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CHAPTER 1

Winter 2018

1. Problem 1

EXERCISE 1.1 (Perfect sets are uncountable). Let A C R be closed and perfect, and nonempty. Then A
is uncountable.

PROOF. It is first easy to show that A is at least countable. Let z € A and select x1 € B;i(x). For each
n=12,..., select

(1) Tnt1 € (AN B, () \ {z} €, =d(xn, )
This definition implies d(zy,, z,,) > 0 for n # m. Suppose that d(z,, ) = 0, then
(2) en = d(n, ) < d(Tn, Tm) + d(Tm, ) = €y
(3) em = d(@pm, ) < d(Tm, Tn) + d(Tn, ) = €,

Therefore, €, = €, indicating n = m, since e strictly decreases. Therefore, A is at least countable.
As a closed subset of R, we know A is a complete metric space, so an application of the Baire Category
Theorem reveals that

(4) A# JAval

n=1

for any sequence y,,, so that A is uncountable. O
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2. Problem 2

EXERCISE 1.2 (Holder condition for compactness). Show that the following set is compact

(5) A={feCX)|Ifl £1,Ha(f) <1}
where (X, p) is a compact metric space and

o @) = fy)]
(6) Ho(f) = S )

PRrROOF. To apply Arzela-Ascoli, lets show A is closed, bounded, and equicontinuous. The first two are
obvious, so we focus on the last. Let € > 0 be given. If p(x,y) < €'/*, then p®(x,y) < € and

) —
@ Hnst = Ty ren — i) - sl s < vrea
Therefore, § = €'/% is an appropriate equicontinuity constant. O
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3. Problem 3

EXERCISE 1.3 (Exact Egorov’s Theorem). Suppose f, — f almost everywhere. Find E* such f, — f
uniformly on E* and

® u(m@ﬁ) o
k=1

PROOF. For each positive integer k and for each integer m, select

(9) Ef C[m,m+1]
such that f, — f uniformly on E¥, and u([m,m + 1]\ EE) < 1/k2I™!. Then define
k
(10) Br=J E,
m=—k

To see f, — f uniformly on E*, let m be fixed and € > 0. By the uniform convergence of f, — f on
EE | select N,, such that n > N,, implies ||f, — fllgr < e Let N = min{—Ng,..., Ny} to see that the

m?
convergence is uniform on the union E* also.
Break apart the complement

[e'S) k
(11) R\E"=| |J s+ |\ U BN
j=—o00 m=—k
[e'S) k
(12) = U ([j,j +1\ EL%)
j=—o0 m=—k
k
(13) = Ubi+U\E;|u Ui+
Jj==k 51>k
The finite union can be measured by hand:
k k 0o .
(14) pl ULi+uNES ) = > wlii+U\NE) < Y 1/k20 =3/k
j=—k j=—k j=—o0
To study the infinite union, label
(15) U= |Jli+1
71>k
From the definition, we know that U; O Uy O -+ and since no element in R is infinite, the intersection (| Uy
is empty. Thence,
oo oo
(16) R\ [JE"=[R\E
k=1 k=1
o0 k
(17) = U bi+u\ey)u Ui+
k=1 Jj=- 71>k
0o k 00
(18) =IOl ULi+y\EF||u]) Uk
k=1 \j=— k=1
Therefore,
oo
(19) m <R\ U Ek> <3/k Vk
k=1

15



which implies the measure of this set equals zero.
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4. Problem 4

EXERCISE 1.4 (DCT for convergence in measure). Let f, be a sequence of measurable functions converg-
ing in measure to f and pointwise bounded by |f.(x)| < g(x) where g € L*. Then

(20) feL' and lim / |fr— fldup =10
n— oo X

PROOF. To proceed, we will prove these in the case that u(X) < oo and then extend the result.
To show f is simply integrable, we show |f(z)| < g(z) almost everywhere. For each ¢ > 0, define

(21) El ={z e X |[f(z) - fu(z)| > €}

Define
(22) S=()E!

n=1
Then
(23) u(S) < WEY) Vn
The definition of convergence in measure guarantees 1(S) = 0. Therefore
(24) [ @i= i)
X X\S

The integrand is then bounded by comparing
(25) |f(@)] < [f(@) = fal@)| + [fu(2)]
Ifx € X\ S, then z ¢ E™, so f is bounded by € and the dominating function
(26) lfn(z) = f(2)] <€ = |f(2)] < e+ g(x)
Therefore,

(27) J1s@l < [ e gla) = eutx) + [ gl

Letting € — 0, we find the desired result.
Now that f € L', let us show

(28) tim [ 1£,(o) = fa)] =0

n—roo

Let € > 0 be given and define E as above. Select § > 0 so that u(B) < ¢ implies

(29) /B 2g < ¢

We are ready for the limit

(30) tim [ 1fu(e) = 7o) = Jim ( | i@ =@+ [ nfn(af)—f(x)>

n—oo

(31) < lim ( [, e =g [ 2g>

Select N such that n > N implies p(E”) < §. This bounds the second integral by e from the integral
estimate. The first integral has an easy bound by convergence in measure:

(32) [ @ -s@is [ eseax\B) <)
X\E? X\E?
Since € > 0 was arbitrary, we have
(33) tiw [ [fala) = 1) =0
n—oo X

17



Now suppose u(X) = co. Let € > 0 be given. Select F' C X such that u(F) < oo and

(34) / 29 <€
X\F
by the integrability of 2g. Then

(35) JCE |—/X () = @)1+ [ 1fule) = 1)

36 2 () — f(x
(36) </X\Fg+/F|f()f()|
(37) <e+ /F ful) — F(2)

Since F' has finite measure, we can apply the previous result to show

(35) lim / fal@) = F@)] < e+ hm/m @) <e

n—oo

The selection of € was arbitrary, so we know that this limit equals zero. O

For an extra goodie, we look at how the convergence in measure metric p might have been used to solve
this problem. Let € > 0 be given. Bound the integral for a fixed n

oy [ @)~ @) D

(39) [t = @i = [ e 1 ) - sl
_ o~ f

(40) = esssup T [ [ 1fu@) - f@)]

(1) < esssup =L ux) + 2l

This essential supremum exists because the ratio in the integrand is bounded by one, so we can find the
esssup as a limit of LP norms. Select p such that

(42) esssup LI ([ (=L L Olel ) + 2gl)
(13) < (Pl D)7 + O/ (u(X) + 29])

Combining these estimates shows

(44) [ Vnla) = F@1 < e £ (u(X) + 291D + 00

Select N such that n > N implies

(15) pfus 1) = OUe/(H(X) + 2010)7) = plhas £)7 = O/ (W(X) + 29])

This result assumes p(X) < 0o, so we still have to extend the result as in the previous proof.

18



5. Problem 5

EXERCISE 1.5 (Weak convergence is finite). Suppose {x,} C X converges weakly to xy € X. Then
[|zo]| < liminf ||z,

PrOOF. Recall that lim ¢(z,,) exists for each ¢, so we may replace the limit with its liminf and proceed
in the double dual

(46) [[zoll = llzgll = Sap, 2o ()l = sup (o) = sup lim | ()|
(47) = supsup inf |¢(xny)| = supsup inf |¢(zm)]
¢ n>1 m>n n>1 ¢ m>n

(48) <sup inf sup |¢(xn,)| < liminf ||@]]|z,] < liminf ||z, ||
n>1M2N || p||=1 n—co n—00

19



6. Problem 6

EXERCISE 1.6 (Bounding linear maps via elements in the dual space). Suppose T : E — F is such that
¢oT € E* is bounded for every ¢ € F*. Then T is bounded.

PrOOF. Apply uniform boundedness. Define T* : F* — E* by sending ¢ +— ¢ o T and define J : X —

Y** by sending J(2)(6) = T*(6)(z) = 6(Tx).
The statement is precisely that

(49) lpoT| = sup |¢(Tz)| =sup|J(z)(¢)] <oco VoeY”

llll=1
Uniform boundedness implies
(50) sup [|J(z)]| < oo
x

Indicating ||J|| < oc.
Now we show ||T*| < oc.

(51) [T = sup [[T*(¢)l = sup sup [[T"(¢)(z)|]| = sup sup |J(z)(9)]l
lloll=1 llgll=1 ||lz||=1 lloll=1 ||lzl|=1
(52) < sup sup [[J(z)|[[(¢)| < sup sup [J][[|z[[ll¢]l < [ J]| < oo
lloll=1 |lz||=1 lloll=1 ||lz||=1
Therefore, T' is bounded. O

20



7. Problem 7

EXERCISE 1.7 (Liouville’s Theorem and a Characterization of Polynomials).

(a) State Liouville’s theorem.
(b) Suppose f is entire and there exists C > 0 and p € N such that | f(z)| < C|z|P for all |z2| > 1. Then f is
a polynomial.

For (a):
THEOREM 1 (Liouville’s theorem). A bounded entire function is constant.
Now for (b):

PROOF. As in the proof of the Liouville theorem, f is entire so it has a power series

(53) F) =3 aet
k=0

where the coefficients are given by Cauchy’s differentiation formula

F%®(0)
(54) W TR T o gk+1
If K > p, then K+ 1 —p > 1, proving that
[ < [ s e
¥
Therefore, ar, =0 for kK > p, so f is a polynomlal of degree at most p. O

21



8. Problem 8

EXERCISE 1.8 (Gaussian integral with a shift).
(a) Prove that

(56) /6_(”3““)2033::/6_””26&.
R R

(b) Use part (a) to prove
2

) 22 2,
(57) /6711572072 = e FoVom

PRroOOF. To attack part (a), for a = 0, we already have the result, so suppose a > 0. The case a < 0 is
handled similarly. Integrating around the counterclockwise rectangle {—R, R, R + ia, — R + ia} captures the
nonexisting poles of the function, so we should have

R a —-R 0
(58) / e dx + / e~ (B+iv)* gy 4 / e~ (@+ia) gy 4 / e~ (B+in)® gy —
—R 0 R a

Two of these integrals vanish as R — oc:

(59) /a e(RJriy)Qdy‘ < /a ‘e*(R+iy)2|dy — /a |673272Ryi+y2|dy < ae™ R g
0 0 0
Similarly
0

w0 [ty o

a
Therefore,
o / ot / et gy =

which indicates

(62) / e (@tia)’ gy — / e dz

For part (b), let ¢ > 0 be fixed. Show that

. 22 022
(63) / e e 3T dy = o\/2me T
R

To apply the previous part, we complete the square:

(64) %,22 Fing = 5 (@ +int20%) = o (@ + i60?)? — (i0%)7]
(65) = (@ + o) — 5 (iko?)

(66) = og(o i) + 5oy [0

(67) = (w4 iEo”) + €%

Therefore

(68) /e*iﬂﬂﬁ*;‘% — 6_52;2 /e*ﬁ(aﬂri&o?)z

22



In this integral, substitute « = x/v/202 and simplify by applying the previous result
(69) /e—ﬁ(zﬁ-ifaz)zd‘r _ /67(95/\/262+i502/\/202)2dx _ /7202/67(%1@/\/5)2 _ 4/20.2\/67u2du

(70) = V2027
(71) =oV2r

Therefore,

. 22 2,2
(72) /e*”@*m = T ovor

23






CHAPTER 2
Spring 2018

1. Problem 1

EXERCISE 2.1 (Fundamental Limit Interchange). Suppose f, — f uniformly and lim,_,,, fn(z) exists
for each f,. Then

(73) lim lim f,(z) = lim lim f,(z)

T—To N—>00 n—00 T—xTo
PROOF. Let L, :=lim,_,;, fn(x). Then we are going to show
(74) lim lim f,(z)= lim L,
n—o0

T—To N—00

Equivalently
(75) lim lim |f,(x) — L,|=0

T—To N—00

Select N so that |[f, — fm| < €/3 for all n,m > N. Select § > 0 so that |fy(z) — Ln| < ¢/3 for all
0 < |z — x| < 4. For any n > N, another distance can be estimated:
(76) |fn(z) = Ln| = [fa(z) — fN(2) + fn(2) — Ln + Ly — Ly
(77) <|falz) = fn(@)| + [fn(2) — Ln|+ |Ln — La|

The first summand and the second summand are bounded by convergence and continuity, respectively. The
final summand is bounded by Cauchiness. Verify:

Therefore
() 22, g, fulw) = lig, Jim Fo()

25



2. Problem 2

EXERCISE 2.2 (Arzela-Ascoli on smooth functions). Let {f, : [0,1] — R} be twice differentiable such that
fn(0) = f1(0) =0 and |f)/(x)| <1 uniformly. Then there exists a subsequence which converges uniformly.

