2)e−2πizξ

cosh(πz)
= lim

z→i/2

e−2πizξ + (z + i/2)× e−2πizξ(−2πiξ)

π sinh(πz)
(135)

=
e−2πi(−i/2)ξ

πi
=

e−πξ

πi
(136)

�
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CHAPTER 3

Winter 2019

1. Problem 1

Exercise 3.1 (Prove Arzelà-Ascoli). Let K be a compact metric space and let A be a subset of C(K).
Prove that A is compact if and only if A is closed, bounded, and equicontinuous.

Proof. This exercise is asking us to prove the Arzelà-Ascoli Theorem.
First we present a diagonal argument: Let {fn}∞n=1 be a sequence in A. Construct a diagonal subsequence

as follows. Select a countable dense subset {xk}∞k=1 ⊆ K and select nested subsequences

fn = f1,n ⊇ · · · ⊇ fk,n ⊇ fk+1,n ⊇ · · ·(137)

in such a way that limn→∞ fk,n(xk) exists, by the completeness of R and the boundedness of A. It will be
proven that fn,n is Cauchy.

Let ε > 0 be given. Select δ > 0 so that |x− y| < δ implies |f(x)− f(y)| < ε/3. Cover K and extract a
finite subcover

K ⊆
⋃
x∈K

Bδ(x) =⇒ K ⊆
n⋃

i=1

Bδ(xi)(138)

For each xi, select Ni for which n,m ≥ Ni implies |fi,n(xi)− fi,m(xi)| < ε/3. Set N = max{Ni}.
Now we are in a position to prove that if n,m > N we have ‖fm− fn‖ < ε. For each x ∈ K, there exists

|x− xi| < δ. Then we may write

‖fm − fn‖ = sup
x∈K

|fm(x)− fm(xi) + fm(xi)− fn(xi) + fn(xi)− fn(x)|(139)

≤ sup |fm(x)− fm(xi)|+ sup |fm(xi)− fn(xi)|+ sup |fn(xi)− fn(x)|(140)

The first and last suprema are bounded by ε/3 due to the equicontinuity estimate. The middle supremum
equals maxi |fm(xi) − fn(xi)|, and the selection of N guarantees that this quantity is bounded by ε/3,
completing the proof.

An alternative proof which may be considered more explicit is given as follows, which rests on the
equivalence that

compact ⇐⇒ complete and totally bounded(141)

in a metric space.
Let ε > 0 be given. Our goal is to determine {f1, . . . , fn} ⊆ A such that

A ⊆
n⋃

i=1

Bε(fi)(142)

To proceed, we represent each function in A by a bounded “step” function, found by exploiting the compact
domain K. Since A is bounded and equicontinuous, there exists M > 0 and δ > 0 such that for all h ∈ A
we have ‖h‖ < M and that |x− y| < δ implies |h(x)− h(y)| < ε.
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To exploit the compact domain K, extract a finite subcover as follows

K ⊆
⋃
x∈K

Bδ(x)(143)

⊆
L⋃

i=1

Bδ(xi)(144)

Define a collection of functions

G =

{
g :

L⋃
i=1

Bδ(xi) ∩K → R | g(Bδ(xi)) = εyi, |εyi| < M, yi ∈ Z

}
(145)

For each f ∈ A, select {y1, . . . , yL} satisfying
εyi ≤ f(xi) ≤ ε(yi + 1)(146)

and |εyi| < M , so that we may define
gf (Bδ(xi)) = εyi(147)

Then ‖f − gf‖ < ε. Consider this collection of functions G = {gf}f = {g1, . . . , gN}. Realize that

A ⊆
N⋃
i=1

Bε(gi)(148)

We are now so close, because we just need to invert each gi → fi where fi is simply an element of A such
that ‖fi − gi‖ < ε as described above, so that an appropriate ε-net is

A ⊆
N⋃
i=1

Bε(fi)(149)

�
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2. Problem 2

Exercise 3.2 (Squeeze theorem for Euclidean sets). Let K ⊂ U ⊆ Rn where K is compact. Find V
such that K ⊆ V ⊆ V ⊆ U and V is compact.

Proof. Cover K with balls interior to U and extract a finite subcover.
K ⊆

⋃
x∈K

Bεx(x) ∩K(150)

⊆
n⋃

i=1

Bεi(xi) ∩K(151)

Define a family of open sets to help us find an appropriate set V . Set

Vη =

n⋃
i=1

Bεi−η(xi) ⊆
n⋃

i=1

Bεi(xi) ⊆ U(152)

Now refine. For each x ∈ K, select ε > 0 and xi such that |x − xi| < ε < εi by density. Then setting
ηx < εi − ε, we can realize another open cover

K ⊆
⋃
x∈K

Vηx
(153)

⊆
m⋃
j=1

Vηj = V(154)

Setting V as indicated, we can tell V ⊆ U , as desired. �
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3. Problem 3

Exercise 3.3 (Product of absolutely continuous functions). Let f, g : [0, 1] → R be absolutely continuous.
Then their product is absolutely continuous.

Proof. Select δ1, δ2 > 0 via absolute continuity so that
n∑

i=1

|yi − xi| < δ1 =⇒
n∑

i=1

|f(yi)− f(xi)| < ε/‖g‖(155)

n∑
i=1

|yi − xi| < δ2 =⇒
n∑

i=1

|g(yi)− g(xi)| < ε/‖f‖(156)

and set δ = min{δ1, δ2}. Then we have
n∑

i=1

|(fg)(yi)− (fg)(xi)| =
n∑

i=1

|f(yi)g(yi)− f(xi)g(xi)|(157)

=

n∑
i=1

|f(yi)g(yi)− f(yi)g(xi) + f(yi)g(xi)− f(xi)g(xi)|(158)

≤
n∑

i=1

|f(yi)||g(yi)− g(xi)|+ |g(xi)||f(yi)− f(xi)|(159)

≤
n∑

i=1

‖f‖|g(yi)− g(xi)|+ ‖g‖|f(yi)− f(xi)|(160)

≤ ‖f‖
n∑

i=1

|g(yi)− g(xi)|+ ‖g‖
n∑

i=1

|f(yi)− f(xi)|(161)

These sums are both bounded by ε if
∑

i |yi−xi| < δ, indicating fg : [0, 1] → R is absolutely continuous. �
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4. Problem 4

Exercise 3.4 (Radon-Nikodym). If µ(X) < ∞, {Ek}nk=1 are measurable, and {ck}nk=1 are real, define
a measure ν by

ν(E) :=

n∑
k=1

ckµ(E ∩ Ek)(162)

Proof. Verify that ν is a measure by checking countable additivity. Let {Aj}∞j=1 be a sequence of
disjoint measurable sets. Then

ν

 ∞⋃
j=1

Aj

 =

n∑
k=1

ckµ

 ∞⋃
j=1

Aj

 ∩ Ek

(163)

=

n∑
k=1

ckµ

 ∞⋃
j=1

(Aj ∩ Ek)

(164)

=

n∑
k=1

ck

∞∑
j=1

µ(Aj ∩ Ek)(165)

=

∞∑
j=1

n∑
k=1

ckµ(Aj ∩ Ek)(166)

=

∞∑
j=1

ν(Aj)(167)

To see that ν � µ, suppose µ(A) = 0. Then

ν(A) =

n∑
k=1

µ(A ∩ Ek) ≤
n∑

k=1

µ(A) = 0(168)

Now we show the Radon-Nikodym derivative equals
∑

k ck1Ek
. Observe:∫

A

dν

dµ
dµ =

∫
A

n∑
k=1

ck1Ek
(169)

=

n∑
k=1

∫
A

ck1Ek
dµ(170)

=

n∑
k=1

∫
A∩Ek

ckdµ(171)

=

n∑
k=1

ckµ(A ∩ Ek)(172)

= ν(A)(173)
showing that which was to be shown. �
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5. Problem 5

Exercise 3.5 (Closed unit ball in the weak topology). Let X be a Banach space and B = {x ∈ X | ‖x‖ ≤
1}. Show that B is closed in the weak topology. Is the unit sphere closed in the weak topology?

Proof. Let x ∈ X be a limit point of B. We may assume x 6= 0, so that there exists φ : X → R such
that φ(x) = ‖x‖ and ‖φ‖ = 1. Then for each ε > 0, select xε in the neighborhood

{y ∈ X | |φ(y)− φ(x)| < ε} ∩B(174)
Then we have φ(x) < φ(xε) + ε. Then

‖x‖ < φ(xε) + ε ≤ ‖φ‖|xε|+ ε ≤ 1 + ε(175)
Since ε > 0 is arbitrary, this means ‖x‖ ≤ 1.

To see that the sphere is not necessarily closed in the weak topology, consider the Banach space B =
C([0, 1]) and the sequence of functions fn(x) = xn. The linear functional∫

: C([0, 1]) → R(176)

is bounded, but ∫
fn =

1

n+ 1
xn+1

∣∣∣∣1
0

=
1

n+ 1
→ 0(177)

and ‖0‖ 6= 1. �
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6. Problem 6

Exercise 3.6 (Spectrum is compact). Let σ(A) ⊆ C be the spectrum of a bounded linear operator
A : X → X. Then σ(A) is compact.

Proof. To prove σ(A) is bounded, recall the following sufficient condition for the convergence of a
Neumann series which explicitly reconstructs the inverse

‖T‖ < 1 =⇒ (I − T )−1 =

∞∑
k=0

T k(178)

Therefore, if I − T is not invertible, then ‖T‖ ≥ 1. Recall the definition of σ(A)

σ(A) = {λ ∈ C | A− λI is not invertible}(179)
If A− λI is not invertible, certainly I −A/λ is not invertible, so that ‖A/λ‖ ≥ 1. This implies |λ| ≤ ‖A‖ so
that σ(A) is bounded.

For closure, suppose λn → λ is a sequence satisfying λn ∈ σ(A) and λ /∈ σ(A). The latter assumption
brings into existence a bounded map B : X → X such that

B(A− λI) = I(180)
A little Banach algebra reveals

B(A− λnI) = B(A− λI)−B(λnI − λI)(181)
= I −B(λnI − λI)(182)

If N is selected so that n ≥ N implies |λn − λ| < 1
‖B‖ , then we may realize

‖B(λnI − λI)‖ < ‖B‖/‖B‖ = 1(183)
indicating I − B(λnI − λI) = B(A − λnI) is invertible, so that A − λnI is invertible, contradicting the
selection λn ∈ σ(A). Therefore, λ ∈ σ(A), so that σ(A) is closed.

Now since σ(A) lies in a finite-dimensional space, closed and bounded exactly prove that σ(A) is compact.
A proof that σ(A) is non-empty is saved for Fall 2019 Exercise 5. �
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7. Problem 7

Exercise 3.7 (Rouché’s Theorem on a Geometric Progression).
(a) State Rouché’s theorem.
(b) Find the number Zn of zeroes of pn as n → ∞ within the closed contour C = ∂B1(1/2) where

pn(z) = z2 − 2

(
z

3
+ · · ·+ zn

3n

)
(184)

Theorem 4 (Rouché’s Theorem). Suppose h = f + g where f and g are holomorphic on the interior of
some closed contour C and moreover that |f(z)| > |g(z)| on the contour C. Then f and h have the same
number of zeros in the interior of C.

Now begin the problem.

Proof. Note that pn(z) converges uniformly on the set disk D = B1(1/2) to

p(z) = z2 − 2
z/3

1− z/3
= z2 − 2z

3− z
.(185)

Solve for the zeroes:

0 = z2 − 2z

3− z
= z2(3− z)− 2z = z [z(3− z)− 2] = z[−z2 + 3z − 2] = −z(z − 1)(z − 2)(186)

Only two of the roots z = 0 and z = 1 lie inside the contour C. None of the roots lie on the contour, which
indicates m = min |z2 − 2z/(3− z)| > 0 where the minimum is taken over C.