PRrROOF. This is a direct application of Arzela-Ascoli. Include the derivatives in an ambient space

(80) {frlnz € C(o,1))

If we show the sequence is bounded and equicontinuous, then the uniformly converging subsequence will be
summoned by Ascoli himself.
For boundedness, compute the sup norm of each derivative

(s1) N IATIES
z€[0,1]
For equicontinuity, we can show the sequence of derlvatlves is Lipschitz. Bound the derivative
(52) ) = @l < [ 172G <y -0
Therefore,

(83) sup

Therefore, we may select f,/Lk a subsequence converging uniformly to f’, which we now prove equals the
derivative.
Define a function

(84) f(a) = / " Py

We will show that f,, — f uniformly.
The definition of integration in R begets

(85) Julz) = / o

Now for the limit

(36) Sup |y (@) — @) = sup / ) = | < s 17,0 = £l
z€[0,1] z€[0,1] z€[0,1]
(s7) / 7 ) = P @)y < 173, — 7|
Therefore, the convergence is uniform. O
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3. Problem 3

EXERCISE 2.3 (Integration and uniform continuity).

(a) Show that if f € LY(R) and f is uniformly continuous, then lim, . f(z) = 0.
(b) Was the assumption of uniform continuity necessary to conclude that f decays?

PROOF. Part (a): to show that lim, , f(z) = 0, suppose otherwise. First select § > 0 such that
|x —y| < 0 implies |f(x) — f(y)| < €. Let 1 = 0 and for each n = 2,3,... select x,, > x,—1 + ¢ such that
|f(zn)| > 2e. If @ € Bs(xy,), then |f(x) — f(zn)] < ¢, so that |f(x)] > e.

Therefore, the integral on a single ball is positive:

(59) [ @iz
Bs(zy)
There are infinitely many of these balls contained in the real line, so this shows

(89) JILE i N

Part (b): The assumption of uniform continuity is necessary to conclude that f decays, as the following
function demonstrates:

1 z€Q
(90) f(z) =
0 zeR\Q
Certainly, f f =0, because p(Q) = 0 but lim,_,+ # 0 and in fact this limit does not exist. O
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4. Problem 4

EXERCISE 2.4 (DCT on convergence in measure). See|Winter 2018 Exercise 4).

28



5. Problem 5

EXERCISE 2.5 (Perturbed compact operators have closed range). Let K : X — X be a compact operator
and suppose A =1+ K has a trivial kernel. Then A(X) is closed.

PROOF. We can show A(X) is weakly closed. Suppose {Az,}52, C A(X) converges weakly. We will
find a subsequence {z,, } such that Kz, — K.
Let ¢ € X*. By assumption the limit |¢(Ax,,)| is finite, so that we can deteremine

(91) sup |¢(zn)| = sup [¢(A™" Az, )| < [|AT || sup [¢(Azn)| < oo
n>1 n>1 n>1
where [|A7!] := ||(A]4(x)) || < oo because the open mapping theorem applies once we realize the trivial

kernel makes Al 4(x) a surjection. This means the sequence is uniformly bounded, so by the compactness of
K, select a subsequence Kz, — Kzx.
Now it remains to prove that

(92) P(Axy, ) = ¢p(Az) Vo e X*
We will need
(93) lim |¢(zp, — )] = lim [$(A7 Az, — A7 Az)| < AT lim [§(Azy, — Az)|
k—o0 k—o0 k—o0
(94) < A7Y| lim |¢((K + D)ay, — (K + I)z)|
k— o0
(95) < A7) lim | p(Kay, — K2)| + [¢(25, — )]
k— o0
The first limit equals zero since Kx,, — Kz, leaving us with
(96) Jim [z, —2)| < AT lim|¢(an, — )]
300 k—oc0
This inequality proves that this limit equals zero since ||A~!|| < 1. Therefore,
(97) lim ¢(Ax,, ) = lm ¢(rn, + Kan,) = ¢(z + Kz) = ¢(Az)
k— o0 k—o0
See Lemma 7.3.1 of [4] for a proof that does not suppose ker A = 0. O
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6. Problem 6

EXERCISE 2.6 (Weakly converging operators have a bounded limit). Suppose A, : X — Y is a sequence
of bounded linear operators converging weakly to A in the sense that for all ¢ € Y* and x € X the following
limit holds

(98) lim ¢(Apz) = ¢(Ax).

n—oo

Then sup || A, || < 0o and A is bounded.

PROOF. Define a few linear maps

(99) ALY 5 X* g po A,
(100) T7:Y" >R ¢ ¢(Ax)
(101) I : X =Y T2
Fixing x € X, we know
(102) Jim ¢(Anz) = ¢(Ar) = iliIiW(Anl’N = igr;lef (9)] <oo VopeY~

Uniform boundedness implies that sup,,~; ||7;7[| < oo. Since z was fixed, this is true for any =z, so that
uniform boundedness can be applied again on

(103) sup [T || = sup ||Jn(z)]] < o0 Va e X
n>1 n>1

so that sup,,>, [|Jn| < oo.
After we show

(104) [nll = sup [|Jn(z)] = sup sup [[Jn(2)()] = supsup [[¢(Anz)]|
o)l =1 lell=11¢]=1 o @
(105) = Sip||¢oAn|| = 1451 = A

it is true that sup || A, || = sup || Jn || < oco.
Now we are ready to show A is bounded, working in the double dual.

(106) A% = Sup 1A% ()]l = Supsup [¢(Az)| = Supsup lim |¢(A, )]
=1 T r M—00
(107) < liminf sup sup |¢(A,x)| < liminfsup||¢ o A, | < liminf sup ||¢|||| Ax||
(108) <liminf || A, || < sup [|[An|| < oo
n— 00 n>1
Therefore, ||A*|| is bounded, proving that ||A|| is bounded. O
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7. Problem 7

EXERCISE 2.7 (Complex Fundamental Theorem of Algebra). State Rouché’s theorem and prove the
fundamental theorem of algebra.

THEOREM 2 (Rouché’s Theorem). If h = f + g and
(109) |f1> gl

on the contour C, then h and f have the same number of roots inside C.

THEOREM 3 (Complex Fundamental Theorem of Algebra). Prove that a polynomial

(110) P(z) =) a2
k=0

has exactly n roots and the radius of the disk about zero containing all the roots may be estimated.

PRrROOF. Reduce the polynomial to a monic
(111) p(z) =) cr
k=0

where ¢, = 1 by dividing by a,,. Select

n—1
(112) R>Y" |l
k=0
Then for |z| = R, we have
(113) Ip(2) — 2™ = |cp_12™ H 4 - F 1z + el
(114) < len-1ll2]" 7+ o+ Jeallz] + [eol
(115) = lep_1|R" ™ 4+ |er| R+ co
(116) <len 1R+ 4] |RV + |eo| RV
(117) < R" = |z

Then taking h = p(z), f = 2™ and g = p(z) — 2™ in Rouché’s theorem, we see that p(z) and 2™ have the
same number of zeroes inside the disk of radius R about the origin.

We scaled the polynomial to be monic, so when we unscale it, we can see all the roots lie in the disk of
radius R|a,| about the origin. O
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8. Problem 8
EXERCISE 2.8 (Complex integral involving a cosh). FEwvaluate

0 e—2m'ac£
(118) / L

oo Cosh(mx)

Proor. This integral can be evaluated by appealing to the residues of the complexified function at
z = +i/2. For any R, enclose these residues in the rectangle with vertices in counter-clockwise order

(119) (R—i,R+i,—~R+i,—R—1}

Then the integral over this rectangle is given by either the residue theorem or directly

el

R 1 —R 1
(121) _ / fla—i) +/ F(R +iy)dy +/ f+i) +/ (R + iy)dy

-R —1 R 1

The important contributions are given by
R R —2mi(z—1i)€ R —2mizé
e e

122 I = —4) = - _em2m¢ & -
(122) ! /4? =) /4% cosh(m(z — 1)) c /42 cosh(mx)

and similarly
—-R R —2mi(z+1)€ R —2mixé
e e
123 I = N [ _© _ o2 /
(123) ’ /R UChR /,R cosh(m(xz +17)) ¢ _pr cosh(mx)

As R — oo, they each converge to a constant multiple of the desired integral.
The other integrals vanish as R — oo, and this can be seen:

nl=| [ s ] < [ 1T
124 = ) <
(124 'ﬂ‘[ﬁ(+mﬂﬂlmwwwwm

1 e2mys
125 <
(125) < |\ et T
Given € > 0, select by uniform continuity é > 0 such that

1 7 1
|cosh(m(R +iy))| | cosh(mR)]

(126)

’<e

Also realize that on this interval e2™¥¢ < ¢27¢. Then break the integral into pieces of size J.

1 e2mYE n —1+(k+1)5 1 o 1
127 / - < / +/ e ( + e)
(127) | TeonG ) S\ s s [cosh(nR)|

k=0

129 < [ (oo )

(129) = 2¢%7¢ (|COSh1(WR) + e)

Send € — 0 and R — 0 to see the quantity vanish as R — oco. Similar for the other integral.
The residue theorem says that

(130) [ + I + I3 + I,] = 2mi Res(f, +i/2) = 2(e™ — ™)

lim
R—o0
But we know Iy and I, vanish so we are left with

(131) 2(e™ — ™) = R}im LA T3 =eT — e 2™ = (7 — ™) (e™ ™)
—00
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This implies
(132) I(§) =

Let us compute these residues directly
(z —i/2)e2miz8

2 1
em€ +e-m¢  cosh(r¢)

eI 4 (2 —i)2) x e~ 2 (—2mif)

133 li —1i/2 = lim ————— =1

( ) Zirg}z(z Z/ )f(Z) Zirlr}g COSh(”]‘[‘Z) ZE}}Q 7TSiIlh(7TZ)
—27i(i/2)€ €

(134) =L -

i i
Similarly
. ) . (2 +1/2)e2miz¢ e I 4 (3 4 §)2) x e 2R (—27mig)

135 1 2 = 1 ~ 1 =]

(135) z—>1£I11/2(Z +i/2)f(2) z—)lEI’}/Q cosh(mz) z—lg}Q 7 sinh(7z)
—2mi(—1i/2)& —mé

(136) =L _°c

™ ™
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CHAPTER 3

Winter 2019

1. Problem 1

EXERCISE 3.1 (Prove Arzela-Ascoli). Let K be a compact metric space and let A be a subset of C'(K).
Prove that A is compact if and only if A is closed, bounded, and equicontinuous.

PROOF. This exercise is asking us to prove the Arzela-Ascoli Theorem.
First we present a diagonal argument: Let { f,,}°2 ; be a sequence in A. Construct a diagonal subsequence
as follows. Select a countable dense subset {x)}72; C K and select nested subsequences

(137) fn:fl,n:_)"'ka,ngfk+1,n2"'

in such a way that lim,,_, fin(xk) exists, by the completeness of R and the boundedness of A. Tt will be
proven that f, , is Cauchy.