Now we can apply the Rouché theorem with h = p as defined above, f = pn and g = p − pn. On the
contour C, let us verify the inequality. Let N be such that

|g(z)| = |p(z)− pn(z)| =

∣∣∣∣∣
∞∑

k=n+1

zk

3k

∣∣∣∣∣ < m/2 for all n ≥ N and z in the disk(187)

Then

|f(z)| =
∣∣∣∣z2 − 2

(
z

3
+ · · ·+ zn

3n

)∣∣∣∣(188)

=

∣∣∣∣∣z2 − 2

(
z

3− z
−

∞∑
k=n+1

zk

3k

)∣∣∣∣∣(189)

=

∣∣∣∣∣z2 − 2z

3− z
+

∞∑
k=n+1

2zk

3k

∣∣∣∣∣(190)

≥ ||z2 − 2z/(3− z)| − |Σ||(191)
> m/2(192)

Since |g(z)| < m/2 and |f(z)| > m/2, this shows that Rouché’s theorem applies, indicating pn and p have
the same number of roots, namely 2, inside the contour C. �
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8. Problem 8

Exercise 3.8 (A sector-based contour integral). Evaluate for p ≥ 1∫
R

dx

1 + x2p
(193)

Proof. Consider the function f : C → C defined by

f(z) =
1

1 + z2p
(194)

Capture the pole with least argument x0 = exp(iπ/2p) in the sector SR = {reiθ | 0 ≤ r ≤ R, 0 ≤ θ ≤
π/p}. Compute the residue

Res(f, x0) = lim
z→x0

(z − x0)f(z) = lim
z→x0

z − x0

1 + z2p
= lim

z→x0

1

2pz2p−1
=

1

2px2p−1
0

(195)

The residue theorem states∫
∂SR

f(z)dz =

(∫ R

0

+

∫
arc

+

∫
line

)
f(z)dz = 2πiRes(f, z0) =

πi

px2p−1
0

(196)

The line integral can be found by parametrizing γ : [0, R] → C by γ(t) = (R− t)eiπ/p. Then∫
line

f(z)dz =

∫ R

0

1

1 + (R− t)2p
(−eiπ/p)dt(197)

= −eiπ/p
∫ R

0

f(z)dz(198)

= −x2
0

∫ R

0

f(z)dz(199)

The arc integral vanishes as R → ∞. Set ρ(t) = Reit for t ∈ [0, π/p]. Then ρ′(t) = Rieit and the arc
integral equals ∫

arc
f(z)dz =

∫ π/p

0

f(ρ(t))ρ′(t)dt =

∫ π/p

0

Rieit

1 +R2pe2ipt
(200)

Taking absolute values, we see∣∣∣∣∫
arc

f(z)dz

∣∣∣∣ ≤ ∫ π/p

0

∣∣∣∣ Rieit

1 +R2pe2ipt

∣∣∣∣ ≤ ∫ π/p

0

R

R2p − 1
dt ≤ π

p
· R

R2p − 1
→ 0(201)

Therefore, we can take limits and rearrange the integral-residue equation to find

(1− x2
0)

∫ ∞

0

f(z)dz =
πi

px2p−1
0

=
πi

px2p
0 /x0

=
πi

p(−1)/x0
= −πix0

p
(202)

Therefore, ∫
R

dx

1 + x2p
=

2πix0

p(x2
0 − 1)

=
2πi

p(x0 − x−1
0 )

=
2πi

p(2i sin(π/2p))
=

π

p sin(π/2p)
(203)

�
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CHAPTER 4

Spring 2019 TODO 4,6,8

1. Problem 1

Exercise 4.1 (Non-contractive mapping). Define T : R → R by

T (x) :=
π

2
+ x− arctan(x)(204)

Show that |T (x)− T (y)| ≤ |x− y| for all x, y ∈ R and that T has no fixed points in R. State the contraction
mapping theorem and explain why this example does not contradict the theorem.

Proof. For the Lipschitz estimate, we estimate the first derivative of T by formal differentiation rules:

T ′(w) = 1− 1

1 + w2
≤ 1(205)

The fundamental theorem reveals

T (x) =

∫ x

0

T ′(w)dw(206)

T (y) =

∫ y

0

T ′(w)dw(207)

Therefore the difference can be estimated

|T (x)− T (y)| =
∣∣∣∣∫ x

y

T ′(w)dw

∣∣∣∣ ≤ |x− y|(208)

The contraction mapping theorem states that if |T (x)− T (y)| ≤ c|x− y| for some c < 1, then the map
T has a fixed point. In this example we did not select such a c < 1, so we are comfortable now proving that
actually is no fixed point. Suppose T (x) = x. Then π/2 = arctan(x), which is never true. �
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2. Problem 2

Exercise 4.2 (Squeeze theorem for compact Euclidean sets). Suppose K is a compact set contained in
an open set U . Find an open set V whose closure is compact and

K ⊆ V ⊆ V ⊆ U(209)

Proof. See Exercise 3.2. �
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3. Problem 3

Exercise 4.3 (Lipschitz functions preserve measure zero sets). Prove that a Lipschitz function f : R → R
maps sets of Lebesgue measure zero to sets of Lebesgue measure zero. For which values of n and m does the
same statement hold for Lipschitz functions f : Rn → Rm?

Proof. If n < m, then measure can spring up from nothing, as in the following example. Consider a
line segment in R2, having zero measure. The projection map is Lipschitz, and sends the line segment to a
subset of full measure in [0, 1].

If n = m, identify a Lipschitz coefficient M and proceed by covering the image of a measure zero set A

A ⊆
∞⋃
k=1

Bδk(xk) and
∞∑
k=1

µ(Bδk) < ε/Mn(210)

Then the image is contained also in balls with expanded radii

f(A) ⊆
∞⋃
k=1

BMδk(f(xk))(211)

A dilation by M introduces a factor Mn, so that
∞∑
k=1

µ(BMδk) =

∞∑
k=1

Mnµ(Bδk) = Mn
∞∑
k=1

µ(Bδk) < Mnε/Mn = ε(212)

If n > m, then zero measure sets remain zero measure by realizing that cubes in Rm have zero measure
in Rn by the construction of the product measure. From this it follows that balls also have measure zero
when included into higher dimensional spaces. �
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4. Problem 5

Exercise 4.4 (Inversions and Estimates in Banach spaces). Let X be a Banach space and A ∈ L(X)
be a bounded linear operator. Show that there exists a bounded linear operator B ∈ L(X) satsifying AB =
BA = IX if and only if there exists a constant γ > 0 such that

‖x‖ ≤ γ‖Ax‖ and ‖φ‖ ≤ γ‖A∗φ‖ for all x ∈ X and φ ∈ X∗(213)

Proof. Suppose a bounded inverse B exists satisfying AB = BA = IX . Set γ = ‖B‖. Then for any
x ∈ X we have

‖x‖ = ‖IXx‖ = ‖B(Ax)‖ ≤ γ‖Ax‖(214)
To prove the other estimate we take adjoints: (IX)∗ = (AB)∗ = B∗A∗. Recall that ‖B∗‖ = ‖B‖ = γ, so for
any φ ∈ X∗ we can estimate directly

‖φ‖ = ‖I∗Xφ‖ = ‖B∗A∗φ‖ ≤ ‖B∗‖‖A∗φ‖ = γ‖A∗φ‖(215)
For the converse, let γ > 0 entail the above estimates. We can see A is injective because if Ax = Ay,

then setting z = x− y shows
‖x− y‖ = ‖z‖ ≤ γ‖Az‖ = γ‖Ax−Ay‖ = 0.(216)

The second estimate will let us show A is surjective. To apply the open mapping theorem, we verify
that 1

γU ⊆ A(U), where U = {x ∈ X | ‖x‖ < 1}. Suppose y /∈ A(U). The set A(U) is closed, balanced,
and convex, so there exists a linear functional φ : X → C such that |φ(y)| > 1 and |φ(Ax)| ≤ 1 for ‖x‖ ≤ 1.
Since φ(Ax) = A∗(φ)(x), the second estimate shows ‖A∗φ‖ ≤ 1. Putting these all together,

1

γ
<

1

γ
|φ(y)| ≤ 1

γ
‖φ‖‖y‖ ≤ ‖A∗φ‖‖y‖ ≤ ‖y‖(217)

we see that ‖y‖ ≥ 1/γ. Therefore, if ‖y‖ < 1/γ, then y ∈ A(X), so that 1
γU ⊆ A(X) which implies A is

surjective. Now that A is a continuous bijection, the inverse mapping theorem implies that A−1 is a bounded
linear operator. �

The interested reader is welcomed to read Proposition 6.8.5 of [4], which outlines a more general case of
the surjectivity aspect of this exercise, but not the injectivity. Theorem 4.13 of [11] does the same.

48



5. Problem 7

Exercise 4.5 (Two Contour Integrals). Using complex analysis, evaluate the integrals

I1 =

∫ ∞

0

1− cosx

x2
dx, I2 =

∫ 2π

0

1

2 + cos θ
dθ.(218)

Proof. The first integral can be evaluated as in Fall 2019 Exercise 8 by taking∫ ∞

0

1− cosx

x2
=

1

2

∫ ∞

−∞

1− cosx

x2
= <

∫ ∞

−∞

1− eiz

z2
.(219)

The residue of the integrand is found by a series about z = 0:
1− eiz

z2
=

1− (1 + iz − z2/2 + · · · )
z2

= − i

z
+ · · ·(220)

so that Resz=0 = −i. For an appropriate contour, take a semicircular arc with a dimple at the origin. The
contour integral can be split into a few integrals, most importantly the line segments and dimple∫

dimple
+

∫ R

ε

1− eiz

z2
+

∫ −ε

−R

1− eiz

z2
= 2πi(−i) = 2π(221)

Since the dimple ‘winds around’ the origin one-half times,∫
dimple

= 2πi/2(−i) = π,(222)

so that ∫ R

ε

1− eiz

z2
+

∫ −ε

−R

1− eiz

z2
= 2πi(−i) = π.(223)

As ε → 0 and R → ∞, we see ∫ ∞

−∞

1− eiz

z2
= 2π(224)

The second integral is handled similarly to Winter 2021 Problem 7. Let z = eiθ for θ ∈ [0, 2π] so that

−2i

∫
1

z2 + 4z + 1
= −2i

∫
1/z

z + 4 + 1/z
(225)

= −2i

∫ 2π

0

e−iθ

eiθ + e−iθ + 4
ieiθdθ(226)

= 2

∫ 2π

0

1

2 cos θ + 4
dθ(227)

=

∫ 2π

0

1

cos θ + 2
dθ =(228)

The first integral can be evaluated with the residue theorem. Identify the poles by solving

z2 + 4z + 1 = 0 ⇐⇒ z =
−4±

√
16− 4

2
= −2±

√
3.(229)

Only the pole at z = −2 +
√
3 lies inside the contour of integration, so the residue here is the only one we

need to compute, as follows:

Res = lim
z→−2+

√
3

z − (−2 +
√
3)

z2 + 4z + 1
= lim

1

2z + 4
=

1

2(−2 +
√
3) + 4

=
1

2
√
3
.(230)

Therefore, ∫ 2π

0

1

2 + cos θ
dθ = −2i

∫
= −2i(2πi/2

√
3) =

2π√
3
.(231)

�
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6. Problem 8

Exercise 4.6 (Polynomial ideals TODO).

Proof. The estimate
|f(z)| ≤ A(1 + |z|−s)(232)

implies that
|zsf(z)| ≤ A|z|s +A,(233)

which indicates zsf(z) is a polynomial, say:
zsf(z) = a0 + · · ·+ arz

r(234)
so that

f(z) =
a0
zs

+ · · ·+ arz
r−s(235)

Conversely, if f(z) is a sum as written above, then take A =
∑

|ak|. By the triangle inequality
|f(z)| ≤ |a0||z|−s + |a1||z1−s|+ · · ·+ |ar||zr−s|(236)

�
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CHAPTER 5

Fall 2019

1. Problem 1

Exercise 5.1 (A vanishing argument for odd functions). Let f : [−1, 1] → R be a continuous odd
function and suppose ∫ 1

−1

f(x)x2k−1dx = 0(237)

for all k > 0. Then f(x) ≡ 0.

Proof. Include f ∈ L2 by noticing that f being uniformly continuous implies f2 is uniformly continu-
ous. Then consider the subspace of odd functions in L2 which also contains f :

F = {g ∈ L2 | g(−x) = −g(x) ∀x ∈ [−1, 1]}(238)

which has a countable dense subset, namely, {x, x3, x5, . . . } by a similar argument to the Weierstrass ap-
proximation theorem. The inner product in this space naturally arises as

〈f, g〉 =
∫ 1

−1

f(x)g(x)dx(239)

and we know 〈f, xm〉 = 0 for any basic element xm. Therefore, f ≡ 0. �
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2. Problem 2

Exercise 5.2 (Urysohn in a metric space).
(a) Let X be a locally compact Hausdorff space and K ⊂ V ⊂ X where K is compact and V is open. State

the Urysohn Lemma in terms of K and V .
(b) Let (X, d) be a metric space. For a non-empty subset A ⊂ X, the function

dA(x) := inf{d(x, a) | a ∈ A}(240)
is uniformly continuous.

(c) For disjoint closed sets A and B, define a continuous function f : X → [0, 1] for which f(A) = 0 and
f(B) = 1. Relate this function to the Urysohn Lemma.

Lemma 1 (Urysohn Lemma). A topological space X is normal if and only if for all K ⊂ V with K
compact and V open, there exists a continuous function f : X → R such that f(K) = 0 and f(X \ V ) = 1,

For the rest of the problem:

Proof. To perform part (b), the function d(·, F ) can be argued to be uniformly continuous as follows.
Let 0 < d(x, y) < ε. Then

|d(x, F )− d(y, F )| =
∣∣∣∣inff d(x, f)− inf

f
d(y, f)

∣∣∣∣ = inf
f

|d(x, f)− d(y, f)|(241)

For any f ∈ F , we have inf ≤ |d(x, f)− d(y, f)|. Then
|d(x, F )− d(y, F )| ≤ |d(x, f)− d(y, f)| ≤ d(x, y) < ε(242)

Therefore, d(·, F ) is uniformly continuous.
Now to perform part (c), define

f(x) :=
dA(x)

dA(x) + dB(x)
.(243)

The denominator is never equal to zero, so this function inherits continuity from the functions it is composed
of. To see that d(x,A)+d(x,B) 6= 0, suppose otherwise. Then d(x,A) = d(x,B) = 0 which implies x ∈ A∩B,
contradicting that A and B are disjoint. Therefore, the function is continuous, and we can look at its action
on elements in A or in B: if x ∈ A, then d(x,A) = 0, so f(x) = 0. If x ∈ B, then d(x,B) = 0, so
f(x) = d(x,A)/d(x,A) = 1.