Let € > 0 be given. Select § > 0 so that |z — y| < ¢ implies |f(z) — f(y)| < ¢/3. Cover K and extract a
finite subcover

(138) K C U B(g(a}) = K C LnJ Bg(l‘i)

For each z;, select N; for which n,m > N, implies |f; n(x;) — fim(x:)] < €/3. Set N = max{N,}.
Now we are in a position to prove that if n,m > N we have || f,, — fn|| < €. For each x € K, there exists
|z — z;| < d. Then we may write

(139) Hfm - fn” = :2}13 |fm($) - fm(xl) + fm(mi) - fn(x%) + fn(ml) - fn(xﬂ
(140) < sup [fm (@) = fin(@i)| + sup [fm (i) — fr(@i)| + sup | fu(2:) — fu()]

The first and last suprema are bounded by €/3 due to the equicontinuity estimate. The middle supremum
equals max; |fm(z;) — fn(z;)|, and the selection of N guarantees that this quantity is bounded by €/3,
completing the proof.

An alternative proof which may be considered more explicit is given as follows, which rests on the
equivalence that

(141) compact <= complete and totally bounded

in a metric space. .
Let € > 0 be given. Our goal is to determine {f1,..., fn} C A such that

(142) ac B

To proceed, we represent each function in A by a bounded “step” function, found by exploiting the compact
domain K. Since A is bounded and equicontinuous, there exists M > 0 and § > 0 such that for all h € A
we have ||h|| < M and that |z —y| < ¢ implies |h(z) — h(y)| < e.
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To exploit the compact domain K, extract a finite subcover as follows

(143) K C | J Bs(x)
zeK
L
(144) < | Bs(z)
i=1
Define a collection of functions
L
(145) G = {g |\ Bs(@i) N K = R | g(Bs(x)) = ey, leys| < M, y; € Z}
i=1
For each f € A, select {y1,...,yr} satisfying
(146) eyi < f(@;) < ey +1)
and |ey;| < M, so that we may define
(147) 95 (Bs(;)) = eyi

Then ||f — g¢|| < e. Consider this collection of functions G = {gs}; = {g1,...,gn}. Realize that
N

(148) Ac|JBug)
i=1

We are now so close, because we just need to invert each g; — f; where f; is simply an element of A such
that || f; — g:|| < € as described above, so that an appropriate e-net is
N

(149) ac B

i=1
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2. Problem 2

EXERCISE 3.2 (Squeeze theorem for Euclidean sets). Let K C U C R™ where K is compact. Find V
such that K CV CV CU and V 1is compact.

PRrOOF. Cover K with balls interior to U and extract a finite subcover.

(150) K< |JB,(@)nK
zeK

(151) c O B, (zi)) N K
i=1

Define a family of open sets to help us find an appropriate set V. Set
(152) Vi = U Be,—n(xi) C U B (z;) €U
i=1 i=1

Now refine. For each z € K, select ¢ > 0 and x; such that |x — z;] < € < ¢; by density. Then setting
1, < €; — €, we can realize another open cover

(153) Kc |V
rzeK
(154) cUw,=Vv
j=1
Setting V as indicated, we can tell V C U, as desired. O
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3. Problem 3

EXERCISE 3.3 (Product of absolutely continuous functions). Let f, g : [0,1] — R be absolutely continuous.
Then their product is absolutely continuous.

PROOF. Select §1,d2 > 0 via absolute continuity so that

(155) Z\yz m| <o = Z\f vi) = f(@i)l < ¢/lg]

(156) Z lyi — x| <02 = Z l9(yi) — g(zs)| < e€/||f]l

and set 6 = min{dy,do}. Then we have

(157) Z| F9 i) — (fo)(wi)| = Z |f(yi)g(ys) — F(ai)g(as)|

(158) = Z |f(yi)g(yi) — f(yi)g(zi) + f(yi)g(zi) — f(xi)g(xi)]|
(159) < Z Lf(illlg(yi) — g(za)| + [g(@a) || f(yi) — f(24)]

(160) < Z 1 £1llg(yi) — g(@a)| + llgll|f(yi) — f(4)]

(161) < IIfHZ l9(yi) — g(a;)| + HQHZ |f(ys) — f(23)]

=1
These sums are both bounded by € if >, |y; — le < 4, indicating fg : [0,1] — R is absolutely continuous. O
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4. Problem 4

EXERCISE 3.4 (Radon-Nikodym). If u(X) < oo, {Ex}p_, are measurable, and {cy}7_, are real, define
a measure v by

n

(162) V(E) =Y cxp(EN Ey)
k=1

PROOF. Verify that v is a measure by checking countable additivity. Let {Aj};i1 be a sequence of
disjoint measurable sets. Then

(163) v UAj :chu UA]- N Ey
j=1 k=1 j=1

(164) => orp (4; N Ey)
k=1 =1

(165) = o Y p(A; N Ey)
k=1 j=1

(166) = Z Z CkM(Aj N Ek)
=1 k=1

(167) = v(4))
=1

To see that v < u, suppose pu(A) = 0. Then
(168) v(A) =) AN E) < p(A) =0
k=1 k=1

Now we show the Radon-Nikodym derivative equals >, ¢;1p,. Observe:

dv -
169 7d’u :/ Ck]-E
n
(170) :Z/ crlp, du
k=174

(171) :Z/A . crdp

k=1
(172) = cwu(AN Ey)
k=1
(173) =v(A)
showing that which was to be shown. O

39



5. Problem 5

EXERCISE 3.5 (Closed unit ball in the weak topology). Let X be a Banach space and B ={z € X | ||z|| <
1}. Show that B is closed in the weak topology. Is the unit sphere closed in the weak topology?

PrROOF. Let x € X be a limit point of B. We may assume z # 0, so that there exists ¢ : X — R such
that ¢(z) = ||z|| and ||¢|| = 1. Then for each € > 0, select z. in the neighborhood

(174) {ye X |loy) — o) <e}NB
Then we have ¢(z) < ¢p(z.) + €. Then
(175) 2]l < d(ae) + e <||@fllze| + e <1+

Since € > 0 is arbitrary, this means ||z|| < 1.
To see that the sphere is not necessarily closed in the weak topology, consider the Banach space B =

C(]0,1]) and the sequence of functions f,,(x) = ™. The linear functional
(176) / c(0,1]) > R
is bounded, but
1 oo
177 n=——a" = 0
(177) /f n+ 1:8 o ntl -
and [|0]] # 1. O
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6. Problem 6

EXERCISE 3.6 (Spectrum is compact). Let o(A) C C be the spectrum of a bounded linear operator
A:X — X. Then o(A) is compact.

ProoOF. To prove o(A) is bounded, recall the following sufficient condition for the convergence of a
Neumann series which explicitly reconstructs the inverse

(178) IT| <1 = I-T)"'=> T*
k=0

Therefore, if I — T is not invertible, then ||T']] > 1. Recall the definition of o(A)
(179) o(A) ={A € C| A— A is not invertible}
If A— A is not invertible, certainly I — A/X is not invertible, so that ||A/A|| > 1. This implies |A| < || 4| so
that o(A) is bounded.

For closure, suppose A\, — A is a sequence satisfying A, € 0(A) and X\ ¢ o(A). The latter assumption
brings into existence a bounded map B : X — X such that

(180) B(A-X)=1

A little Banach algebra reveals

(181) B(A— M\, I)=B(A—-X)— B\, I—-X\)
(182) =1 — B\ I —)\)

If N is selected so that n > N implies |\, — A| < m, then we may realize
(183) BT = AD| < [IB|l/IB]l = 1

indicating I — B(A,I — AI) = B(A — A\, 1) is invertible, so that A — A, T is invertible, contradicting the
selection A, € o(A). Therefore, A € o(A), so that o(A) is closed.

Now since o(A) lies in a finite-dimensional space, closed and bounded exactly prove that o(A) is compact.
A proof that o(A) is non-empty is saved for [Fall 2019 Exercise 5| O
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7. Problem 7

EXERCISE 3.7 (Rouché’s Theorem on a Geometric Progression).

(a) State Rouché’s theorem.
(b) Find the number Z, of zeroes of p, as n — oo within the closed contour C' = 0B1(1/2) where

z z"
184 n(z)=22—-2(Z4...
(184) pn(z) =2 <3 + e+ 3”)
THEOREM 4 (Rouché’s Theorem). Suppose h = f + g where f and g are holomorphic on the interior of

some closed contour C' and moreover that |f(z)| > |g(2)| on the contour C. Then f and h have the same
number of zeros in the interior of C.

Now begin the problem.

PRrROOF. Note that p,(z) converges uniformly on the set disk D = By(1/2) to

3 2z

1 frd 2 — z/ = 2 — .

(185) p(z) ==z 2172/3 =g

Solve for the zeroes:

(186) 0=2%— 322 =223-2)—22=2[2(3—2) -2 =222 +32 -2 = —2(2 — 1)(2 — 2)
-z

Only two of the roots z = 0 and z = 1 lie inside the contour C. None of the roots lie on the contour, which
indicates m = min |22 — 22/(3 — 2)| > 0 where the minimum is taken over C.

Now we can apply the Rouché theorem with h = p as defined above, f = p, and ¢ = p — p,. On the
contour C, let us verify the inequality. Let N be such that

©  k
(187) lg(2)| = Ip(2) — pu(2)] = Z ;—k <m/2 foralln> N and z in the disk
k=n-+1
Then
(15%) ral=|2 -2 (5445
3 3n
<k
— |2 S z
(189) = |z 2(3_Z > 3k>|
k=n-+1
2z 22k
_ |2
(190) _z—3_Z+Z—k
k=n+1
(191) > 122 = 2:/(3 — 2)| - [5]]
(192) > m/2

Since |g(z)| < m/2 and |f(2z)| > m/2, this shows that Rouché’s theorem applies, indicating p,, and p have
the same number of roots, namely 2, inside the contour C. O
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8. Problem 8

EXERCISE 3.8 (A sector-based contour integral). Evaluate for p > 1

dx
1 P
(193) /R T 2%
PRrROOF. Consider the function f : C — C defined by
1
(194) f(z) = 1t 220

Capture the pole with least argument x¢ = exp(im/2p) in the sector Sgp = {re? |0 <r < R,0< 60 <
7 /p}. Compute the residue
— 1 1
(195) Res(f,z0) = lim (2 — x0)f(2) = lim e U T = T

z—To z—x0 1 + 22p z—To 2p22p—1 2pl‘2p

The residue theorem states

(196) s, f(z)dz = (/ / /hne> z)dz = 2mi Res(f, z9) = }#

The line integral can be found by parametrizing v : [0, R] — C by y(t) = (R — t)e’™/P. Then

R
1 .
z)dz = S ——
(197) line f( )d /0 1+ (R_ t)Zp( ‘ )dt

R
(198) :—e”/p/ f(z)dz
(199 -3 [ 16

The arc integral vanishes as R — oo. Set p(t) = Re' for t € [0,7/p]. Then p/(t) = Rie' and the arc
integral equals

w/p . T/p Riet
(200) | @i [ s = [

Taking absolute values, we see
m/p Rie® /PR ™ R
L < [ e < [ i<y g 0

Therefore, we can take limits and rearrange the integral-residue equation to find

(201)

> i i i TiTo
(202) (1— xz)/ f(2)dz = = =—
"o pr " pajay p(Djzo p
Therefore,
(203) / dr 2mizg 271 B 271 B T
1+ pag—1) plo—a;') p(2isin(m/2p))  psin(m/2p)
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CHAPTER 4
Spring 2019 TODO 4,6,8

1. Problem 1
EXERCISE 4.1 (Non-contractive mapping). Define T : R — R by
(204) T(x) := g + x — arctan(x)

Show that |T'(x) — T(y)| < |z —yl| for all x,y € R and that T has no fized points in R. State the contraction
mapping theorem and explain why this example does not contradict the theorem.

PROOF. For the Lipschitz estimate, we estimate the first derivative of T' by formal differentiation rules:

1
!
-] <

(205) T (w)=1 T a2 <1
The fundamental theorem reveals
(206) T(z) = / T (w)dw

0

Y

(207) T(y) = / T (w)dw

0
Therefore the difference can be estimated
(208) 7)1 = | [ T’(w)dw' <lo—yl

Y

The contraction mapping theorem states that if |T'(x) — T'(y)| < ¢|z — y| for some ¢ < 1, then the map
T has a fixed point. In this example we did not select such a ¢ < 1, so we are comfortable now proving that
actually is no fixed point. Suppose T(x) = x. Then 7/2 = arctan(z), which is never true. O
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2. Problem 2

EXERCISE 4.2 (Squeeze theorem for compact Euclidean sets). Suppose K is a compact set contained in
an open set U. Find an open set V. whose closure is compact and

(209) KCVCVCU
PROOF. See Exercise [3.21 O
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3. Problem 3

EXERCISE 4.3 (Lipschitz functions preserve measure zero sets). Prove that a Lipschitz function f : R — R
maps sets of Lebesgue measure zero to sets of Lebesgue measure zero. For which values of n and m does the
same statement hold for Lipschitz functions f : R™ — R™?

PrOOF. If n < m, then measure can spring up from nothing, as in the following example. Consider a
line segment in R?, having zero measure. The projection map is Lipschitz, and sends the line segment to a
subset of full measure in [0, 1].

If n = m, identify a Lipschitz coefficient M and proceed by covering the image of a measure zero set A

oo (oo}

(210) AC | Bs,(xx) and > u(Bs,) < e/M”
k=1 k=1

Then the image is contained also in balls with expanded radii

(211) A € | Buss, (F(@1)
k=1
A dilation by M introduces a factor M™, so that
oo (oo} oo
(212) > wBus,) =Y M"u(Bs,) = M" > p(Bs,) < M"e/M" = e
k=1 k=1 k=1

If n > m, then zero measure sets remain zero measure by realizing that cubes in R™ have zero measure
in R™ by the construction of the product measure. From this it follows that balls also have measure zero
when included into higher dimensional spaces. O
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4. Problem 5

EXERCISE 4.4 (Inversions and Estimates in Banach spaces). Let X be a Banach space and A € L(X)
be a bounded linear operator. Show that there exists a bounded linear operator B € L(X) satsifying AB =
BA = Ix if and only if there exists a constant v > 0 such that

(213) Izl < ~yl[Azll and [|p| <~I[[A"G[| for allz € X and ¢ € X~

PROOF. Suppose a bounded inverse B exists satisfying AB = BA = Ix. Set v = ||B||. Then for any
x € X we have

(214) 2]l = [ x|l = [ B(Az)|| < v][Az]|
To prove the other estimate we take adjoints: (Ix)* = (AB)* = B*A*. Recall that ||B*|| = ||B|| = v, so for
any ¢ € X* we can estimate directly
(215) 10ll = [[Ix¢ll = |1B* A"l < [|B*[[|A"¢l| = ~v[|A"¢||

For the converse, let v > 0 entail the above estimates. We can see A is injective because if Arz = Ay,
then setting z = = — y shows
(216) lz =yl = Izl < ~[|Az]| = 7[[Az — Ay|| = 0.

The second estimate will let us show A is surjective. To apply the open mapping theorem, we verify
that %U C A(U), where U = {z € X | ||z|| < 1}. Suppose y ¢ A(U). The set A(U) is closed, balanced,
and convex, so there exists a linear functional ¢ : X — C such that |¢(y)| > 1 and |¢(Ax)| < 1 for ||z < 1.
Since ¢(Ax) = A*(¢)(z), the second estimate shows ||A*¢|| < 1. Putting these all together,

11 1
(217) S < Flewl = Zliellliyll < A llly] < vl

Y
we see that ||y|| > 1/v. Therefore, if ||y|| < 1/7, then y € A(X), so that %U C A(X) which implies A is
surjective. Now that A is a continuous bijection, the inverse mapping theorem implies that A~ is a bounded
linear operator. ]

The interested reader is welcomed to read Proposition 6.8.5 of [4], which outlines a more general case of
the surjectivity aspect of this exercise, but not the injectivity. Theorem 4.13 of [I1] does the same.
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5. Problem 7

EXERCISE 4.5 (Two Contour Integrals). Using complex analysis, evaluate the integrals

1 —cosz m 1
218 I, = —d I, = —df.
(218) 1 /0 22 T, f2 /0 2+ cosf
PrOOF. The first integral can be evaluated as in |Fall 2019 Exercise § by taking
®1—cosz 1 [ 1-cosx 1 —et
219 g TR - -
(219) /o a? 2 /700 a? /700 22
The residue of the integrand is found by a series about z = 0:
1—e® 1—(1+4iz—22/2+--) i
220 = =_Z4...
( ) 22 22 z +
so that Res,—y = —i. For an appropriate contour, take a semicircular arc with a dimple at the origin. The
contour integral can be split into a few integrals, most importantly the line segments and dimple
R i —e€ i
1 _ plz 1 _ iz
(221) / +/ o+ / S — omi(—i) =2
dimple € z —R z
Since the dimple ‘winds around’ the origin one-half times,
(222) / =2mi/2(—1i) = m,
dimple
so that
R i —e€ i
1—e* 1—e” o
(223) /E P + /4% 2 = 2mi(—i) = 7.
As e — 0 and R — oo, we see
> 1= iz
(224) /  —or
oo %
The second integral is handled similarly to [Winter 2021 Problem 7. Let z = €% for 6 € [0, 27] so that
1 1/z
225 -2 | ———=-2i | ———
(225) 2/22—1—42'—&—1 Z/7;4—4—&—1/;:
2w e~ "
226 = -2 ——ie"’df
( ) 1/0 ettt + e—10 + 4Z€
2 1
227 =2 ——df
(227) /0 2cosf +4
2 1
228 = ——df =
(228) /0 cosf + 2

The first integral can be evaluated with the residue theorem. Identify the poles by solving

—4+4/16—-4

(229) z2+4z+120<:>z:%=—2:t\/§.

Only the pole at z = —2 + /3 lies inside the contour of integration, so the residue here is the only one we
need to compute, as follows:

— (-2 3 1 1 1
(230) Res=  lim 22(—“[) = lim - -
243 2244z 41 22+4  2(—2+V3)+4  2V3
Therefore,
27
1 27
231 ——df = -2i | =—-2i(27i/2V3) = —.
(231) | et =2 [ = —zimif2) = 2
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6. Problem 8
EXERCISE 4.6 (Polynomial ideals TODO).

PROOF. The estimate

(232) 1f(2)] < A1+ |2[7)
implies that
(233) 12°f(2)] < Alz]* + A,
which indicates z° f(z) is a polynomial, say:
(234) 2 f(2) =ao+ - +apz"
so that
ap s
(235) f(z)=—+ - +az2°
z

Conversely, if f(z) is a sum as written above, then take A = >_ |ax|. By the triangle inequality
(236) [f(2)] < laoll2|™* + laa|]2" 7% + - + [ar ||~
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CHAPTER 5

Fall 2019

1. Problem 1
EXERCISE 5.1 (A vanishing argument for odd functions). Let f : [-1,1] — R be a continuous odd
function and suppose
1
(237) / f(x)z**tde =0
~1

for all k > 0. Then f(x) =0.

PRrROOF. Include f € L? by noticing that f being uniformly continuous implies f? is uniformly continu-
ous. Then consider the subspace of odd functions in L? which also contains f:

(238) F={gel?|g(-z) = —g(z) Yzel[-11]}

which has a countable dense subset, namely, {z,23,2° ...} by a similar argument to the Weierstrass ap-
proximation theorem. The inner product in this space naturally arises as

(239) (f.9) = / falga)ds

and we know (f,2™) = 0 for any basic element 2™. Therefore, f = 0. O
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2. Problem 2

EXERCISE 5.2 (Urysohn in a metric space).

(a) Let X be a locally compact Hausdorff space and K C'V C X where K is compact and V is open. State
the Urysohn Lemma in terms of K and V.

(b) Let (X,d) be a metric space. For a non-empty subset A C X, the function

(240) da(z) = inf{d(z,a) | a € A}

is uniformly continuous.
(¢) For disjoint closed sets A and B, define a continuous function f : X — [0,1] for which f(A) = 0 and
f(B) = 1. Relate this function to the Urysohn Lemma.

LEMMA 1 (Urysohn Lemma). A topological space X is normal if and only if for all K C V with K
compact and V' open, there exists a continuous function f: X — R such that f(K) =0 and f(X\V) =1,

For the rest of the problem:

PRrROOF. To perform part (b), the function d(-, F) can be argued to be uniformly continuous as follows.
Let 0 < d(z,y) < e. Then

1) e, )~ dly, F)] = [if d(z, )~ nf iy, )| = i, 1) ~ d, 1)
For any f € F, we have inf < |d(z, f) — d(y, f)|. Then

Therefore, d(-, F') is uniformly continuous.
Now to perform part (c), define

__ da(@)

(243) fx): Ia@) +do@)’
The denominator is never equal to zero, so this function inherits continuity from the functions it is composed
of. To see that d(z, A)+d(x, B) # 0, suppose otherwise. Then d(z, A) = d(x, B) = 0 which implies 2 € ANB,
contradicting that A and B are disjoint. Therefore, the function is continuous, and we can look at its action
on elements in A or in B: if z € A, then d(x,A) = 0, so f(z) = 0. If x € B, then d(z,B) = 0, so
f(z) = d(w, A) Jd(z, A) = 1.

By setting A = K and B = X \ V, we can prove the Urysohn Lemma in one direction. ]
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3. Problem 3

EXERCISE 5.3 (A summatory condition for decaying measure). Prove that

(244) Z p(Ep) <oo = p (lim sup En) =
el n— 00
PROOF. Recall the definition of lim sup for sets:
245 limsup F,, = E,,.
(245) msup B, = (] |J

n=1m=n

It follows that

(246) I (limsup En) <p ( U Em> Vn>1

n—oo

By countable subadditivity, we know

(247) H < D Em) < i U(Em) Vn>1

But 07 | u(E,) < oo implies

(248) lim m}_:nu(Em) =0

Applying this limit to equation then shows p(limsup F,,) = 0:

(249) I <hm sup En> < nl;rr;o Z w(En) =0

n— oo
m=n

See Exercise [6.2] for a proof invoking continuity from above.
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4. Problem 4

EXERCISE 5.4 (Absolutely continuous measures). Let (X, %, u) be a finite measure space and suppose

f,9 > 0. Define the measures
(250) V(E)=/ fdp n(E)=/ng
E E

Isvgn? Isp<v?

ProOOF. Compute R = esssup g(x)/f(x). This is finite because X is a finite measure space and f and

g are strictly positive.
If v(E) = 0, we can show n(E) = 0. By the definition of the Lebesgue integral, select

(251) f S chlEk
k=1

satisfying

(252) /Ef < /kicklEk <e€/R
=1

By the selection of R, it can be readily seen that

9(x)

253 = <R = g(x) < Rf(x
(253) G () < RI(2)
Apply the monotonicity of the integral to find
(254) /gSR/f<Re/R:e

E E

Since € > 0 is arbitrary, this implies n(E) = 0, so that n < v. A similar argument can be made with

R’ = 1/R to show that v < 7.
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5. Problem 5

EXERCISE 5.5 (Spectrum is closed and bounded). Show that the spectrum of a bounded linear operator
on a complexr Banach space is a non-empty compact subset of C. Does the same hold for operator on real
Banach spaces?