By setting A = K and B = X \ V , we can prove the Urysohn Lemma in one direction. �
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3. Problem 3

Exercise 5.3 (A summatory condition for decaying measure). Prove that
∞∑

n=1

µ(En) < ∞ =⇒ µ

(
lim sup
n→∞

En

)
= 0(244)

Proof. Recall the definition of lim sup for sets:

lim sup
n→∞

En =

∞⋂
n=1

∞⋃
m=n

Em.(245)

It follows that

µ

(
lim sup
n→∞

En

)
≤ µ

( ∞⋃
m=n

Em

)
∀n ≥ 1(246)

By countable subadditivity, we know

µ

( ∞⋃
m=n

Em

)
≤

∞∑
m=n

µ(Em) ∀n ≥ 1(247)

But
∑∞

n=1 µ(En) < ∞ implies

lim
n→∞

∞∑
m=n

µ(Em) = 0(248)

Applying this limit to equation 246 then shows µ(lim supEn) = 0:

µ

(
lim sup
n→∞

En

)
≤ lim

n→∞

∞∑
m=n

µ(Em) = 0(249)

�

See Exercise 6.2 for a proof invoking continuity from above.
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4. Problem 4

Exercise 5.4 (Absolutely continuous measures). Let (X,Σ, µ) be a finite measure space and suppose
f, g > 0. Define the measures

ν(E) =

∫
E

fdµ η(E) =

∫
E

gdµ(250)

Is ν � η? Is η � ν?

Proof. Compute R = ess sup g(x)/f(x). This is finite because X is a finite measure space and f and
g are strictly positive.

If ν(E) = 0, we can show η(E) = 0. By the definition of the Lebesgue integral, select

f ≤
n∑

k=1

ck1Ek
(251)

satisfying ∫
E

f ≤
∫ n∑

k=1

ck1Ek
< ε/R(252)

By the selection of R, it can be readily seen that
g(x)

f(x)
≤ R =⇒ g(x) ≤ Rf(x)(253)

Apply the monotonicity of the integral to find∫
E

g ≤ R

∫
E

f < Rε/R = ε(254)

Since ε > 0 is arbitrary, this implies η(E) = 0, so that η � ν. A similar argument can be made with
R′ = 1/R to show that ν � η. �
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5. Problem 5

Exercise 5.5 (Spectrum is closed and bounded). Show that the spectrum of a bounded linear operator
on a complex Banach space is a non-empty compact subset of C. Does the same hold for operator on real
Banach spaces?

Proof. Examining Winter 2019 Exercise 6 shows that this problem now requires us to show only that
the spectrum is non-empty. Let B : X → X be a bounded linear operator on a Banach space. Suppose the
spectrum were empty. That is,

σ(B) = {λ ∈ C | B − λI is not invertible} = {}(255)

Then B − λI is invertible for any complex λ, so the resolvent Rλ = (B − λI)−1 is defined for any λ. By the
open mapping, each resolvent is bounded. Let φ ∈ L(X)∗ be a non-zero linear functional on the space of
bounded opeators. Define a function F : C → C

F (λ) = φ(Rλ)(256)
is entire with the sense of operator norm convergence. Taking the modulus we see that |F (λ)| → 0 as
|λ| → ∞, which indicates F ≡ 0, so that X = 0, a contradiction. Therefore, B − λI is not invertible for
some λ.

The compactness does not hold in a real setting. Consider the operator∫
: C([0, 1]) → C([0, 1])(257)

f 7→
∫ x

0

f(t)dt(258)

where C([0, 1]) is the set of continuous real valued functions define over [0, 1]. Let us follow a familiar
derivation of the eigenvalues. Let ∫ x

0

f(t)dt = λf(x)(259)

The very act of writing this indicates that we may differentiate on either side, so that
f(x) = λf ′(x) ⇐⇒ f(x) = keλx(260)

But then the spectrum contains the real line, so it must not be compact. �
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6. Problem 6

Exercise 5.6 (Sequence of Bounded Operators on a Banach space).
(a) Let {An : X → X}∞n=1 be a sequence of bounded linear operators on a Banach space X such that Anx

converges for every x ∈ X. Show the following operator on X is bounded:
Ax := lim

n→∞
Anx.(261)

(b) Can the same conclusion be drawn if X is not a Banach space?

Proof. We can argue that ‖A‖ < ∞ using uniform boundedness. The convergence hypothesis implies
that

sup
n≥1

‖Anx‖ < ∞ ∀x ∈ X(262)

Uniform boundedness says
sup
n≥1

‖An‖ < ∞(263)

We will use this estimate to prove that
‖A‖ = sup

‖x‖=1

lim
n→∞

‖Anx‖ < ∞(264)

The limit within the supremum always exists by the convergence hypothesis, so for any x it is true that
lim
n→∞

‖Anx‖ = lim inf
n→∞

‖Anx‖ = sup
n≥1

inf
m≥n

‖Amx‖(265)

This is substituted into the equation for ‖A‖, and we interchange some limits to see
‖A‖ = sup

‖x‖=1

lim
n→∞

‖Anx‖ = sup
‖x‖=1

sup
n≥1

inf
m≥n

‖Amx‖(266)

= sup
n≥1

sup
‖x‖=1

inf
m≥n

‖Amx‖(267)

≤ sup
n≥1

inf
m≥n

sup
‖x‖=1

‖Amx‖(268)

= sup
n≥1

inf
m≥n

‖Am‖(269)

≤ sup
n≥1

‖An‖(270)

< ∞(271)
Consider the sequence of bounded operators

Tn : C(R) → R(272)

f 7→
∫ n

−n

f(x)dx(273)

Each integration Tn is over a compact domain, so the operators are bounded. But the limit operator is
integration over the whole real line, which is unbounded, for example in the case of constant functions. �
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7. Problem 7

Exercise 5.7 (Maximum modulus principle and its sibling). Let Ω ⊆ C be a connected domain and
let f(z) be holomorphic on Ω. Show that neither <[f(z)] nor |f(z)| attain a maximum on Ω unless f is
constant.

Proof. This is the maximum modulus principle, which the question is asking us to prove. Suppose
|f(z0)| ≥ |f(z)| over Ω. Find a power series

f(z) = a0 + a1(z − z0) + · · ·(274)
in a region about z0. If f is constant, we are done, so suppose a1 6= 0. In this case, f is a locally an open
mapping, so select r > 0 such that f(Br(z0)) is open. Note that a0 lies in this set, so select δ > 0 such that

Bδ(a0) ⊆ f(Br(z0))(275)
Let a0 = a+ bi. If a > 0, find a0 + δ/2 = f(z0 + w) where |w| < r. Then

|f(z0 + w)| = |(a+ δ/2) + bi| =
√
(a+ δ/2)2 + b2 >

√
a2 + b2 = |a0| = |f(z0)|(276)

violates that |f(z0)| is the maximum modulus. Similarly if a < 0, subtract δ/2 to find the same contradiction.
To prove the maximum real part principle, suppose <[f(z0)] ≥ <[f(z)] and pass f to the exponential

function. We have:
ef(z) = e<f(z)+=f(z)(277)

which implies
|ef(z)| = e<f(z)(278)

The previous result shows that if this function has a maximum, then the function is constant, which indicates
<f(z) is constant by the monotonicity of the exponential function, completing the proof. �
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8. Problem 8

Exercise 5.8 (Sinc Integral!). Integrate ∫ ∞

−∞

sinx

x
(279)

Proof. Consider the complexified function f(z) = eiz/z. Then∫ ∞

−∞

sin z

z
= =

∫ ∞

−∞

eiz

z
(280)

By writing eiz as a Taylor series, we can divide to argue that the residue at zero equals one:
eiz

z
=

1 + iz − z2/2 + · · ·
z

=
1

z
+ i+ · · ·(281)

Integrate f around a semicircular arc with radius R and a dimple in the lower half-plane centered at the
origin with radius ε. Then the residue theorem says this path integral captures the pole, so that∫

dimple
+

∫ R

ε

+

∫
arc

+

∫ −ε

−R

= 2πi(282)

The arc integral vanishes as R → ∞ in the upper half-plane. Set z = Reiθ. Then

eiz = eiReiθ = eiR(cos θ+i sin θ) = eiR cos θ−R sin θ =⇒ |eiz| = e−R sin θ(283)
Simplify the following integral ∫

arc
=

∫ π

0

eiReiθ

Reiθ
Rieiθdθ = i

∫ π

0

eiReiθdθ(284)

Then we can apply the previous estimate ∣∣∣∣∫
arc

∣∣∣∣ ≤ ∫ π

0

e−R sin θdθ(285)

The integrand converges to 0 because sin θ is nonnegative on this interval. Moreover, e−R sin θ is continuous
and [0, π] is compact, so we may exchange limits. Therefore, the arc integral vanishes.

The dimple integral is handled by letting ε → 0. Set z = εeiθ. We have∫
dimple

= i

∫ 2π

π

eiεe
iθ

dθ(286)

Again, we can apply integral interchange because of smoothness, so the dimple integral is sent to πi as ε → 0.
Therefore, as R → ∞ and ε → 0, we see ∫ ∞

−∞

eix

x
= πi(287)

Taking, the imaginary part, we see: ∫ ∞

−∞

sinx

x
= π(288)

�
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CHAPTER 6

Spring 2020 TODO

1. Problem 2

Exercise 6.1 (Metric for Closed Sets). Suppose (X, d) is a bounded metric space. Let
d(x,A) := inf{d(x, a) | a ∈ A}.(289)

And define
dH(A,B) := inf{ε > 0 | A ⊆ Nε(B) and B ⊆ Nε(A)}(290)

where
Nε(A) := {x ∈ X | d(x,A) < ε}.(291)

Show that dH is a distance function on the space of all closed subsets in X.

Proof. To see that zero distance implies equality, suppose dH(A,B) = 0. Select ε > 0 such that
A ⊆ Nε(B) and B ⊆ Nε(A). Sending ε → 0, Nε(B) → B by closure and similarly Nε(A) → A. The
inclusions then indicate that A ⊆ B and B ⊆ A, so that A = B.

For symmetry, statements around a logical ‘and’ may be commuted, so that
dH(A,B) = inf{ε > 0 | A ⊆ Nε(B) and B ⊆ Nε(A)}(292)

= inf{ε > 0 | B ⊆ Nε(A) and A ⊆ Nε(B)} = dH(B,A)(293)
For the triangle inequality, we will prove the estimate

dH(A,C) ≤ dH(A,B) + dH(B,C).(294)
Let ε > 0 satisfy

A ⊆ Nε(B)(295)
B ⊆ Nε(A)(296)

and ε′ > 0 satisfy
B ⊆ Nε′(C)(297)
C ⊆ Nε′(B)(298)

The N operator acts convexly, so
A ⊆ Nε(B) ⊆ Nε(Nε′(C)) ⊆ Nε+ε′(C).(299)

Therefore, A ⊆ Nε+ε′(C). For the reverse inclusion, note that
C ⊆ Nε′(B) ⊆ Nε′(Nε(A)) ⊆ Nε′+ε(A)(300)

so that C ⊆ Nε′+ε(A). Therefore,
dH(A,C) ≤ ε+ ε′.(301)

Taking the infimum over the indicated ε and ε′ yields
dH(A,C) ≤ dH(A,B) + dH(B,C).(302)

�
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2. Problem 3

Exercise 6.2 (Borel-Cantelli). Consider the measure space (X,M, µ) with µ a positive measure. Let
{Ek} be a countable family of measurable sets satisfying

∞∑
k=1

µ(Ek) < ∞.(303)

Define
E := {x ∈ R | x ∈ Ek for infinitely many k}.(304)

Prove the following:
(a) E is measurable
(b) µ(E) = 0.