Proor. Examining [Winter 2019 Exercise 6| shows that this problem now requires us to show only that
the spectrum is non-empty. Let B : X — X be a bounded linear operator on a Banach space. Suppose the
spectrum were empty. That is,

(255) o(B) ={A € C| B — Al is not invertible} = {}

Then B — M is invertible for any complex ), so the resolvent Ry = (B — AI)~! is defined for any \. By the
open mapping, each resolvent is bounded. Let ¢ € £(X)* be a non-zero linear functional on the space of
bounded opeators. Define a function F : C — C

(256) F(A) = ¢(Ry)

is entire with the sense of operator norm convergence. Taking the modulus we see that |F(\)] — 0 as
|A| = oo, which indicates F' = 0, so that X = 0, a contradiction. Therefore, B — AI is not invertible for
some A.

The compactness does not hold in a real setting. Consider the operator

(257) / L C(0,1]) = C([0,1])

(258) Fis /0 " ftyat

where C([0,1]) is the set of continuous real valued functions define over [0,1]. Let us follow a familiar
derivation of the eigenvalues. Let

(259) | 10it = st

0
The very act of writing this indicates that we may differentiate on either side, so that
(260) f@)=Af'(2) <= f(z)= ke

But then the spectrum contains the real line, so it must not be compact. (|
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6. Problem 6

EXERCISE 5.6 (Sequence of Bounded Operators on a Banach space).

(a) Let {A, : X — X}2, be a sequence of bounded linear operators on a Banach space X such that A,x
converges for every x € X. Show the following operator on X is bounded:

(261) Az := lim A,z.

n—oo

(b) Can the same conclusion be drawn if X is not a Banach space?

PROOF. We can argue that ||A|| < oo using uniform boundedness. The convergence hypothesis implies
that

(262) sup ||[Anpz]| <00 VzeX
n>1

Uniform boundedness says

(263) sup || Ay < o0
n>1

We will use this estimate to prove that
(264)

|Al| = sup lim [|4,z| <
llzl|=1 770
The limit within the supremum always exists by the convergence hypothesis, so for any x it is true that

(265) Jim [[Anzf| = lim inf | A,z = sup Jnf | Am]

This is substituted into the equation for ||A]|, and we interchange some limits to see

(266) |A|| = sup lim ||A,z|| = sup sup inf |4,z
[le)=1"770° e)=1n>1m2n

(267) =sup sup inf [|[A,z|
n21|z)|=1m2n

(268) <sup inf sup ||Anz|
n>1M2N ||z]|=1

(269) = sup inf ||A,|
n>1 m>n

(270) < sup || An|
n>1

(271) < o0

Consider the sequence of bounded operators
(272) T,:C(R) > R
(273) fe | flx)de

—n
Each integration T,, is over a compact domain, so the operators are bounded. But the limit operator is
integration over the whole real line, which is unbounded, for example in the case of constant functions. [
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7. Problem 7

EXERCISE 5.7 (Maximum modulus principle and its sibling). Let @ C C be a connected domain and
let f(z) be holomorphic on Q. Show that neither R[f(2)] nor |f(2)| attain a mazimum on Q unless f is
constant.

PrOOF. This is the maximum modulus principle, which the question is asking us to prove. Suppose
|7 (20)| = |f(2)] over 2. Find a power series
(274) f(z) =ao+ai(z —20) + -~

in a region about zy. If f is constant, we are done, so suppose a; # 0. In this case, f is a locally an open
mapping, so select 7 > 0 such that f(B,(20)) is open. Note that ag lies in this set, so select 6 > 0 such that

(275) Bs(ao) € f(Br(20))
Let ap =a+bi. If a > 0, find ag + §/2 = f(20 + w) where |w| < r. Then
(276) £ (20 + w)| = [(a+6/2) + bil = \/(a+6/2)% + 12 > Va2 + b2 = |ao| = |f(=0)|

violates that | f(z0)| is the maximum modulus. Similarly if @ < 0, subtract §/2 to find the same contradiction.
To prove the maximum real part principle, suppose R[f(z0)] > R[f(z)] and pass f to the exponential
function. We have:

(277) ef () — RF(2)+31(2)

which implies

(278) ()] = M)

The previous result shows that if this function has a maximum, then the function is constant, which indicates
Rf(z) is constant by the monotonicity of the exponential function, completing the proof. O
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8. Problem 8

EXERCISE 5.8 (Sinc Integral!). Integrate

(279) /°° sinz

o T

PrOOF. Consider the complexified function f(z) = e%* /2. Then

(280) /oo sz:s/mf
oo % oo 2

By writing e?* as a Taylor series, we can divide to argue that the residue at zero equals one:

e 14iz—2%2/24+-- 1

(281) - -

Integrate f around a semicircular arc with radius R and a dimple in the lower half-plane centered at the
origin with radius e. Then the residue theorem says this path integral captures the pole, so that

R —€
(282) / + / + / + / = 2mi
dimple € arc —-R

The arc integral vanishes as R — oo in the upper half-plane. Set z = Re?. Then

. . i . . . o L . _ o
(283) el? — ezRe — ezR(coaG—i—zsan) _ echos@ Rsinf |ezz| —e Rsinf

Simplify the following integral

”eiRew . T e
(284) / = / - Riedf = i / e dg
arc 0 Re 0

Then we can apply the previous estimate
/ < /Tr e—RsinGdQ
arc N 0

The integrand converges to 0 because sin 6 is nonnegative on this interval. Moreover, e
and [0, 7] is compact, so we may exchange limits. Therefore, the arc integral vanishes.
The dimple integral is handled by letting e — 0. Set z = ee?’. We have

27 )
(286) / = / ei<e’ dp
dimple T

Again, we can apply integral interchange because of smoothness, so the dimple integral is sent to 7i as € — 0.
Therefore, as R — oo and € — 0, we see

(287) / A

— 00

(285)

—Rsin® g continuous

Taking, the imaginary part, we see:

(288) / sinz
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CHAPTER 6

Spring 2020 TODO

1. Problem 2
EXERCISE 6.1 (Metric for Closed Sets). Suppose (X, d) is a bounded metric space. Let

(289) d(z, A) == inf{d(z,a) | a € A}.

And define

(290) dp(A,B):=inf{e >0| AC N.(B) and B C N.(A)}
where

(291) N(A):={x € X |d(z,A) < €}.

Show that dgr is a distance function on the space of all closed subsets in X.

PrOOF. To see that zero distance implies equality, suppose dgy(A,B) = 0. Select ¢ > 0 such that
A C N(B) and B C N.(A). Sending ¢ — 0, N.(B) — B by closure and similarly N.(A) — A. The
inclusions then indicate that A C B and B C A, so that A = B.

For symmetry, statements around a logical ‘and’ may be commuted, so that

(292) dp(A,B) =inf{e > 0| A C N.(B) and B C N.(A4)}

(293) =inf{e >0| BC N(A) and AC N.(B)} =dg(B,A)
For the triangle inequality, we will prove the estimate

(294) dy(A,C) <dy(A,B)+du(B,C).

Let € > 0 satisfy

(295) A C N.(B)

(206) B C N,(4)

and € > 0 satisfy

(297) B C N.(C)

(298) C C N.(B)

The N operator acts convexly, so

(200) A N.(B) € NN (C)) € Newa (O,

Therefore, A C Ncie (C). For the reverse inclusion, note that

(300) Cc N6’<B> - NE’(NG(A)) - NE/+€(A)

so that C' C Ne4(A). Therefore,

(301) dy(A,C) <e+¢€.

Taking the infimum over the indicated € and €’ yields

(302) dp(A,C) <dy(A,B)+du(B,C).
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2. Problem 3

EXERCISE 6.2 (Borel-Cantelli). Consider the measure space (X, M, u) with p a positive measure. Let
{Ex} be a countable family of measurable sets satisfying

(303) > w(Ey) < 0.
k=1
Define
(304) E :={z e R |z € Ey for infinitely many k}.

Prove the following:
(a) E is measurable
(b) u(E) = 0.

PROOF. For part (a), we can construct E from o-algebra operations:

(305) r=N U &

m=1k=m
For part (b), the definition of a converging series from basic real analysis tells us that

o

(306) Jim }; u(Ex) = 0.

Intersections are decreasing and the converging series guarantees the first set has finite measure from the
following estimate

(307) ’ (fj E) <Y u(B) < s
k=1

k=1
Now apply continuity from above:

m—r 00

U Ek) < Z W(Ek)
k=m

k=m

(308) w(E) = lim u(

where the inequality follows from the countable subadditivity of measure. Applying the limit m — oo on
either side yields the desired result. O

See Exercise [5.3] for a proof invoking monotonicity of measure.
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3. Problem 4

EXERCISE 6.3 (Indicator function limit). Let f : [0,1] — R be continuous and g : [0,1] — [0, 1] measur-
able. Compute the limit

(309) lim flg(z)™)dx

n—oo 0

PROOF. The function f has domain a compact set, so f is bounded. The domain of integration has
finite measure and the function f o ¢g” is measurable, so the bounded convergence theorem allows the limit
interchange

1 1
(310) lim flg(z)")dx = / lim f(g(z)")dx
0

n—oo 0 n—oo

As n — oo the function ¢g" becomes an indicator function

1 ze€ekF
0 z€[0,1]\ FE

n—roo

(311) lim g(x)" = {
where E = g~1({1}). The continuity of f then reveals f o g" becomes an indicator function

i) zer
(312) nlﬁoof(g( )") {f(o) z€[0,1]\ F

Therefore,

im 1 x)") = ) aek
(313) dm [ st = | {f(O) e[\ B

314 = 1)dx 0)dx
(314) /E f(U)de + /[071]\Ef( )
(315) — u(B)f(1) + u([0.1] \ E) £(0)
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CHAPTER 7

Fall 2020

1. Problem 1

EXERCISE 7.1 (Continuous bijections, compactness, Hausdorff, and gluing).

(a) Let f : X — Y be a continuous bijection where X is compact and Y is Hausdorff. Then f is a
homeomorphism.

(b) Let X = AU B where A and B are closed subsets of X. Suppose [ : X =Y is a map such that f|a4 and
flB are continuous. Then f is continuous.

PRrROOF. For part (a): we show (f~1)71(S) is closed for any closed S C X. Let S C X be closed. The
inverses simplify to f(S) because f is a bijection. Since X is compact and S is closed, it follows that S
is compact. Continuous images of compact maps are compact, so we know f(.S) is compact. Since Y is
Hausdorff, this implies f(S) is closed.

For part (b), let us glue by hand. We know f(X) = f(A) U f(B), so if U C f(X) is open, U =
UNn f(A)UUnN f(B). By writing this we see

(316) FHO) = fFHUN A UUNFB) = fFTHUNFA)UFHUNF(B))

(317) = (fla)THU) U (flB)' (V)

Since these restrictions are continuous, f~!(U) is a union of open sets, therefore indicating that f is contin-
uous. ]
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2. Problem 2
[TODO]

EXERCISE 7.2 (An equivalence relation with closure). Let ~ be an equivalence relation on a topological
space X. Assume each equivalence class is a closed set in X. Then a set of finitely many points in X/~ is
closed in the quotient topology.

PROOF. Let S be a set of finitely many points in X/~:
(318) S ={[z1],...,[zn]}

To show S is closed, we show its inverse image (under the quotient map) is closed:

n
(319) ' () ={reX|qa)eSt=JlzeX|x~u}
i=1
We assumed each equivalence class is a closed set in X, so this is a finite union of closed sets, which is closed.
For an example of X a Hausdorff where its quotient X/~ is not, consider X = R under the relation
a~b <= a—>be Q. Then the quotient space X/~ is not Hausdorff.
This can be seen by supposing distinct equivalence classes [z] and [y] lie in disjoint open sets U and V.
Select representatives © < y. Select an interior neighborhood Bs(z) C ¢~ 1(U) for some § > 0. Approximate

(320) ly—xz—r|<$
for some rational r. Then y — r € Bs(x) implies [y — 7] in U. But the rationality of r implies [y] = [y — 7].
Therefore, U and V are not disjoint. O
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3. Problem 3

EXERCISE 7.3 (Slicing the range of an integral). Let X be a finite measure space. Let f: X — R be a
measurable function and define for each k =1,2, ...

(321) Er={zeX|k<|f(x)|<k+1}
Then f € LY(X) if and only if

(322) > ku(Ey) < oo
k=1

PROOF. In the forward direction, suppose f € L!

—~

X). The set

(@

(323) xX=\)E

k

1
is always a disjoint union and we have

(324) > hu(Ew < 3 /E 191 = /X f] < o0

In the reverse direction, suppose the sum is finite. Then add pu(X) < oo to the sum

(325) p(X) + - ku(By) < oo

We are free to measure the set X as follows

(326) p(X) = p(Ex)
k=1

Combining the sums shows
(327) > (k+1Du(Ey) < oo

Compare this to the integral

(328) /|f| Z/ |f|<Z/ (k1) =3k + Du(Ey) < oc

k=1

To see that the finite measure hypothesis is necessary, consider the function f : R — R sending 1 < z —
1/zand 1>z — 0. Ey =0 for all K > 1. Then

(329) i ku(Ep) =0 < o0

k=1
But

[t
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4. Problem 4
EXERCISE 7.4 (Logarithmic Fubini FIXME). Let f :[0,1] — R be integrable and set

1
(331) o(z) = / @dt
PrROOF. Then g is integrable and
1 G G 1@.
(332) /Og(x)dm—/o /gg f(t)dtdx—/o/o : lp<i<1(t)dtdx

(333) - /0 1 /0 1@-10@9(@@&: /O 1 /O t @dxdt: /0 bty
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5. Problem 5

EXERCISE 7.5 (Weak convergence is unique in a reflexive space).

(a) If X is reflexive, show that a weakly converging sequence converges to a point.
(b) Show that the conclusion need not be true if X is not reflexive.

PRrROOF. For part (a), suppose & € X satisfies the property that lim ¢(x,,) exists for each ¢ € X*. Define
a linear functional on the dual space

(334) ¥ X" =R
(335) 6 lim w3(0)

Then z = J~1(x*) is the unique candidate limit because X is reflexive, completing the proof.
For part (b), consider the space B = C([0,1]) and the functions f,(z) = 2™ with norm ||f,|| = 1. The
dual space is given by the measures on [0, 1], so that any linear functional equals

(336) o(f) = / fdv

for some measure v. Then ¢(f,) — ¢(0). But this limit is not unique because ¢(0) = ¢(1g) for any set F
of measure zero, say E = QN [0, 1]. |
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6. Problem 6

EXERCISE 7.6 (One-stop Banach space decomposition). Let Xy be a one-dimensional subspace of a
Banach space X. Summon a closed subspace X, such that X = Xo+X;.

PROOF. Select a non-zero z € Xy and ¢ : X — R such that ¢(z) =1 by extending the linear functional
(337) span{z} = Xy — R
(338) Az = Az|
to a continuous linear functional via the Hahn-Banach theorem. Let X; = ker ¢ which is a closed subspace
because ¢ is a continuous linear functional. We will prove that
(339) X = Xo+X,
A sufficient condition is that X and the kernel are complemented: Xy N X; = {0} and X+ X; = X.

To show Xy N X; = {0}, suppose € Xy and ¢(x) = 0. Then ¢(x) = ¢(\z) = A = 0, implying = 0.
To show Xg+ X1 = X, let x € X. We will break z into an X, summand and a kernel summand:
(340) T =¢(x)z + (z — ¢(z)2)
Because z € Xy and ¢(x) is a scalar, it is certain that ¢(x)z € Xo. To verify that the second term lies in
the kernel, simply evaluate

(341) P(x — d(x)2) = ¢(x) — d(2)¢(2) = ¢(x) — p(x) =0

The decomposition is defined for any x € X, so we are done. O
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7. Problem 7

EXERCISE 7.7 (Coercive estimate on entire functions). If f(z) is an entire function such that |f(z)| — oo
as |z| — oo, then find constants ¢ > 0 and R > 0 such that |f(z)| > c|z| for all |z| > R.

PRrROOF. First we see that f is a polynomial, because f is entire and |f(z)] — oo as |z] — co. Set

(342) fz)=a+tarz+ -+ apz"
The following reverse triangle inequality needs no absolute value
(343) [f(2)] = lanz" + an-12""" + - + aol
(344) > [lanz"] = lan_12""1 + - + agl|
when 2z satisfies
(345) lanz| > R > |an—1| + |an—2| + -+ + |ao|
because
0 0

(346) An_12" 14 Hag] < Z larz"| < Z lagz" "1

k=n—1 k=n—1

n—1
(347) =1 Y
k=0

(348) < 2" Y|anz]
(349) = lanz"|
Therefore,
(350) [F()] = Janz"] = lan-12""" + - +ao|

n—1
(351) > |anz™| — Z |ax2"|

k=0

n—1 ‘a Zn|

352 =) 221 gk
(352) ’; - |akz"|

n—1
_ ny (lonl o
(353) —I;J\Z |< n [2n—H|

For each k =0,...,n — 1, select Ry > R such that |z| > R implies

|an| |a| |an|
354 BPnl _
(354) n |[zn=k| = 2n
Then if |z| > max{Ry}, we know
n—1
|an| |an]
(355) £ (2)] > kz_o|zn\% > [zl
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8. Problem 8

EXERCISE 7.8 (Semi-circular contour integral). Fvaluate

1+ 22
356 —_—
(856) /0 14 a2t
PrOOF. Consider the zeroes of the denominator lying in the top-half plane:
141 i—1
357 0, = 0y =
o R
Enclose them in a semicircular path of radius R and apply the residue theorem
R
(358) / f(z)+ / f(z) =2miRes(z = 01, 02)

Setting v(t) = Re® for t € [0, 7], we can see the arc integral vanishes as R — oo:

L+ (Re™)® 4
359 —————— Rie"dt
(359 o = || e
"1+ R?
360 < ——Rdt
( ) — 0 R4 _ 1
1+ R?
Let us compute the residues now
_ (z=0)(1+2%) . 142
(362) Res(f,61) = Zli)rgl T+ = lim 3
1 2
v
1—12 V2
4 0 = —
(364) Res(/,02) = gr=r =

By taking limits we can see
e 2
(365) / f(2) = 2mi lé] = /2

The integral in question is half this because the integrand is even:

(366) / lie? V2

1424 2

70



CHAPTER 8

Winter 2021

1. Problem 1

EXERCISE 8.1 (Types of compactness). Give the definitions of compactness and limit point compactness
of a topological space. Show that every compact space is limit point compact. Give an example that the
converse s not true.

DEFINITION 1 (Compactness). A topological space X is called compact if for every open cover of X,
there exists a finite subcollection of that cover which also covers X.

DEFINITION 2 (Limit point compactness). A topological space X is called limit point compact every
infinite subset S C X has a limit point.

Now for the real workout:

ProOF. If X is compact, then X is limit point compact. Suppose not, then for any x € X, select an
open set U 3 x such that SNU C {z}. Cover

(367) xcvu
zeX

(368) cJu
=1

The infinite set S can be included
(369) S=Juinsc|J{=}
i=1 i=1

which contradicts that S is an infinite subset. Therefore, S is limit point compact.

To see a limit point compact space which is not compact, consider Z x {0,1} where Z has the standard
topology and the topology of {0,1} is T = {{},{0,1}}. Any point is a limit point, so any infinite subset
contains a limit point. O
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2. Problem 2

EXERCISE 8.2 (Continuous maps preserve connectedness). If X is connected and f: X — Y is contin-
uous, then f(X) is connected.

PROOF. Suppose f(X) = AU B is a separation. Then X has a separation:
(370) X =fHf(X) = fH(AUB) = fTH(A) U fFH(B).

This contradicts that X is connected, so we must instead have that f(X) is connected. ]
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3. Problem 3

EXERCISE 8.3 (Countable complement measure space). Let X be uncountable. Define the countable
complement measure space

(371) M={ECX | X\ E is at most countable or E is at most countable}
Ey=0 FE at t tabl
(372) pi Mo [0,00] B s ME) b most countabie
wE)=1 X\ E at most countable

(a) Prove that M is a o-algebra and that p is a measure on M.
(b) Prove that M is the o-algebra generated by € = {{z}:x € X}.

ProOOF. To see that M forms a o-algebra, let {E,,}52; lie in M. Then to verify the union
o0
(373) E = U E,
n=1

lies in M, we show that E is either at most countable or X \ E is at most countable. If each E,, is at most
countable, then the union is certainly at most countable, so suppose X \ Fj is at most countable. Then

(374) X\E=[)X\E,CX\E
n=1
Therefore, X \ F is at most countable. Unions are included, and complements are included by the definition,
so M forms a o-algebra.
Now we show p is a measure. Let {E,}52; be disjoint sets in M. If each E,, is at most countable, then
their union is at most countable and u(E,) = 0, so we have

(375) “(UEn>=0=ZOZZM(En)

n=1
Otherwise, at least one X \ Ej is at most countable, so u(Ey) = 1 and disjointness implies u(E,) = 0 for
n # k and that the union is at most countable. Then

n=1
Therefore, 1 respects countable additivity, so is a measure.

To show that M is the o-algebra generated by the singletons &€ = {{z} | = € X}, let & be a o-
algebra containing £. Note that £ contains all countable unions, countable intersections, and complements
of singletons. If F € M, then E = {x1,...} or X \ E = {x1,...}. Both of these lie in &', so that E € &',
therefore, M C £’ indicating M is the o-algebra generated by singletons. O
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4. Problem 4

EXERCISE 8.4 (Convergence in measure metric). Let f, : E — R be a sequence of measurable functions
where w(E) < oco. Then f, — 0 in measure if and only if

: |fnl
377 1 =0
@) i |
PROOF. Suppose the limit is zero. Let € > 0 be given. Select N such that
|fnl 2
378 n>N — / <€
b Eny
We are going to prove that the following set has small measure for such n.
(379) F={x € E||fu(x)] > €}
Measure by integrating. If z € F', then 1 < |f,(x)|/¢, so we have
(350) u(r) = [ ap< [ 24
F F €
1
(381) < [ 1
€JFr
1 | fnl
382 < =
52 <<
1 | fnl
383 <1 /
(5% <) T
1
(384) < =€
€
(385) <e
Suppose convergence in measure holds. Let € > 0 be given and define ¢ = ¢/(2u(F)) and define
(386) F={zeE||fa(x)] > €}
Break up the norm integral:
|fnl |fnl |fnl
(387) / = +
1+|fn| E\F1+‘fn| F1+|fn|
If x € E\ F, then
| fn(2)] /
388 fal@)] < = 0 <
5% i) [ERFAE)
Also, |fnl/(1 4 |fn]) <1, so each integral can be bounded
| fnl /
389 / < w(E\F)e' 4+ u(F
(389) T4 17 (E\F) (F)
By convergence in measure, select N such that n > N implies u(F) < €/2. Then we are done. ([l
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5. Problem 5

EXERCISE 8.5 (Projection operator and closed subspaces). Let X = X1+ Xo and define P(x1+x2) = 1.
Then P is a linear operator satisfying P> = P and moreover, P is bounded if and only if both X, and X,
are closed.

PRrROOF. To see P is a linear operator, let x,y € X decompose uniquely into z = x1 +x2 and y = y; +yo.
Then z +y = (21 + y1) + (2 + y2) uniquely, so we see
(390) P(w+y):x1+y1=Px1+Py1:P:r+Py
Moreover, P? = P because if z € X, then x = x; + x5 uniquely. Projecting, we know Pz = x; + 0 uniquely,

so that P(Px) = x; = Px. Therefore, P? = P.
Now to see P is bounded implies X7 and X5 are closed, we just write them as follows

(391) X1 =P(X)

(392) Xy =ker P

The closed graph theorem applies, so that

(393) IF'={(x1 +x2,21) |21 € X1,22 € Xo} = X X X

is a closed subspace of X x X, indicating X is a closed subspace. Kernels of bounded operators are closed,
so X is closed.