Proof. For part (a), we can construct E from σ-algebra operations:

E =

∞⋂
m=1

∞⋃
k=m

Ek(305)

For part (b), the definition of a converging series from basic real analysis tells us that

lim
m→∞

∞∑
k=m

µ(Ek) = 0.(306)

Intersections are decreasing and the converging series guarantees the first set has finite measure from the
following estimate

µ

( ∞⋃
k=1

Ek

)
≤

∞∑
k=1

µ(Ek) < ∞(307)

Now apply continuity from above:

µ(E) = lim
m→∞

µ

( ∞⋃
k=m

Ek

)
≤

∞∑
k=m

µ(Ek)(308)

where the inequality follows from the countable subadditivity of measure. Applying the limit m → ∞ on
either side yields the desired result. �

See Exercise 5.3 for a proof invoking monotonicity of measure.
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3. Problem 4

Exercise 6.3 (Indicator function limit). Let f : [0, 1] → R be continuous and g : [0, 1] → [0, 1] measur-
able. Compute the limit

lim
n→∞

∫ 1

0

f(g(x)n)dx(309)

Proof. The function f has domain a compact set, so f is bounded. The domain of integration has
finite measure and the function f ◦ gn is measurable, so the bounded convergence theorem allows the limit
interchange

lim
n→∞

∫ 1

0

f(g(x)n)dx =

∫ 1

0

lim
n→∞

f(g(x)n)dx(310)

As n → ∞ the function gn becomes an indicator function

lim
n→∞

g(x)n =

{
1 x ∈ E

0 x ∈ [0, 1] \ E
(311)

where E = g−1({1}). The continuity of f then reveals f ◦ gn becomes an indicator function

lim
n→∞

f(g(x)n) =

{
f(1) x ∈ E

f(0) x ∈ [0, 1] \ E
(312)

Therefore,

lim
n→∞

∫ 1

0

f(g(x)n) =

∫ 1

0

{
f(1) x ∈ E

f(0) x ∈ [0, 1] \ E
dx(313)

=

∫
E

f(1)dx+

∫
[0,1]\E

f(0)dx(314)

= µ(E)f(1) + µ([0, 1] \ E)f(0)(315)
�
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CHAPTER 7

Fall 2020

1. Problem 1

Exercise 7.1 (Continuous bijections, compactness, Hausdorff, and gluing).
(a) Let f : X → Y be a continuous bijection where X is compact and Y is Hausdorff. Then f is a

homeomorphism.
(b) Let X = A∪B where A and B are closed subsets of X. Suppose f : X → Y is a map such that f |A and

f |B are continuous. Then f is continuous.

Proof. For part (a): we show (f−1)−1(S) is closed for any closed S ⊆ X. Let S ⊆ X be closed. The
inverses simplify to f(S) because f is a bijection. Since X is compact and S is closed, it follows that S
is compact. Continuous images of compact maps are compact, so we know f(S) is compact. Since Y is
Hausdorff, this implies f(S) is closed.

For part (b), let us glue by hand. We know f(X) = f(A) ∪ f(B), so if U ⊆ f(X) is open, U =
U ∩ f(A) ∪ U ∩ f(B). By writing this we see

f−1(U) = f−1(U ∩ f(A) ∪ U ∩ f(B)) = f−1(U ∩ f(A)) ∪ f−1(U ∩ f(B))(316)
= (f |A)−1(U) ∪ (f |B)−1(U)(317)

Since these restrictions are continuous, f−1(U) is a union of open sets, therefore indicating that f is contin-
uous. �
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2. Problem 2

[TODO]

Exercise 7.2 (An equivalence relation with closure). Let ∼ be an equivalence relation on a topological
space X. Assume each equivalence class is a closed set in X. Then a set of finitely many points in X/∼ is
closed in the quotient topology.

Proof. Let S be a set of finitely many points in X/∼:
S = {[x1], . . . , [xn]}(318)

To show S is closed, we show its inverse image (under the quotient map) is closed:

q−1(S) = {x ∈ X | q(x) ∈ S} =

n⋃
i=1

{x ∈ X | x ∼ xi}(319)

We assumed each equivalence class is a closed set in X, so this is a finite union of closed sets, which is closed.
For an example of X a Hausdorff where its quotient X/∼ is not, consider X = R under the relation

a ∼ b ⇐⇒ a− b ∈ Q. Then the quotient space X/∼ is not Hausdorff.
This can be seen by supposing distinct equivalence classes [x] and [y] lie in disjoint open sets U and V .

Select representatives x < y. Select an interior neighborhood Bδ(x) ⊆ q−1(U) for some δ > 0. Approximate
|y − x− r| < δ(320)

for some rational r. Then y − r ∈ Bδ(x) implies [y − r] in U . But the rationality of r implies [y] = [y − r].
Therefore, U and V are not disjoint. �
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3. Problem 3

Exercise 7.3 (Slicing the range of an integral). Let X be a finite measure space. Let f : X → R be a
measurable function and define for each k = 1, 2, . . .

Ek = {x ∈ X | k ≤ |f(x)| < k + 1}(321)

Then f ∈ L1(X) if and only if
∞∑
k=1

kµ(Ek) < ∞(322)

Proof. In the forward direction, suppose f ∈ L1(X). The set

X =

∞⋃
k=1

Ek(323)

is always a disjoint union and we have
∞∑
k=1

kµ(Ek) ≤
∞∑
k=1

∫
Ek

|f | =
∫
X

|f | < ∞(324)

In the reverse direction, suppose the sum is finite. Then add µ(X) < ∞ to the sum

µ(X) +

∞∑
k=1

kµ(Ek) < ∞(325)

We are free to measure the set X as follows

µ(X) =

∞∑
k=1

µ(Ek)(326)

Combining the sums shows
∞∑
k=1

(k + 1)µ(Ek) < ∞(327)

Compare this to the integral∫
X

|f | =
∞∑
k=1

∫
Ek

|f | ≤
∞∑
k=1

∫
Ek

(k + 1) =

∞∑
k=1

(k + 1)µ(Ek) < ∞(328)

To see that the finite measure hypothesis is necessary, consider the function f : R → R sending 1 ≤ x 7→
1/x and 1 > x 7→ 0. Ek = ∅ for all k ≥ 1. Then

∞∑
k=1

kµ(Ek) = 0 < ∞(329)

But ∫ ∞

−∞
f =

∫ ∞

1

1

x
= ∞(330)

�
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4. Problem 4

Exercise 7.4 (Logarithmic Fubini FIXME). Let f : [0, 1] → R be integrable and set

g(x) :=

∫ 1

x

f(t)

t
dt(331)

Proof. Then g is integrable and∫ 1

0

g(x)dx =

∫ 1

0

∫ 1

x

f(t)dtdx =

∫ 1

0

∫ 1

0

f(t)

t
· 1x≤t≤1(t)dtdx(332)

=

∫ 1

0

∫ 1

0

f(t)

t
· 10≤x≤t(x)dxdt =

∫ 1

0

∫ t

0

f(t)

t
dxdt =

∫ 1

0

f(t)dt(333)

�
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5. Problem 5

Exercise 7.5 (Weak convergence is unique in a reflexive space).
(a) If X is reflexive, show that a weakly converging sequence converges to a point.
(b) Show that the conclusion need not be true if X is not reflexive.

Proof. For part (a), suppose x ∈ X satisfies the property that limφ(xn) exists for each φ ∈ X∗. Define
a linear functional on the dual space

x∗ : X∗ → R(334)
φ 7→ lim

n→∞
x∗
n(φ)(335)

Then x = J−1(x∗) is the unique candidate limit because X is reflexive, completing the proof.
For part (b), consider the space B = C([0, 1]) and the functions fn(x) = xn with norm ‖fn‖ = 1. The

dual space is given by the measures on [0, 1], so that any linear functional equals

φ(f) =

∫
fdν(336)

for some measure ν. Then φ(fn) → φ(0). But this limit is not unique because φ(0) = φ(1E) for any set E
of measure zero, say E = Q ∩ [0, 1]. �
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6. Problem 6

Exercise 7.6 (One-stop Banach space decomposition). Let X0 be a one-dimensional subspace of a
Banach space X. Summon a closed subspace X1 such that X = X0+̇X1.

Proof. Select a non-zero z ∈ X0 and φ : X → R such that φ(z) = 1 by extending the linear functional
span{z} = X0 → R(337)

λz 7→ λ|z|(338)
to a continuous linear functional via the Hahn-Banach theorem. Let X1 = kerφ which is a closed subspace
because φ is a continuous linear functional. We will prove that

X = X0+̇X1(339)
A sufficient condition is that X0 and the kernel are complemented: X0 ∩X1 = {0} and X0 +X1 = X.

To show X0 ∩X1 = {0}, suppose x ∈ X0 and φ(x) = 0. Then φ(x) = φ(λz) = λ = 0, implying x = 0.
To show X0 +X1 = X, let x ∈ X. We will break x into an X0 summand and a kernel summand:

x = φ(x)z + (x− φ(x)z)(340)
Because z ∈ X0 and φ(x) is a scalar, it is certain that φ(x)z ∈ X0. To verify that the second term lies in
the kernel, simply evaluate

φ(x− φ(x)z) = φ(x)− φ(x)φ(z) = φ(x)− φ(x) = 0(341)
The decomposition is defined for any x ∈ X, so we are done. �
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7. Problem 7

Exercise 7.7 (Coercive estimate on entire functions). If f(z) is an entire function such that |f(z)| → ∞
as |z| → ∞, then find constants c > 0 and R > 0 such that |f(z)| > c|z| for all |z| > R.

Proof. First we see that f is a polynomial, because f is entire and |f(z)| → ∞ as |z| → ∞. Set
f(z) := a0 + a1z + · · ·+ anz

n(342)
The following reverse triangle inequality needs no absolute value

|f(z)| = |anzn + an−1z
n−1 + · · ·+ a0|(343)

≥ ||anzn| − |an−1z
n−1 + · · ·+ a0||(344)

when z satisfies
|anz| > R > |an−1|+ |an−2|+ · · ·+ |a0|(345)

because

|an−1z
n−1 + · · ·+ a0| ≤

0∑
k=n−1

|akzk| ≤
0∑

k=n−1

|akzn−1|(346)

= |zn−1|
n−1∑
k=0

|ak|(347)

≤ |zn−1||anz|(348)
= |anzn|(349)

Therefore,
|f(z)| ≥ |anzn| − |an−1z

n−1 + · · ·+ a0|(350)

≥ |anzn| −
n−1∑
k=0

|akzk|(351)

=

n−1∑
k=0

|anzn|
n

− |akzk|(352)

=

n−1∑
k=0

|zn|
(
|an|
n

− |ak|
|zn−k|

)
(353)

For each k = 0, . . . , n− 1, select Rk > R such that |z| > R implies
|an|
n

− |ak|
|zn−k|

>
|an|
2n

(354)

Then if |z| > max{Rk}, we know

|f(z)| >
n−1∑
k=0

|zn| |an|
2n

> |z| |an|
2

(355)

�
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8. Problem 8

Exercise 7.8 (Semi-circular contour integral). Evaluate∫ ∞

0

1 + x2

1 + x4
(356)

Proof. Consider the zeroes of the denominator lying in the top-half plane:

θ1 =
i+ 1√

2
θ2 =

i− 1√
2

(357)

Enclose them in a semicircular path of radius R and apply the residue theorem∫ R

−R

f(z) +

∫
γ

f(z) = 2πiRes(z = θ1, θ2)(358)

Setting γ(t) = Reit for t ∈ [0, π], we can see the arc integral vanishes as R → ∞:∣∣∣∣∫ π

0

f(γ(t))γ′(t)dt

∣∣∣∣ = ∣∣∣∣∫ π

0

1 + (Reit)2

1 + (Reit)4
Rieitdt

∣∣∣∣(359)

≤
∫ π

0

1 +R2

R4 − 1
Rdt(360)

= π
1 +R2

R4 − 1
R → 0(361)

Let us compute the residues now

Res(f, θ1) = lim
z→θ1

(z − θ1)(1 + z2)

1 + z4
= lim

1 + z2

4z3
(362)

=
1 + i

4i 1+i√
2

=

√
2

4i
(363)

Res(f, θ2) =
1− i

4i 1−i√
2

=

√
2

4i
(364)

By taking limits we can see ∫ ∞

−∞
f(z) = 2πi

[√
2

2i

]
= π

√
2(365)

The integral in question is half this because the integrand is even:∫ ∞

0

1 + x2

1 + x4
=

π
√
2

2
(366)

�
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CHAPTER 8

Winter 2021

1. Problem 1

Exercise 8.1 (Types of compactness). Give the definitions of compactness and limit point compactness
of a topological space. Show that every compact space is limit point compact. Give an example that the
converse is not true.

Definition 1 (Compactness). A topological space X is called compact if for every open cover of X,
there exists a finite subcollection of that cover which also covers X.

Definition 2 (Limit point compactness). A topological space X is called limit point compact every
infinite subset S ⊆ X has a limit point.

Now for the real workout:

Proof. If X is compact, then X is limit point compact. Suppose not, then for any x ∈ X, select an
open set U 3 x such that S ∩ U ⊆ {x}. Cover

X ⊆
⋃
x∈X

U(367)

⊆
n⋃

i=1

Ui(368)

The infinite set S can be included

S =

n⋃
i=1

Ui ∩ S ⊆
n⋃

i=1

{x}(369)

which contradicts that S is an infinite subset. Therefore, S is limit point compact.
To see a limit point compact space which is not compact, consider Z× {0, 1} where Z has the standard

topology and the topology of {0, 1} is T = {{}, {0, 1}}. Any point is a limit point, so any infinite subset
contains a limit point. �
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2. Problem 2

Exercise 8.2 (Continuous maps preserve connectedness). If X is connected and f : X → Y is contin-
uous, then f(X) is connected.