Conversely, if X; and X5 are closed subspaces, they are themselves Banach spaces, so we may define the
direct sum of Y = X; & X5 under the norm

(394) (@1, z2) | = [lzallx, + llz2llx,

Completeness is inherited from the completeness of X; and X,. For any x = x1 + 22 € X, we know
lz)lx < ||(z1,22)|ly, so this shows X =Y by mapping z1 + x2 — (21, 22).
Note that P acts on the space Y by P(z1,z2) = (21,0), and this means

P
(395) 1Pl sy = sup 1% losll
vey Iyl (z1,m2)ey 11l x, + |72 x,

so P is bounded as an operator on Y. By the isomorphism, we know P is bounded as an operator on X. [
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6. Problem 6

EXERCISE 8.6 (Closed subspaces are reflexive). Show that a closed subspace of a reflexive Banach space
is reflexive.

PrOOF. Let S C X be a closed subspace of a reflexive space X. The theorem of Kakutani states that
S is reflexive if and only if the closed unit ball Bg in S is compact in the weak topology (S, S*). This
topology is induced by the weak topology (X, X*). The theorem of Banach and Alaoglu states that Bx
is compact in the weak-* topology. Since X is reflexive, the weak topology and weak-* topology coincide
o(X,X*) = o(X*,X). By compactness in the weak-* topology, Bs C Bx is compact also in the weak
topology because it is a weakly closed subset of a compact space. Therefore the theorem of Kakutani implies
S is reflexive. |
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7. Problem 7

EXERCISE 8.7 (Funky sine integral). Fvaluate

T do
(396) /0 2 + sin(26)

PROOF. Substitute z = ¢’? into the integral and find df = dz/2iz, so that the integral may be interpreted
as a contour integral of a rational function about the unit circle

(397) /’f do _/’T do _2./” do _/ dz _/ dz
o 2+sm(20)  Jo 24 =0 )y dite—1/z ) aitz—1/z) ) dizte2-1

2
The poles are found by the quadratic formula

(398) diz422—1=0 = z=-2i+3i

But only one of them lies within the unit disk, namely, zg = —2i + v/3i. To compute the residue, we evaluate
a limit with 'Hopital’s rule:

. Z— 20 . 1 1
399 R =lim ———— = lim —— = ——
(399) A A ey g AN 2
Then we can find by the Residue Theorem that
T de dz 1 T
400 = =21iR — 97 -
(400) /0 2 + sin(20) L Tizg 2o - 2riRes(fiz0) = ImiTm = 7
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8. Problem 8

EXERCISE 8.8 (Entire functions, singularities, and injectivity). Let f : C — C be entire with

(401) f2) =Y ap2"

n=0
(a) Show that f has an essential singularity at infinity if a, # 0 for infinitely many n.
(b) Show that if f is injective, then f(z) = ag + a1z.

Proor. For (a), suppose f has no essential singularity at infinity. Then one of the limits
(402) lim f(z) lm 1/f(2)

exists. If the first one exists, then f is bounded, indicating f is constant, so suppose the first one does not
exist and the second one does. Suppose 1/f(z) — a # 0. Then the limit f(z) — 1/a exists, a contradiction.
Therefore, 1/f(z) — 0, and |f(z)| — oo, which indicates f is a polynomial.

For (b), if f(z) is not a polymomial, then f has an essential singularity at infinity, which means f is
not injective. Therefore suppose f(z) = ag + -+ + a,2". Injectivity means that f(z) = a,(z — r)™ for some
unique root r. Substitute
(403) FE™" 4 1) = an
(404) fA+r)=a,
27i/n

and apply the injectivity of f to find 1 =e , which means n = 1. Therefore, f(z) = ag + a1 2. |
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CHAPTER 9
Spring 2021

1. Problem 1
EXERCISE 9.1 (Product and box topologies). Let

(405) X = ]O_O[[(L 1]
(406) S={(zp)€X|IN:n>N = =z, =0}
(407) = U{(xn)\nZN = 1z, =0}

N=1

(a) Show that if X is considered with the product topology, then the closure of S is X.
(b) Show that if X is considered with the box topology, then S is closed in X.

PROOF. For part (a), Let 2 = (z,,) € X \ S. We will show z is a limit point of S. Define a sequence of
elements in S:

(408) st = (21,0,...)

(409) s% = (z9,22,0,...)

(410) :

(411) s" = (21,22, ..,2n,0,0,...)

If U is a given neighborhood of x, we argue that s” € U for some n. From the definition of the product
topology, select a basic element B C U containing x and realize B as a product of finitely many not necessarily
trivial sets:

(412) B= (ﬁ Un> x ﬁ [0,1]
n=1 n=N+1

Then sN¥N € BCU.
For part (b), suppose z € X \ S is a limit point of S. Select

B 7l n O
(413) s€ H{ feal(@n)  Zn 7

Tnp =0

Since x ¢ S, there exists a subsequence x,,, such that x,, # 0, so we may write the product as

(414) (Han,k(fvnk)> x I Bi(0)
k=1

x,=0

We can see that if s lies in the first product, then s does not lie in S, because 0 ¢ B‘wnu(xnk), so there
is no N after which all the elements are zero. This is a contradiction, so we know x € S. Therefore, S is
closed. O
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2. Problem 2

EXERCISE 9.2 (Continuity and connectedness in discrete topologies). Let X be a topological space and
Z in the standard topology. Consider the property

(415) P(X) := “every continuous function f : X — 7 is constant”

(a) With R in the standard topology, show that P(R) is true.
(b) For an arbitrary topological space X, find and prove a characterization of P(X) in terms of X.

Proor. With R in the standard topology, we P(R) is true. This can be seen by making a metric space
argument. Let R > 0 be fixed and a select 6 > 0 so that |f(z) — f(y)| < 1/2 for any z,y € [-R, R].
Each integer is isolated, so this inequality implies f(x) = f(y), so that f is constant on expanding intervals,
indicating f is constant on R.

Now we show P(X) is true if and only if X is connected.

Suppose X is connected. The continuous image of a connected space is connected, so f(X) is connected.
The connected subsets of Z are precisely the singletons, so we know f(X) = {n}, indicating f is constant.

Conversely, suppose X is not connected. It is possible to define a continuous function which is non-
constant by separating X = AU B and defining f(A) =1 and f(B) = 0. The open sets in Z are precisely the
singletons, so any preimage equals A, B, or is trivial, so that f is continuous. Therefore if X is connected,
every continuous function f : X — Z is constant. O
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3. Problem 3
EXERCISE 9.3 (Measuring with an expanding ruler). Let A C R be a set of positive finite measure.
Define a function
(416) ¢ : R — [0,00)
(417) x = p(AN(—oo0,x])
(a) Show that ¢ is continuous.
(b) Find v € R such that p(AN (—oo,z)) = u(AN (z,00)).

PROOF. Let us show that ¢ is continuous. Let € > 0 be given and z € R. Let 0 < |z — y| < e. We show
lo(x) — ¢(y)| < € also in two similar cases. Let y > . Then (—o0,z] C (—o00,y], so we know that

(418)  p(y) — p(x) = p(AN (—00,y]) — u(AN (—o00,z]) = p(AN (—o0,y] \ AN (—o0,z]) = u(AN (x,y])
(419) < pl(x,y]) <e

For y < x, make a similar argument.
To prove the existence of z € R such that u(A N (—oo,z)) = u(AN (r,0)), examine the difference

(420) d(w) = u(A N (—00,2)) — p(AN (z,00))
By the continuity of measure and ¢, this can be written

(421) d(w) = p(x) — (u(A) — p(x)) = 2(x) — p(A)
One can plainly see the limits

(422) lim p(z) = p(A)

(423) im o(z) =0

Therefore, d(—o0) = —u(A) and d(co) = p(A), so the Intermediate Value Theorem summons z € (—o00, c0)
such that d(z) =0 and p(A N (—o0,x)) = (AN (x,00)). O
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4. Problem 4

EXERCISE 9.4 (Slicing the domain of an integral). Let fi, fa,... and g be functions in L*(R) and
E, ={z e R||fu(x)] > |g(z)|}. Suppose f, — g pointwise almost everywhere and

(424) lim |fnl=0
n—oo En
Prove that
(425) i | 1~ gl =0
n—oo R

PROOF. Break up the domain of the integral

(426) /ansJI/R\EnfngH/E fa— gl

On the set E,,, we have |g| < |fn], so

(427) ti [ 1fa =gl < tim [ 2fl =0
n—oo En n—oo E'n,
On the complement, we have |f,| < |g|, so that a dominating function exists, and DCT may be applied:
(428) lim |[fn—g| = lim / Ifn— 9| 1r\E,
(429) = / lim |fn = g]- 1p\p,
R n—oo
(430) < / lim [f, — g
R n—oo
(431) 0
Therefore
(432) tiw [ 149l =0
n—roo R
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5. Problem 5

EXERCISE 9.5 (Weakly converging operators). Let X andY be Banach spaces. A sequence A,, € L(X,Y)
is said to converge weakly to A € L(X,Y) if for all x € X and all ¢ € Y*, the sequence ¢(Anx) converges

to ¢p(Azx). Assuming that A, converges weakly to A, show that sup,,~; ||Ax|| < oo and that the operator A is
bounded. -

ProOF. See [Winter 2018 Exercise @l ]
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6. Problem 6

EXERCISE 9.6 (Compute a few functional norms). Let X be the set of continuously differentiable functions
f:[=1,1] = R under the norm

(433) Il = sup [f(x)

ze[—1,1]

Determine the boundedness and norms for the following functionals

1 ')
(434 n(N =10 ealf) = [ sim(@f@) ) =10 o)=Y T
- n=1
PRrOOF. For ¢, the norm is bounded:
(435) [o1]l = ha o1 (NI < Sup, O <[Ifll =1

Equality is achieved for any f satisfying |f(0)| = || f]]-
For ¢o, first simplify

0 1 1
(436) oo(f) = / (D) + / flz) = / f(@) — f(~x)

(437) foud = s a1l < s [ 110~ 7o) < sl =2
For equality, consider a Fourier series converging to the function
-1 x € [—1,0]
438 x) =
(438) f() {1 ot

Since the functional can be evaluated and equals 2 in the limit, this means the norm equals 2.

For ¢3, we can see the functional is unbounded by considering the sequence of functions f,(z) = e’
In this case, ||fn]| = 1 and each f,, is continuously differentiable. The derivative is f] (z) = —ne~"*" and so
(439) sup [¢3(fn)| = sup [n| =
For ¢47
" 171 _
(440) 4l = sup lox(0)] < Z
If f is constant, then
441 S =
(441) Il = |3 35| = 111
so the norm equals one. O
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7. Problem 7

EXERCISE 9.7 (Compact convergence in the plane). Let Q@ C C be open and suppose {fn,}>2, is a
sequence of holomorphic functions over 0 converging uniformly to f : @ — C. For any § > 0, the f), — f’

uniformly on the set

(442)

Ks:={z€ Q| Bs(z) CQ}

PRrOOF. Note that if z € K, then Bs/s(2) C Ks/2, because if € Bj/o(2), then By o(x) C Bs(z) C €,

sox € Ks/a.

For any z € Kj, the Cauchy Integral Formula can be applied on a circle of radius r = §/2 around z to
find the derivative sequence in terms of the original sequence. For any f,,, we have

o) = g [ 22O

(443)

It can be shown that

2mi oy (-2

fn(Q) fn(Q)
444 =
(444) /Cr(z) (—=z /Cr(z) (€ —2)?

Then
N fa(Q) f(©)

(445) |fn(2) ! (Z)‘ 27 /C’T(z) (C - Z)Q -/Cr(z) (C o Z)2

1 1fn(€) = ()
44 P T a—
(446) = o oz IC—2?