Proof. Suppose f(X) = A ∪B is a separation. Then X has a separation:
X = f−1(f(X)) = f−1(A ∪B) = f−1(A) ∪ f−1(B).(370)

This contradicts that X is connected, so we must instead have that f(X) is connected. �
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3. Problem 3

Exercise 8.3 (Countable complement measure space). Let X be uncountable. Define the countable
complement measure space

M = {E ⊆ X | X \ E is at most countable or E is at most countable}(371)

µ : M → [0,∞] E 7→

{
µ(E) = 0 E at most countable
µ(E) = 1 X \ E at most countable

(372)

(a) Prove that M is a σ-algebra and that µ is a measure on M.
(b) Prove that M is the σ-algebra generated by E = {{x} : x ∈ X}.

Proof. To see that M forms a σ-algebra, let {En}∞n=1 lie in M. Then to verify the union

E =

∞⋃
n=1

En(373)

lies in M, we show that E is either at most countable or X \E is at most countable. If each En is at most
countable, then the union is certainly at most countable, so suppose X \ Ek is at most countable. Then

X \ E =

∞⋂
n=1

X \ En ⊆ X \ Ek(374)

Therefore, X \E is at most countable. Unions are included, and complements are included by the definition,
so M forms a σ-algebra.

Now we show µ is a measure. Let {En}∞n=1 be disjoint sets in M. If each En is at most countable, then
their union is at most countable and µ(En) = 0, so we have

µ

( ∞⋃
n=1

En

)
= 0 =

∞∑
n=1

0 =

∞∑
n=1

µ(En)(375)

Otherwise, at least one X \ Ek is at most countable, so µ(Ek) = 1 and disjointness implies µ(En) = 0 for
n 6= k and that the union is at most countable. Then

µ

( ∞⋃
n=1

En

)
= 1 = µ(Ek) =

∞∑
n=1

µ(En)(376)

Therefore, µ respects countable additivity, so is a measure.
To show that M is the σ-algebra generated by the singletons E = {{x} | x ∈ X}, let E ′ be a σ-

algebra containing E . Note that E ′ contains all countable unions, countable intersections, and complements
of singletons. If E ∈ M, then E = {x1, . . . } or X \ E = {x1, . . . }. Both of these lie in E ′, so that E ∈ E ′,
therefore, M ⊆ E ′, indicating M is the σ-algebra generated by singletons. �
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4. Problem 4

Exercise 8.4 (Convergence in measure metric). Let fn : E → R be a sequence of measurable functions
where µ(E) < ∞. Then fn → 0 in measure if and only if

lim
n→∞

∫
|fn|

1 + |fn|
= 0(377)

Proof. Suppose the limit is zero. Let ε > 0 be given. Select N such that

n ≥ N =⇒
∫

|fn|
1 + |fn|

< ε2(378)

We are going to prove that the following set has small measure for such n.
F = {x ∈ E | |fn(x)| > ε}(379)

Measure by integrating. If x ∈ F , then 1 < |fn(x)|/ε, so we have

µ(F ) =

∫
F

dµ <

∫
F

|fn(x)|
ε

(380)

=
1

ε

∫
F

|fn|(381)

≤ 1

ε

∫
F

|fn|
1 + |fn|

(382)

≤ 1

ε

∫
|fn|

1 + |fn|
(383)

≤ 1

ε
ε2(384)

≤ ε(385)
Suppose convergence in measure holds. Let ε > 0 be given and define ε′ = ε/(2µ(E)) and define

F = {x ∈ E | |fn(x)| > ε′}(386)
Break up the norm integral: ∫

|fn|
1 + |fn|

=

∫
E\F

|fn|
1 + |fn|

+

∫
F

|fn|
1 + |fn|

(387)

If x ∈ E \ F , then

|fn(x)| ≤ ε′ =⇒ |fn(x)|
1 + |fn(x)|

< ε′(388)

Also, |fn|/(1 + |fn|) < 1, so each integral can be bounded∫
|fn|

1 + |fn|
< µ(E \ F )ε′ + µ(F )(389)

By convergence in measure, select N such that n ≥ N implies µ(F ) < ε/2. Then we are done. �
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5. Problem 5

Exercise 8.5 (Projection operator and closed subspaces). Let X = X1+̇X2 and define P (x1+x2) = x1.
Then P is a linear operator satisfying P 2 = P and moreover, P is bounded if and only if both X1 and X2

are closed.

Proof. To see P is a linear operator, let x, y ∈ X decompose uniquely into x = x1+x2 and y = y1+y2.
Then x+ y = (x1 + y1) + (x2 + y2) uniquely, so we see

P (x+ y) = x1 + y1 = Px1 + Py1 = Px+ Py(390)

Moreover, P 2 = P because if x ∈ X, then x = x1 + x2 uniquely. Projecting, we know Px = x1 +0 uniquely,
so that P (Px) = x1 = Px. Therefore, P 2 = P .

Now to see P is bounded implies X1 and X2 are closed, we just write them as follows
X1 = P (X)(391)
X2 = kerP(392)

The closed graph theorem applies, so that
Γ = {(x1 + x2, x1) | x1 ∈ X1, x2 ∈ X2} = X ×X1(393)

is a closed subspace of X ×X, indicating X1 is a closed subspace. Kernels of bounded operators are closed,
so X2 is closed.

Conversely, if X1 and X2 are closed subspaces, they are themselves Banach spaces, so we may define the
direct sum of Y = X1 ⊕X2 under the norm

‖(x1, x2)‖ = ‖x1‖X1
+ ‖x2‖X2

(394)
Completeness is inherited from the completeness of X1 and X2. For any x = x1 + x2 ∈ X, we know
‖x‖X ≤ ‖(x1, x2)‖Y , so this shows X ∼= Y by mapping x1 + x2 7→ (x1, x2).

Note that P acts on the space Y by P (x1, x2) = (x1, 0), and this means

‖P‖Y→Y = sup
y∈Y

‖Py‖
‖y‖

= sup
(x1,x2)∈Y

‖x1‖X1

‖x1‖X1 + ‖x2‖X2

≤ 1(395)

so P is bounded as an operator on Y . By the isomorphism, we know P is bounded as an operator on X. �
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6. Problem 6

Exercise 8.6 (Closed subspaces are reflexive). Show that a closed subspace of a reflexive Banach space
is reflexive.

Proof. Let S ⊆ X be a closed subspace of a reflexive space X. The theorem of Kakutani states that
S is reflexive if and only if the closed unit ball BS in S is compact in the weak topology σ(S, S∗). This
topology is induced by the weak topology σ(X,X∗). The theorem of Banach and Alaoglu states that BX

is compact in the weak-* topology. Since X is reflexive, the weak topology and weak-* topology coincide
σ(X,X∗) = σ(X∗, X). By compactness in the weak-* topology, BS ⊆ BX is compact also in the weak
topology because it is a weakly closed subset of a compact space. Therefore the theorem of Kakutani implies
S is reflexive. �
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7. Problem 7

Exercise 8.7 (Funky sine integral). Evaluate∫ π

0

dθ

2 + sin(2θ)
(396)

Proof. Substitute z = eiθ into the integral and find dθ = dz/2iz, so that the integral may be interpreted
as a contour integral of a rational function about the unit circle∫ π

0

dθ

2 + sin(2θ)
=

∫ π

0

dθ

2 + z−1/z
2i

= 2i

∫ π

0

dθ

4i+ z − 1/z
=

∫
γ

dz

z(4i+ z − 1/z)
=

∫
γ

dz

4iz + z2 − 1
(397)

The poles are found by the quadratic formula
4iz + z2 − 1 = 0 =⇒ z = −2i±

√
3i(398)

But only one of them lies within the unit disk, namely, z0 = −2i+
√
3i. To compute the residue, we evaluate

a limit with l’Hôpital’s rule:

Res(f, z0) = lim
z→z0

z − z0
4iz + z2 − 1

= lim
z→z0

1

4i+ 2z
=

1

2
√
3i

(399)

Then we can find by the Residue Theorem that∫ π

0

dθ

2 + sin(2θ)
=

∫
γ

dz

4iz + z2 − 1
= 2πiRes(f, z0) = 2πi

1

2
√
3i

=
π√
3

(400)

�
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8. Problem 8

Exercise 8.8 (Entire functions, singularities, and injectivity). Let f : C → C be entire with

f(z) =

∞∑
n=0

anz
n(401)

(a) Show that f has an essential singularity at infinity if an 6= 0 for infinitely many n.
(b) Show that if f is injective, then f(z) = a0 + a1z.

Proof. For (a), suppose f has no essential singularity at infinity. Then one of the limits
lim
z→∞

f(z) lim
z→∞

1/f(z)(402)

exists. If the first one exists, then f is bounded, indicating f is constant, so suppose the first one does not
exist and the second one does. Suppose 1/f(z) → a 6= 0. Then the limit f(z) → 1/a exists, a contradiction.
Therefore, 1/f(z) → 0, and |f(z)| → ∞, which indicates f is a polynomial.

For (b), if f(z) is not a polymomial, then f has an essential singularity at infinity, which means f is
not injective. Therefore suppose f(z) = a0 + · · ·+ anz

n. Injectivity means that f(z) = an(z − r)n for some
unique root r. Substitute

f(e2πi/n + r) = an(403)
f(1 + r) = an(404)

and apply the injectivity of f to find 1 = e2πi/n, which means n = 1. Therefore, f(z) = a0 + a1z. �
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CHAPTER 9

Spring 2021

1. Problem 1

Exercise 9.1 (Product and box topologies). Let

X =

∞∏
n=1

[0, 1](405)

S = {(xn) ∈ X | ∃N : n ≥ N =⇒ xn = 0}(406)

=
∞⋃

N=1

{(xn) | n ≥ N =⇒ xn = 0}(407)

(a) Show that if X is considered with the product topology, then the closure of S is X.
(b) Show that if X is considered with the box topology, then S is closed in X.

Proof. For part (a), Let x = (xn) ∈ X \ S. We will show x is a limit point of S. Define a sequence of
elements in S:

s1 := (x1, 0, . . . )(408)
s2 := (x2, x2, 0, . . . )(409)

...(410)
sn := (x1, x2, . . . , xn, 0, 0, . . . )(411)

If U is a given neighborhood of x, we argue that sn ∈ U for some n. From the definition of the product
topology, select a basic element B ⊆ U containing x and realize B as a product of finitely many not necessarily
trivial sets:

B =

(
N∏

n=1

Un

)
×

∞∏
n=N+1

[0, 1](412)

Then sN ∈ B ⊆ U .
For part (b), suppose x ∈ X \ S is a limit point of S. Select

s ∈
∞∏

n=1

{
B|xn|(xn) xn 6= 0

B1(0) xn = 0
(413)

Since x /∈ S, there exists a subsequence xnk
such that xnk

6= 0, so we may write the product as( ∞∏
k=1

B|xnk
|(xnk

)

)
×
∏
xn=0

B1(0)(414)

We can see that if s lies in the first product, then s does not lie in S, because 0 /∈ B|xnk
|(xnk

), so there
is no N after which all the elements are zero. This is a contradiction, so we know x ∈ S. Therefore, S is
closed. �
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2. Problem 2

Exercise 9.2 (Continuity and connectedness in discrete topologies). Let X be a topological space and
Z in the standard topology. Consider the property

P (X) := “every continuous function f : X → Z is constant”(415)
(a) With R in the standard topology, show that P (R) is true.
(b) For an arbitrary topological space X, find and prove a characterization of P (X) in terms of X.

Proof. With R in the standard topology, we P (R) is true. This can be seen by making a metric space
argument. Let R > 0 be fixed and a select δ > 0 so that |f(x) − f(y)| < 1/2 for any x, y ∈ [−R,R].
Each integer is isolated, so this inequality implies f(x) = f(y), so that f is constant on expanding intervals,
indicating f is constant on R.

Now we show P (X) is true if and only if X is connected.
Suppose X is connected. The continuous image of a connected space is connected, so f(X) is connected.

The connected subsets of Z are precisely the singletons, so we know f(X) = {n}, indicating f is constant.
Conversely, suppose X is not connected. It is possible to define a continuous function which is non-

constant by separating X = A∪B and defining f(A) = 1 and f(B) = 0. The open sets in Z are precisely the
singletons, so any preimage equals A, B, or is trivial, so that f is continuous. Therefore if X is connected,
every continuous function f : X → Z is constant. �
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3. Problem 3

Exercise 9.3 (Measuring with an expanding ruler). Let A ⊆ R be a set of positive finite measure.
Define a function

ϕ : R → [0,∞)(416)
x 7→ µ(A ∩ (−∞, x])(417)

(a) Show that ϕ is continuous.
(b) Find x ∈ R such that µ(A ∩ (−∞, x)) = µ(A ∩ (x,∞)).

Proof. Let us show that ϕ is continuous. Let ε > 0 be given and x ∈ R. Let 0 < |x− y| < ε. We show
|ϕ(x)− ϕ(y)| < ε also in two similar cases. Let y > x. Then (−∞, x] ⊆ (−∞, y], so we know that

ϕ(y)− ϕ(x) = µ(A ∩ (−∞, y])− µ(A ∩ (−∞, x]) = µ(A ∩ (−∞, y] \A ∩ (−∞, x]) = µ(A ∩ (x, y])(418)
≤ µ((x, y]) ≤ ε(419)

For y < x, make a similar argument.
To prove the existence of x ∈ R such that µ(A ∩ (−∞, x)) = µ(A ∩ (x,∞)), examine the difference

d(x) = µ(A ∩ (−∞, x))− µ(A ∩ (x,∞))(420)
By the continuity of measure and ϕ, this can be written

d(x) = ϕ(x)− (µ(A)− ϕ(x)) = 2ϕ(x)− µ(A)(421)
One can plainly see the limits

lim
x→∞

ϕ(x) = µ(A)(422)

lim
x→−∞

ϕ(x) = 0(423)

Therefore, d(−∞) = −µ(A) and d(∞) = µ(A), so the Intermediate Value Theorem summons x ∈ (−∞,∞)
such that d(x) = 0 and µ(A ∩ (−∞, x)) = µ(A ∩ (x,∞)). �
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4. Problem 4

Exercise 9.4 (Slicing the domain of an integral). Let f1, f2, . . . and g be functions in L1(R) and
En := {x ∈ R | |fn(x)| > |g(x)|}. Suppose fn → g pointwise almost everywhere and

lim
n→∞

∫
En

|fn| = 0(424)

Prove that

lim
n→∞

∫
R
|fn − g| = 0(425)

Proof. Break up the domain of the integral∫
R
|fn − g| =

∫
R\En

|fn − g|+
∫
En

|fn − g|(426)

On the set En, we have |g| < |fn|, so

lim
n→∞

∫
En

|fn − g| ≤ lim
n→∞

∫
En

2|fn| = 0(427)

On the complement, we have |fn| < |g|, so that a dominating function exists, and DCT may be applied:

lim
n→∞

∫
R\En

|fn − g| = lim
n→∞

∫
R
|fn − g| · 1R\En

(428)

=

∫
R

lim
n→∞

|fn − g| · 1R\En
(429)

≤
∫
R

lim
n→∞

|fn − g|(430)

= 0(431)
Therefore

lim
n→∞

∫
R
|fn − g| = 0(432)

�
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5. Problem 5

Exercise 9.5 (Weakly converging operators). Let X and Y be Banach spaces. A sequence An ∈ L(X,Y )
is said to converge weakly to A ∈ L(X,Y ) if for all x ∈ X and all φ ∈ Y ∗, the sequence φ(Anx) converges
to φ(Ax). Assuming that An converges weakly to A, show that supn≥1 ‖An‖ < ∞ and that the operator A is
bounded.

Proof. See Winter 2018 Exercise 6. �
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6. Problem 6

Exercise 9.6 (Compute a few functional norms). Let X be the set of continuously differentiable functions
f : [−1, 1] → R under the norm

‖f‖ = sup
x∈[−1,1]

|f(x)|(433)

Determine the boundedness and norms for the following functionals

φ1(f) = f(0) φ2(f) =

∫ 1

−1

sign(x)f(x) φ3(f) = f ′(0) φ4(f) =

∞∑
n=1

f(1/n)

2n
(434)

Proof. For φ1, the norm is bounded:
‖φ1‖ = sup

‖f‖=1

‖φ1(f)‖ ≤ sup
‖f‖=1

|f(0)| ≤ ‖f‖ = 1(435)

Equality is achieved for any f satisfying |f(0)| = ‖f‖.
For φ2, first simplify

φ2(f) =

∫ 0

−1

(−1)f(x) +

∫ 1

0

f(x) =

∫ 1

0

f(x)− f(−x)(436)

‖φ2‖ = sup
‖f‖=1

‖φ2(f)‖ ≤ sup
‖f‖=1

∫ 1

0

|f(x)− f(−x)| ≤ ‖2f‖ = 2(437)

For equality, consider a Fourier series converging to the function

f(x) =

{
−1 x ∈ [−1, 0]

1 x ∈ [0, 1]
(438)

Since the functional can be evaluated and equals 2 in the limit, this means the norm equals 2.
For φ3, we can see the functional is unbounded by considering the sequence of functions fn(x) = e−nx2 .

In this case, ‖fn‖ = 1 and each fn is continuously differentiable. The derivative is f ′
n(x) = −ne−nx2 and so

sup
n

|φ3(fn)| = sup
n

|n| = ∞(439)

For φ4,

‖φ4‖ = sup
‖f‖=1

‖φ4(f)‖ ≤ sup
‖f‖=1

∞∑
n=1

‖f‖
2n

= 1(440)

If f is constant, then

‖φ4(f)‖ =

∥∥∥∥∥
∞∑

n=1

f

2n

∥∥∥∥∥ = ‖f‖(441)

so the norm equals one. �

84



7. Problem 7

Exercise 9.7 (Compact convergence in the plane). Let Ω ⊆ C be open and suppose {fn}∞n=1 is a
sequence of holomorphic functions over Ω converging uniformly to f : Ω → C. For any δ > 0, the f ′

n → f ′

uniformly on the set
Kδ := {z ∈ Ω | Bδ(z) ⊆ Ω}(442)

Proof. Note that if z ∈ Kδ, then Bδ/2(z) ⊆ Kδ/2, because if x ∈ Bδ/2(z), then Bδ/2(x) ⊆ Bδ(z) ⊆ Ω,
so x ∈ Kδ/2.

For any z ∈ Kδ, the Cauchy Integral Formula can be applied on a circle of radius r = δ/2 around z to
find the derivative sequence in terms of the original sequence. For any fn, we have

f ′
n(z) =

1

2πi

∫
Cr(z)

f ′
n(ζ)

ζ − z
(443)

It can be shown that ∫
Cr(z)

f ′
n(ζ)

ζ − z
=

∫
Cr(z)

fn(ζ)

(ζ − z)2
(444)

Then

|f ′
n(z)− f ′(z)| = 1

2π

∣∣∣∣∣
∫
Cr(z)

fn(ζ)

(ζ − z)2
−
∫
Cr(z)

f(ζ)

(ζ − z)2

∣∣∣∣∣(445)

≤ 1

2π

∫
Cr(z)

|fn(ζ)− f(ζ)|
|ζ − z|2

(446)

≤ 1

2πr2

∫
Cr(z)

|fn(ζ)− f(ζ)|(447)

≤ 1

2πr2
‖fn − f‖Cr(z)µ(Cr(z))(448)

≤ 1

r
‖fn − f‖Kδ/2

(449)

≤ 1

r
‖fn − f‖Ω(450)

Letting n → ∞ shows f ′
n → f ′ uniformly on Kδ. �
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8. Problem 8

Exercise 9.8 (Sector-based contour integral). Evaluate∫ ∞

0

x1/3

1 + x2
(451)

Proof. Substitute z = x1/3 to transform the integral into

3

∫ R

0

z3

1 + z6
(452)

Find the pole at eiπ/6 and integrate around the sector of radius R and 0 ≤ θ ≤ π/3. The integral can be
written as ∫ R

0

f(z) +

∫
arc

f(z) +

∫ 0

R

f(reiπ/3)eiπ/3 = 2πiRes(f, eiπ/6)(453)

This equation is analyzed in three stages: find the residue, express the backwards integral in terms of
the forwards integral, and show the middle integral vanishes as R → ∞.

For the residue:

Res(f, eiπ/6) = lim
z→eiπ/6

(z − eiπ/6)z3

1 + z6
= lim

z→eiπ/6

z3

6z5
=

1

6
e−πi/3(454)

For the backwards integral

eiπ/3
∫ 0

R

f(reiπ/3) = eiπ/3
∫ 0

R

r3eiπ

1 + r6
= eiπ/3

∫ R

0

r3

1 + r6
= eiπ/3

∫ R

0

f(z)(455)

For the middle integral∫
arc

f(z) ≤
∫
|z|=R

f(z) ≤
∫

|z|3

|z|6 − 1
= 2πR

R3

R6 − 1
→ 0(456)

Letting R → ∞ shows that

(1 + eiπ/3)

∫ ∞

0

z3

1 + z6
= 2πi

1

6
e−πi/3(457)

Therefore,∫ ∞

0

z3

1 + z6
=

2πi

6

e−πi/3

1 + eiπ/3
=

2π

6

eiπ/2e−πi/3

1 + eiπ/3
=

2π

6

eiπ/6

1 + eiπ/3
=

2π

6

1

e−iπ/6 + eiπ/6
=

2π

6

1

2 cos(π/6)
(458)

=
π

3
√
3

(459)

This means the original integral equals ∫ ∞

0

x1/3

1 + x2
=

π√
3

(460)

�
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CHAPTER 10

Fall 2021 TODO 1,3,6

1. Problem 1

Exercise 10.1 (Connectedness: the plane & a lexicographic order topology TODO).
(a) Show that open, connected subsets of the plane are path-connected.
(b) Show that X = [0, 1]× [0, 1] in the lexicographic order topology is not path-connected.

Proof. For part (a), let x ∈ U be a fixed base point. Define x ∼ y if and only if there exists a continuous
function γ : [0, 1] → U such that γ(0) = x and γ(1) = y. Consider the equivalence class of the base point.

V = {y ∈ U | x ∼ y}(461)

We show V is open by constructing a neighborhood for any point. Let y ∈ V . Select a neighborhood
Bδ(y) ∩ U ⊆ U . Then this same ball is also interior to V , for if y′ ∈ Bδ(y) ∩ V , the convexity of the ball
implies y′ ∼ y. The selection of y precisely states y ∼ x, so the transitivity of the relation implies y′ ∼ x.
Therefore, y′ ∈ V , so that V is an open set. Writing

U = V ∪ (U \ V )(462)

and applying the connectedness of U implies V = U , so that U is path-connected.
The above proof could have also been performed in a constructive way as follows. Select a countable

collection of rectangles such that

U =

∞⋃
i=1

Ri(463)

We can explicitly construct the path component of U in a tree based fashion, walking through the path-
connected neighbors (sufficiently induced by their non-trivial intersection) starting at a base rectangle. Let
R` ∼ Rk if and only if R` ∩Rk. Define the base level of a tree by

T1 = {R1}(464)

and proceed in an inductive fashion, walking the rectangles Ri ∼ Rj for some Rj ∈ Tn which have not
already been walked. Formally, this can be written

Tn+1 = {Ri | there exists Rj ∈ Tn such that Ri ∩Rj is non-empty} \
n⋃

m=1

Tm.(465)

To complete the procedure, consider the entire tree we just generated

T =

∞⋃
n=1

Tn.(466)

Now we wish to argue that T = {R1, R2, . . . }. Consider the complement S = {R1, R2, . . . } \ T =
{R1, R2, . . . }, which we now argue is empty. Rewriting U

U =

( ∞⋃
k=1

Rk

)
∪

( ∞⋃
Ri∈T

Ri

)
,(467)

connectedness implies some Rk∩Ri is non-empty. By convexity of rectangles, this means Rk ∼ Ri. Realizing
Ri ∈ Tm implies Rk ∈ Tm−1 or Rk ∈ Tm+1, so that Rk ∈ T , showing that S is empty.
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Therefore,

U =
⋃

Ui∈T

Ui(468)

From the construction of T , there is an explicit path between any two points, namely from a point to the
base to the other point.

TODO For part (b), recall that the lexicographic order is induced by relation (a, b) < (c, d) if and only
if a < c or a = c and b < d. Explicitly, the basic sets are

B = {{x ∈ [0, 1]× [0, 1] | a < x < b} | a, b ∈ [0, 1]× [0, 1]}(469)
�
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2. Problem 2

Exercise 10.2 (Separating functional in a metric space). Let X be a metric space and let A and B be
disjoint closed subsets of X. There exists a continuous function f : X → [0, 1] such that f(A) = {0} and
f(B) = {1}.

Proof. For any closed set F , define a distance function d(·, F ) : X → R≥0.
d(x, F ) = inf{d(x, y) | y ∈ F}(470)

The function d(·, F ) can be argued to be continuous in a sequential fashion. Suppose xn → x. Then
lim

n→∞
d(xn, F ) = lim

n→∞
inf
f∈F

d(xn, f) = inf
n≥1

sup
m≥n

inf
f∈F

d(xm, f) ≤ inf
n≥1

inf
f∈F

sup
m≥n

d(xm, f)(471)

≤ inf
f∈F

inf
n≥1

sup
m≥n

d(xm, f) = inf
f∈F

lim
n→∞

d(xn, f) = inf
f∈F

d(x, f) = d(x, F )(472)

To finish, the definition of infimum says d(x, F ) ≤ d(x, f) for all f ∈ F , so lim d(xn, F ) = d(x, F ), indicating
d(·, F ) is continuous.

Since A and B are disjoint closed sets and X is a metric space, the following distances are nonzero for
any a ∈ A and b ∈ B.

d(a,B) d(b, A)(473)
This implies d(x,A)+d(x,B) 6= 0 for if the sum were zero, then both the summands would equal zero, which
indicates x ∈ A and x ∈ B, contradicting that A and B are disjoint.

Now we are free to define a continuous function

f(x) :=
d(x,A)

d(x,A) + d(x,B)
(474)

If x ∈ A, then d(x,A) = 0, so f(x) = 0. If x ∈ B, then d(x,B) = 0, so f(x) = d(x,A)/d(x,A) = 1. �
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3. Problem 3

Exercise 10.3 (Compactess and continuity from above TODO). Let E ⊆ R and define On = {x ∈
R | d(x,E) < 1/n}
(a) Show that if E is compact, then limµ(On) = µ(E).
(b) Show that the conclusion may be false if E is closed and unbounded or if E is open and bounded.

Proof. If E is compact, then each On is bounded, because E is bounded. Moreover, we have the
following inclusions by the monotonicity of 1/n:

O1 ⊇ O2 ⊇ · · · ⊇ On ⊇ · · ·(475)
To apply the Lebesgue measure’s continuity from above, note that

∞⋂
n=1

On = E(476)

because E is closed. Therefore we are free to determine that

lim
n→∞

µ(On) = µ

( ∞⋂
n=1

On

)
= µ(E)(477)

For a first counterexample, consider the closed and unbounded sequence Ej = [j,∞) ∩ N with the
counting measure. Each set is countable, so the intersection is empty, so the result from continuity does not
apply, because

µ

 ∞⋂
j=1

Ej

 = 0 6= µ(E1)− lim
j→∞

µ(Ej) = ∞(478)

In a similar way, we can exploit σ-finiteness by setting Ej = [j,∞) with the Lebesgue measure to observe
an identical inequality.

�
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4. Problem 4

Exercise 10.4 (DCT in two ways). Evaluate the limit

lim
n→∞

∫ 1

0

ndx

(1 + nx)2(1 + x+ x2)
(479)

Proof. Substitute u = nx in the integral∫ 1

0

ndx

(1 + nx)2(1 + x+ x2)
=

∫ n

0

du

(1 + u)2(1 + u/n+ (u/n)2)
(480)

=

∫
R

1[0,n](u)du

(1 + u)2(1 + u/n+ (u/n)2)
(481)

We have the inequality
u ∈ [0, n] =⇒ 1/(1 + u/n+ (u/n)2) < 1(482)

Therefore, the integrand is bounded by 1/(1 + u)2 · 1[0,∞), which is integrable, so we may apply DCT.

lim
n→∞

∫
R

1[0,n](u)du

(1 + u)2(1 + u/n+ (u/n)2)
=

∫ ∞

0

1

(1 + u)2
du = 1(483)

This could also have been proven with integration by parts as follows. Separate with some parentheses

In =

∫ 1

0

(
n

(1 + nx)2

)
1

1 + x+ x2
dx(484)

to reveal that the integrand can be rewritten for an integration by parts as follows:

In =

∫ 1

0

(
− 1

1 + nx

)′
1

1 + x+ x2
dx(485)

=

(
− 1

1 + nx

)
1

1 + x+ x2

∣∣∣∣1
0

−
∫ 1

0

(
− 1

1 + nx

)(
− 1 + 2x

(1 + x+ x2)2

)
(486)

=

(
− 1

1 + n

)
1

1 + 1 + 12
+ 1−

∫ 1

0

1 + 2x

(1 + nx)(1 + x+ x2)2
(487)

The integrand decays in n which is not tied to 1/x2, so that limit/integral interchange applies, proving that
lim

n→∞
In = 1(488)

If one desires a concrete dominating function to supply to the DCT, they can take 2. �
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5. Problem 5

Exercise 10.5 (Injectivity and a coercive estimate). Let X and Y be Banach spaces and A : X → Y be
a bounded linear operator. Show that the following are equivalent:
(a) A is injective and the range of A is closed
(b) There exists a constant M > 0 such that

‖x‖ ≤ M‖Ax‖ ∀x ∈ X(489)

Proof. If A is injective and the range of A is closed, consider the operator
A|A(X) : A(X) → A(X)(490)

which is known to have a closed range. This means the domain is also closed, from which we can decide that
the graph is closed, so that the operator and its inverse are continuous. Therefore, we take

M = ‖(A|A(X))
−1‖B(A(X))(491)

Now lets show M is satisfactory. Let x ∈ X be given, then Ax ∈ A(X), and we can determine that
‖(A|A(X))

−1(Ax)‖ ≤ M‖Ax‖(492)

It remains to simply contract (A|A(X))
−1(Ax) = x to find the desired result.

Now suppose there exists such an M > 0. To show that A is injective, suppose Ax = Ay. By linearity
we have the inequality

‖x− y‖ ≤ M‖Ax−Ay‖ = 0(493)
which implies x = y by squeezing the difference down. We are left to show that A(X) is closed. Suppose
Axn → y. By the estimate involving, we can determine that the sequence {xn} is Cauchy, from which we
select its limit x. Then to show y = Ax, let us utilize the triangle inequality

‖Ax− y‖ ≤ ‖Ax−Axn‖+ ‖Axn − y‖(494)
The left summand vanishes because A is bounded and the right summand vanishes by the assumption
Axn → y. Therefore, A(X) is closed.

The above shows (a) ⇐⇒ (b). �
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6. Problem 6

Exercise 10.6 (Vanishing Condition on a Hilbert Space). Let H be a Hilbert space and let An be a
sequence of bounded linear operators on H. Assume for every x, y ∈ H that lim〈y,Anx〉 = 0.
(a) Does it follow that lim ‖An‖ = 0?
(b) Does it follow that sup ‖An‖ < ∞?
Provide counterexamples or proofs.

Proof. For part (b), we provide a proof. Let n be fixed. For any x ∈ H, set y = Anx. The vanishing
assumption indicates that 〈Anx,Anx〉 = 0. �
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7. Problem 7

Exercise 10.7 (Rouché’s theorem for a half-plane). Let a > 1. Show that the equation
a− z − e−z = 0(495)

has exactly one solution in the right half-plane.

Proof. This can be shown with Rouché’s theorem, whose setup we now perform. Let f = a − z and
g = −e−z and consider the semicircular contour with side [Ri,−Ri] and arc Reiθ for θ ∈ [−π/2, π/2] where
R > 0 is arbitrary.

For the side, de Moivre’s theorem implies |g| = 1. A quick computation can exactly determine the
modulus of f = a− z, where z ∈ [Ri,−Ri]

|f | = |a− z| =
√
a2 + |z|2 ≥ a > 1 = |g|(496)

The inequalities follow by the monotonicity of the square root and the given information about a. Now for
the arc, we shall have z = Reiθ. This means

|g| = |e−Reiθ | = |e−R cos(θ)−iR sin(θ)|(497)

= |e−R cos(θ)e−iR sin(θ)|(498)

= e−R cos(θ)(499)
The domain θ ∈ [−π/2, π/2] indicates −R cos(θ) > 0, so that as g vanishes as R → ∞, showing trivially that
|f | > |g|.

Therefore all along the semicircular contour, we have that |f | > |g|, which indicates a − z − e−z has
the same number of zeros as f , a linear function with only zero. Sending R → ∞, we can decide that the
equation has only one root in the right half-plane. �
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8. Problem 8

Exercise 10.8 (Another semicircular contour). Integrate∫ ∞

−∞

cosx

x2 + a2
dx(500)

Proof. To evaluate this, we integrate the complexified function

f(z) =
eiz

z2 + a2
(501)

along a semicircular contour which captures the pole z = ai. Letting R → ∞ will capture the desired integral
in the real part. The residue theorem implies∫ R

−R

eix

x2 + a2
dx+

∫
arc

f(z)dz = 2πiRes(f, ai)(502)

The arc integral can be shown to vanish∣∣∣∣∫
arc

f(z)dz

∣∣∣∣ ≤ ∫ |eiz|
|z|2 − a2

dz(503)

When z = a + bi, we know |eiz| = |ei(a+bi)| = e−b, so in the upper half-plane, we know sup |eiz| = 1.
Therefore, ∫

|eiz|
|z|2 − a2

dz ≤
∫

1

R2 − a2
dz =

πR

R2 − a2
→ 0(504)

As R → ∞ we are left with the residue∫ ∞

−∞

eix

x2 + a2
dx = 2πiRes(f, ai)(505)

= 2πi lim
z→ai

(z − ai)eiz

(z − ai)(z + ai)
(506)

= 2πi lim
z→ai

eiz

z + ai
(507)

= 2πie−a/2ai(508)

=
πe−a

a
(509)

Taking the real part shows ∫ ∞

−∞

cosx

x2 + a2
dx =

πe−a

a
(510)

�
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CHAPTER 11

Winter 2022

1. Problem 1

Exercise 11.1 (Dini’s Theorem). Suppose that {fn} is a sequence of continuous functions from [0, 1],
where each fn(x) is monotone increasing. And suppose that fn(x) converges to a continuous function f(x)
pointwisely on [0, 1].
(a) Show that fn(x) in fact uniformly converges to f(x) on [0, 1].
(b) Give an example where the uniform convergence fails if the limit function f(x) is not continuous.

Proof. For (a), let fn → f as described. Define
En = {x ∈ [0, 1] | f(x) < fn(x) + ε}.(511)

Since f1(x) ≤ f2(x) ≤ · · · ≤ f(x), we have
E1 ⊆ E2 ⊆ · · · ⊆ [0, 1](512)

and by pointwise convergence it follows that

[0, 1] =

∞⋃
n=1

En.(513)

Extracting a finite subcover, we find

[0, 1] =

N⋃
n=1

En = EN(514)

Now show the convergence is uniform. Let n > N . Then x ∈ EN and
‖fn − f‖ = sup

x∈[0,1]

|fn(x)− f(x)|(515)

= sup f(x)− fn(x)(516)
≤ ε(517)

For (b), consider fn(x) = 1−xn, converging to 1− 1{1}. A uniformly converging sequence of continuous
functions converges to a continuous function, so we can see that the convergence must not be uniform by
contradiction. �
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2. Problem 2

Exercise 11.2 (Urysohn’s Lemma in a Metric Space). Suppose that X is a metric space with the distance
function d(·, ·). For a point x ∈ X and a subset A, let

d(x,A) := inf{d(x, y) | y ∈ A}.(518)
(a) Let A and B be two disjoint closed subsets in X. Show that

f(x) =
d(x,A)

d(x,A) + d(x,B)
: X → [0, 1](519)

is continuous.
(b) Use (a) to verify that, for a closed subsets A and an open subset U such that A ⊆ U , there always exists

an open set V such that A ⊆ V ⊆ V ⊆ U .

Proof. The verification that f is continuous and f |A = 0 and f |B = 1 is left for Exercise Fall 2019
Exercise 5.2 or Fall 2021 Exercise 2.

Now for part (b), set B = U c and V = f−1([0, 1/2)). We show that V ⊆ U and V ⊆ U . Let x ∈ V .
Then f(x) ∈ [0, 1/2). Since f |B = 1, this means x /∈ B = U c, so that x ∈ U . Let {xn} ⊆ V be a sequence
converging to x. The continuity of f yields f(x) = lim f(xn) ≤ 1/2, so that x /∈ B again indicating x ∈ U .

Finally, A ⊆ V because A = f−1(0), so that
A ⊆ V ⊆ V ⊆ U.(520)

�

Note that Winter 2019 Exercise 2 provides an alternative construction of V .
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3. Problem 3

Exercise 11.3 (Radon-Nikodym). Repeat of Exercise 3.4.
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4. Problem 4

Exercise 11.4 (Absolute continuity).
(a) Let f and g be absolutely continuous functions on [0, 1]. Show that their product is also absolutely

continuous.
(b) Give an example of a function on [0, 1] which is uniformly continuous but not absolutely continuous.

Proof. Part (a) is proven in Exercise 3.3.
For part (b), consider the Devil’s staircase. It is a continuous function on a compact set and thus

uniformly continuous. But an absolutely continuous function has bounded variation, which the Devil’s
staircase does not, so we know the function is not absolutely continuous by contradiction. �
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5. Problem 5

Exercise 11.5 (Scaling Mean Operator). Let X = C([0, 1]) be the Banach space of all continuous
complex-valued functions on [0, 1] with the maximum norm. Consider the linear operator A : X → X defined
by

(Af)(x) = x

∫ 1

0

f(y)dy, x ∈ [0, 1].(521)

(a) Show that A is bounded and determine its operator norm.
(b) Determine the spectrum of the operator A.

Proof. To show A is bounded, estimate

‖A‖ = sup
‖f‖∞=1

‖Af‖∞(522)

= sup
‖f‖∞=1

sup
x∈[0,1]

∣∣∣∣x∫ 1

0

f(y)dy

∣∣∣∣(523)

≤ sup
‖f‖∞=1

sup
x∈[0,1]

|x|
∫ 1

0

|f(y)|dy(524)

≤ sup
‖f‖∞=1

∫ 1

0

|f(y)|dy(525)

≤ 1.(526)

To compute the operator norm, consider A : L2([0, 1]) → L2([0, 1]), extended by density. By applying
Fubini’s theorem

〈Af, g〉 =
∫ 1

0

(
x

∫ 1

0

f(y)dy

)
g(x)dx(527)

=

∫ 1

0

∫ 1

0

xf(y)dyg(x)dx(528)

=

∫ 1

0

∫ 1

0

xf(y)g(x)dxdy(529)

=

∫ 1

0

f(y)

∫ 1

0

xg(x)dxdy(530)

=

∫ 1

0

f(y)

∫ 1

0

xg(x)dxdy(531)

=

∫ 1

0

f(y)

∫ 1

0

xg(x)dxdy(532)

= 〈f,A∗g〉(533)

we can find the adjoint of A is equal to

A∗f =

∫ 1

0

yf(y)dy.(534)
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which we can also verify is bounded. To apply the formula ‖A‖ =
√
‖A∗A‖, determine the composed

operator

A∗Af =

∫ 1

0

y

(
y

∫ 1

0

f(x)dx

)
dy(535)

=

∫ 1

0

y2dy

∫ 1

0

f(x)dx(536)

=
1

3

∫ 1

0

f(x)dx(537)

Taking norms shows

‖A∗Af‖ ≤ ‖f‖1
3

(538)

with equality on constant functions, so that ‖A∗A‖ = 1/3 and ‖A‖ = 1/
√
3.

To find the spectrum, we first prove that A is a compact operator. Let {fn} be a sequence in the unit
ball. Then A({fn}) is bounded because A is bounded. To prove the sequence is equicontinuous, let ε > 0 be
given. If |x− y| < ε, then the estimate

|Afn(x)−Afn(y)| =
∣∣∣∣x ∫ 1

0

f(t)dt− y

∫ 1

0

f(t)dt

∣∣∣∣(539)

≤ |x− y|
∫ 1

0

|f(t)|dt(540)

≤ |x− y|(541)
< ε(542)

is true for any fn. Therefore the hypotheses of Arzelà-Ascoli apply, so that a converging subsequence exists,
proving that A is compact. Therefore it suffices to find the eigenvalues of A∗, which we do now. Let

A∗f = λf(543)
Because A∗f is constant, this means f(y) ≡ f is constant, so we in fact have

A∗f =

∫ 1

0

yfdy = f

∫ 1

0

ydy =
f

2
(544)

so that λ = 1/2. Therefore, σ(A) = {0, 1/2}. �

102



6. Problem 6

Exercise 11.6 (Banach Space Decomposition). Repeat of Exercise 7.6.
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7. Problem 7

Exercise 11.7 (Product of real and imaginary part Liouville). Let f = u+ iv be an entire function such
that |u||v| is bounded. Prove that f must be a constant function.

Proof. Expand
−if2 = −i(u2 + 2iuv − v2) = 2uv + i(v2 − u2)(545)

If sup |u||v| = M , then the entire function e−if2 has a bound:

|e−if2

| = |e2uv+i(v2−u2)| = e2uv ≤ e2|uv| = e2|u||v| ≤ e2M .(546)

Therefore e−if2 is constant, so that its absolute value e2uv is also constant, which indicates uv ≡ ±M . If we
set u = ±M/v, then the Cauchy-Riemann equations for f may be applied:

∂u

∂x
=

∂v

∂y
(547)

∂u

∂y
= −∂v

∂x
(548)

In particular, the equations yield
∂u

∂x
= ∓M

v2
∂v

∂x
=

∂v

∂y
(549)

∂u

∂y
= ∓M

v2
∂v

∂y
= −∂v

∂x
(550)

Substituting the right half of the first equation into the right half of the second equation shows
M2

v2
∂v

∂x
= −∂v

∂x
⇐⇒

(
M2

v2
+ 1

)
∂v

∂x
= 0(551)

Since M2/v2+1 > 0, this implies the partial derivative equals zero. The symmetry of the equations dictates
that each partial derivative {ux, uy, vx, vy} vanishes, so that u and v are both constant, proving that f is
constant. �
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8. Problem 8

Exercise 11.8 (Series for a Complex Integral). Prove that

1

2π

∫ 2π

0

ecos θdθ =

∞∑
n=0

1

(n!2n)2
.(552)

Proof. Substitute z = eiθ, so that

cos θ =
1

2
(z + 1/z) dθ =

dz

iz
(553)

Then the above integral can be interpreted as a winding number about the unit circle.
1

2π

∫ 2π

0

ecos θdθ =
1

2π

∫
γ

e1/2(z+1/z) dz

iz
=

1

2πi

∫
γ

e1/2(z+1/z)

z
dz(554)

To summon the appropriate poles to integrate over, expand

e1/2z =

∞∑
k=0

1

k!2kzk
(555)

Then
e1/2(z+1/z)

z
=

∞∑
k=0

1

k!2kzk
ez/2

z
=

∞∑
k=0

1

k!2kzk
ez/2

z
=

∞∑
k=0

1

k!2kzk+1

(
1 + z/2 + (z/2)2/2! + · · ·

)
(556)

Integrating ignores all the terms which are not a multiple of 1/z, so we note that the coefficient of 1/z equals
(1/2)k/k!

k!2k
=

1

(k!2k)2
(557)

by finding the numerator from the expansion of ez/2 and the denominator from the denominator in the
expansion involving e1/2z. Therefore

1

2π

∫ 2π

0

ecos θdθ =

∞∑
k=0

1

(k!2k)2
.(558)

�

For a version of this problem with an arbitrary scaling factor, see Problem 5.10.6 of [13].
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CHAPTER 12

Virtuoso Section

1. Fall 2000 Problem 7

Exercise 12.1 (The Volterra Operator). Write

Tf(x) =

∫ x

0

f(s)ds.(559)

(a) Show that T defines a bounded linear operator on the Banach space C([0, 1]), endowed with its usual
norm.

(b) Show that this operator on C([0, 1]) is compact.

Proof. For part (a), linearity follows by the linearity of the integral. For boundedness, determine an
upper bound as follows:

‖Tf‖∞ = sup
x∈[0,1]

∣∣∣∣∫ x

0

f(s)ds

∣∣∣∣ ≤ sup
x∈[0,1]

∫ x

0

|f(s)|ds =
∫ 1

0

|f(s)|ds ≤ ‖f‖∞(560)

Therefore, ‖T‖ ≤ 1, indicating T is bounded.
For part (b), let {fn} ⊆ C([0, 1]) be a sequence in the unit ball. Then we verify T ({fn}) is precompact.

Because T is bounded, so is its image. All we have to show is equicontinuity. Let ε > 0 be given. If |x−y| < ε,
then

|Tfn(x)− Tfn(y)| =
∣∣∣∣∫ x

0

fn(s)ds−
∫ y

0

fn(s)ds

∣∣∣∣ = ∣∣∣∣∫ x

y

fn(s)ds

∣∣∣∣ ≤ ∫ x

y

|fn(s)|ds(561)

≤ |x− y|‖f‖∞(562)
≤ |x− y|(563)
< ε(564)

Therefore the hypotheses of Arzelà-Ascoli apply, indicating a converging subsequence exists. �
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2. Fall 2001 Problem 1

Exercise 12.2 (Integrals are continuous in mean). Show that if f ∈ L1(R) then
∫∞
−∞ |f(x + h) −

f(x)|dx → 0 as h → 0.

Proof. Let hn → 0. Set fn(x) = f(x+ hn). Select F ⊆ R such that µ(F ) < ∞ and∫
R\F

2|f | < ε.(565)

From this arises the estimate ∫
R
|fn − f | =

∫
R\F

|fn − f |+
∫
F

|fn − f |(566)

≤
∫
R\F

2|f |+
∫
F

|fn − f |(567)

≤ ε+

∫
F

|fn − f |.(568)

Now select δ > 0 so that if µ(B) < δ, then ∫
B

2|f | < ε.(569)

By Egorov’s theorem there exists E ⊆ F such that µ(F \ E) < δ and fn → f uniformly on E. Then∫
F

|fn − f | =
∫
F\E

|fn − f |+
∫
E

|fn − f |(570)

≤
∫
F\E

2|f |+ µ(E)‖fn − f‖E(571)

≤ ε+ µ(E)‖fn − f‖E .(572)
Sending n → ∞ and ε → 0 shows

lim
n→∞

∫
R
|fn − f | = 0.(573)

�

108



3. Fall 2001 Problem 2

Exercise 12.3 (Basel problem with Fourier analysis).

(a) Find the Fourier coefficients f̂(k) for the function f(x) = x with respect to the exponential system e2πikx

(k ∈ Z) on [− 1
2 ,

1
2 ].

(b) Use the result of part (a) to compute
∞∑
k=1

1

k2
.(574)

Proof. Introduce the inner product on L1 ∩ L2

〈f, g〉 =
∫
− 1

2

1

2
f(x)g(x)dx.(575)

Then the functions {e2πikx} form an orthonormal system and

f(x) =

∞∑
k=−∞

〈f, e2πikx〉e2πikx in L2(576)

Let us compute these inner products for the given f(x) = x.

〈x, e2πikx〉 =
∫ 1

2

− 1
2

xe−2πikxdx(577)

=

∫
x
(
e−2πikx/(−2πik)

)′
dx(578)

=
xe−2πikx

−2πik

∣∣∣∣
1
2

− 1
2

−
∫
(e−2πikx/(−2πik))dx(579)

=
1

−2πik

[
e−πik

2
+

eπik

2

]
−
∫
(e−2πikx/(−2πik))dx(580)

(581)

For the part: ∫
(e−2πikx/(−2πik))dx =

∫
(e−2πikx/(−2πik))′/(−2πik)dx(582)

= − e−2πikx

4π2k2

∣∣∣∣
1
2

− 1
2

(583)

= − 1

4π2k2
[
e−πik − eπik

]
(584)

Combining these shows

〈x, e2πikx〉 = 1

−2πik

[
e−πik

2
+

eπik

2

]
+

1

4π2k2
[
e−πik − eπik

]
(585)

=
i cos(πk)

2πk
− i sin(πk)

2π2k2
(586)

If k = 0,

〈x, 1〉 =
∫ 1

2

− 1
2

xdx = 0(587)
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so

x =
∞∑

k=−∞

f̂(k)e2πikx(588)

=
∑
k 6=0

[
i cos(πk)

2πk
− i sin(πk)

2π2k2

]
e2πikx(589)

=
∑
k 6=0

i(−1)k

2πk
e2πikx(590)

Apply the Parseval identity for our f(x) = x

‖f‖2 =

∞∑
k=−∞

|f̂(k)|2(591)

=
∑
k 6=0

1

4π2k2
(592)

= 2
∞∑
k=1

1

4π2k2
(593)

Then

‖f‖2 =

∫
x2dx =

x3

3

∣∣∣∣1/2
−1/2

=
1/8

3
+

1/8

3
=

1

12
(594)

so that
1

12
=

1

2π2

∞∑
k=1

1

k2
(595)

and finally
π2

6
=

∞∑
k=1

1

k2
.(596)

�
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4. Fall 2001 Problem 6

Exercise 12.4 (Bounded only on the irrationals). Show that there does not exist a sequence of continuous
functions fn : R → C such that the sequence {fn(x)} is bounded if and only if x is irrational. (Hint: Show
that the set {x | {fn(x)} is bounded} is an Fσ.)

Proof. Per the hint, we write

{x | {fn(x)} is bounded} =

∞⋃
M=1

∞⋂
n=1

{x | |fn(x)| ≤ M}(597)

The intersection is over closed sets, so it is closed, indicating this is indeed an Fσ set. At this point we are
done because R \Q is definitely not an Fσ. In fact, Q is an Fσ set, because it is a countable union of points,
so that the irrationals form a Gδ set. �
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5. Fall 2008 Problem 2

Exercise 12.5 (Countable product of the interval). Consider the space X = [0, 1] × [0, 1] × · · · (the
countably-infinite product of [0, 1] with the product topology). An element of X may be thought of as a
sequence {xn}∞n=1 with each xn ∈ [0, 1]. Show that the function from X to R defined by

{xn} 7→
∞∑

n=1

2−nxn(598)

is continuous.

Proof. Let U ⊆ R be an open set. Select f(y) ∈ Bε(p) ⊆ U . Let ε′ = ε− |f(y)− p|. By a metric space
argument, Bε′(f(y)) ⊆ Bε(p) ⊆ U . Select N such that

∞∑
n=N

2

2n
< ε′/2.(599)

Define a basic open set in X

V =

N−1∏
n=1

Bε′/2(yn)×
∞∏

n=N

[0, 1].(600)

Certainly y ∈ V , and we show that V is interior to the inverse image. Let ỹ ∈ V . Then

|f(y)− f(ỹ)| =

∣∣∣∣∣
∞∑

n=1

yn
2n

− ỹn
2n

∣∣∣∣∣(601)

≤
N−1∑
n=1

|yn − ỹn|
2n

+

∞∑
n=N

|yn − ỹn|
2n

(602)

≤
N−1∑
n=1

ε′/2

2n
+

∞∑
n=N

2

2n
(603)

≤ ε′/2 + ε′/2(604)
≤ ε′(605)

Therefore, f(ỹ) ∈ Bε′(f(y)) ⊆ U , indicating ỹ ∈ f−1(U). �
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