1
(1a7) < gz [, MO 1@
(148) < 53l = Fllonm(Cr(2)
(449) < %an = fllKs,
(450) < %an = flle
Letting n — oo shows f/, — f’ uniformly on Kj. O
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8. Problem 8

EXERCISE 9.8 (Sector-based contour integral). FEwvaluate

oo 1/3
(451) / i
0

1422

PROOF. Substitute z = /3 to transform the integral into

R .3
452 3 _c
(452) /0 14 26

Find the pole at ¢™/¢ and integrate around the sector of radius R and 0 < # < /3. The integral can be
written as

R
(453) [ 10+ [ s+ [ e = amimes(z, e

This equation is analyzed in three stages: find the residue, express the backwards integral in terms of
the forwards integral, and show the middle integral vanishes as R — oo.
For the residue:

) _ ,im/6),3 3 1 )
im/6\ _ : (Z € )Z _ : i _ - —7mi/3
(454) Res(f,e'™/°) = z_l>ler£r/s T Z_l}ﬁr}}(/ﬁ i

For the backwards integral

/3 0 /3 /3 0 ,r3ei7r /3 R 7"3 /3 R ( )
(455) e / f(re™°) =e'm / =e'" / ——=e" / f(z
1476 1476
R R 0 0

For the middle integral

(456) fo< [ rere [ —aer T o
=27
arc o= |z|=R o= |Z|6 -1 RS —1
Letting R — oo shows that
in/3 28 1 s
(457) (14 ¢€"7) T30 = 27”66
0
Therefore,
(458) /oo 2,3 - oI e—‘n’i/3 _ o7 eiTr/Qe—ﬂ'i/S B ot e1',71'/6 B 21 1 B 2i 1
o L+26 6 1+em/3 6 14eim/3 6 14em/3 6 ein/6 L eim/6 6 2cos(m/6)
T

459 = —
(459) Wi

This means the original integral equals

oo g1/3 0
460 = —
(460) /0 1422 /3
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CHAPTER 10

Fall 2021 TODO 1,3,6

1. Problem 1

EXERCISE 10.1 (Connectedness: the plane & a lexicographic order topology TODO).
(a) Show that open, connected subsets of the plane are path-connected.
(b) Show that X = [0,1] x [0,1] in the lexicographic order topology is not path-connected.

PRrOOF. For part (a), let € U be a fixed base point. Define z ~ y if and only if there exists a continuous
function «y : [0,1] — U such that v(0) = = and (1) = y. Consider the equivalence class of the base point.

(461) V={yeUlz~y}

We show V is open by constructing a neighborhood for any point. Let y € V. Select a neighborhood
Bs(y)NU C U. Then this same ball is also interior to V, for if 4’ € Bs(y) NV, the convexity of the ball
implies ¥’ ~ y. The selection of y precisely states y ~ x, so the transitivity of the relation implies ¢’ ~ z.
Therefore, y' € V', so that V is an open set. Writing

(462) U=VUuU\V)

and applying the connectedness of U implies V = U, so that U is path-connected.
The above proof could have also been performed in a constructive way as follows. Select a countable
collection of rectangles such that

(463) U= D R;
=1

We can explicitly construct the path component of U in a tree based fashion, walking through the path-
connected neighbors (sufficiently induced by their non-trivial intersection) starting at a base rectangle. Let
Ry ~ Ry if and only if Ry N Ry. Define the base level of a tree by

(464) Ty = {R}

and proceed in an inductive fashion, walking the rectangles R; ~ R; for some R; € T, which have not
already been walked. Formally, this can be written

(465) T41 = {R; | there exists R; € T,, such that R, N R; is non-empty} \ U T

m=1

To complete the procedure, consider the entire tree we just generated
o0

(466) T=JT.
n=1

Now we wish to argue that T = {R;y, Ra,...}. Consider the complement S = {R;,Ry,...} \ T =
{R'Y, R% ...}, which we now argue is empty. Rewriting U

(467) UZ(DRk>U<G Ri),
k=1 R;eT

connectedness implies some R* N R; is non-empty. By convexity of rectangles, this means R¥ ~ R;. Realizing
R; € T, implies R* € T},,_1 or R* € T},,;1, so that R¥ € T, showing that S is empty.

87



Therefore,
(468) U= U;
U,eT
From the construction of T', there is an explicit path between any two points, namely from a point to the

base to the other point.
TODO For part (b), recall that the lexicographic order is induced by relation (a,b) < (¢, d) if and only

if a < cora=candb < d. Explicitly, the basic sets are
(469) B={{x€[0,1] x[0,1]|a <z <b}]|a,be]0,1] x[0,1]}
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2. Problem 2

EXERCISE 10.2 (Separating functional in a metric space). Let X be a metric space and let A and B be
disjoint closed subsets of X. There exists a continuous function f : X — [0,1] such that f(A) = {0} and

f(B) ={1}.
ProOOF. For any closed set F', define a distance function d(-, F) : X — R>o.
(470) d(z, F) = inf{d(z,3) | y € F}

The function d(-, F') can be argued to be continuous in a sequential fashion. Suppose z,, — . Then

. o . . C g
(471) Jim_d(zy, F) = lim. jnf. d(zn, f) = inf sup jnf. d(zm, f) < inf jnf, sup d(@m, f)
(472) < jnf inf gﬁ;d(mm,f) = jof lim d(zy, f) = inf d(z, f) = d(z, F)

To finish, the definition of infimum says d(x, F) < d(z, f) for all f € F, so limd(z,, F) = d(«, F), indicating
d(-, F) is continuous.

Since A and B are disjoint closed sets and X is a metric space, the following distances are nonzero for
any a € A and b € B.

(473) d(a,B) d(b,A)
This implies d(z, A) +d(x, B) # 0 for if the sum were zero, then both the summands would equal zero, which

indicates z € A and = € B, contradicting that A and B are disjoint.
Now we are free to define a continuous function

. d(z, A)
44) @)= G 3+ d(, B)
If x € A, then d(z, A) =0, so f(x) =0. If x € B, then d(z, B) =0, so f(z) =d(z,A)/d(z,A) = 1. O
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3. Problem 3

EXERCISE 10.3 (Compactess and continuity from above TODO). Let E C R and define O,, = {x €
R|d(x,FE) <1/n}
(a) Show that if E is compact, then im pu(Oy,) = p(E).
(b) Show that the conclusion may be false if E is closed and unbounded or if E is open and bounded.

PRrROOF. If E is compact, then each O, is bounded, because E is bounded. Moreover, we have the
following inclusions by the monotonicity of 1/n:
(475) 0120;2:--20,2 -+

To apply the Lebesgue measure’s continuity from above, note that
(476) No.-k
n=1
because F is closed. Therefore we are free to determine that
(477) lim u(0,) = p (ﬂ On> = u(E)
n=1

For a first counterexample, consider the closed and unbounded sequence E; = [j,00) N N with the
counting measure. Each set is countable, so the intersection is empty, so the result from continuity does not
apply, because

o0

(478) p| (VB | =0# n(Er) - Jim pu(Ej) = oo

j=1

In a similar way, we can exploit o-finiteness by setting E; = [j, 00) with the Lebesgue measure to observe
an identical inequality.
|
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4. Problem 4

EXERCISE 10.4 (DCT in two ways). FEwvaluate the limit
1

ndx
479 li
(479) i o (1+nz)2(1+z+22)

PROOF. Substitute u = nz in the integral

1 n
d d
(480) / 271 > 2\ / 2 - 2
o I+ne)?(l+z+2?)  Jo (1+u)?(I+u/n+(u/n)?)
1101 (u)d
(481) - / o QL -
r (1+w)?(1+u/n+ (u/n)?)
We have the inequality
(482) uwe0,n] = 1/(1+u/n+ (u/n)?) <1
Therefore, the integrand is bounded by 1/(1 + u)? - 1[0,00), Which is integrable, so we may apply DCT.
. Lo,n (u)du /°° 1
483 lim - = ——du=1
1 M f TPt @) Sy G w?
This could also have been proven with integration by parts as follows. Separate with some parentheses
1
n 1
484 I, = d
(484) " /0 <(1+nx)2>1+x+$2 *
to reveal that the integrand can be rewritten for an integration by parts as follows:
1 /
1 1
485 I, = — d
(485) /0 ( 1+m:) ltz+a2™
1 1 oot 1 142
(486) — (- _ / _ 1+
l+nx) l+az+22|, Jo 1+ nx (14 2+ 22)2
1 1 ! 1+ 2z
487 =|(- 1-—
(487) ( 1—+-n>1+1+12+ /0 (1+nx)(1+ 2+ 22)?
The integrand decays in n which is not tied to 1/z2, so that limit/integral interchange applies, proving that
(488) lim I, =1
n—oo
If one desires a concrete dominating function to supply to the DCT, they can take 2. (|
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5. Problem 5

EXERCISE 10.5 (Injectivity and a coercive estimate). Let X and Y be Banach spaces and A : X =Y be
a bounded linear operator. Show that the following are equivalent:

(a) A is injective and the range of A is closed
(b) There exists a constant M > 0 such that

(489) lz|| < M||Az|| Vre X
PROOF. If A is injective and the range of A is closed, consider the operator

which is known to have a closed range. This means the domain is also closed, from which we can decide that
the graph is closed, so that the operator and its inverse are continuous. Therefore, we take

(491) M = |(Alacx) " lBace)
Now lets show M is satisfactory. Let 2 € X be given, then Az € A(X), and we can determine that
(492) 1(Alacx)) ™! (Az) || < M| Az|

It remains to simply contract (A]4(x)) ' (Az) = z to find the desired result.
Now suppose there exists such an M > 0. To show that A is injective, suppose Az = Ay. By linearity
we have the inequality

(493) [z =yl < M||Az — Ay| =0
which implies z = y by squeezing the difference down. We are left to show that A(X) is closed. Suppose

Az, — y. By the estimate involving, we can determine that the sequence {z,} is Cauchy, from which we
select its limit x. Then to show y = Az, let us utilize the triangle inequality

(494) [Az —yl| < [[Az — Ay || + [[Azy — y]]

The left summand vanishes because A is bounded and the right summand vanishes by the assumption
Az, — y. Therefore, A(X) is closed.
The above shows (a) <= (b). O

92



6. Problem 6

EXERCISE 10.6 (Vanishing Condition on a Hilbert Space). Let H be a Hilbert space and let A, be a
sequence of bounded linear operators on H. Assume for every x,y € H that lim(y, A,z) = 0.

(a) Does it follow that lim ||A,] =0?
(b) Does it follow that sup || A,|| < co?

Provide counterexamples or proofs.

Proor. For part (b), we provide a proof. Let n be fixed. For any « € H, set y = A,z. The vanishing
assumption indicates that (A,z, A,z) = 0. O
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7. Problem 7

EXERCISE 10.7 (Rouché’s theorem for a half-plane). Let a > 1. Show that the equation
(495) a—z—e*=0
has exactly one solution in the right half-plane.

PROOF. This can be shown with Rouché’s theorem, whose setup we now perform. Let f = a — z and

g = —e~* and consider the semicircular contour with side [Ri, —Ri] and arc Re® for 0 € [—7/2,7/2] where
R > 0 is arbitrary.
For the side, de Moivre’s theorem implies || = 1. A quick computation can exactly determine the

modulus of f = a — z, where z € [Ri, — Ri]

(496) [fl=la—zl=Va+[z*>a>1=]g]

The inequalities follow by the monotonicity of the square root and the given information about a. Now for
the arc, we shall have z = Re®. This means

(497) |g‘ _ ‘e_Rew| _ |e—Rcos(9)—1’Rsin(9)|
(498) — |6*RCOS(9)ef’iRsin(9)|
(499) _ e—Rcos(Q)

e domain ¢ € |—m /2, 7/2| indicates — R cos(f/) > 0, so that as g vanishes as [ — 00, showing trivially that
The domain 0 € [—7/2, /2] indi Rcos(f) > 0, so that as g vanishes as R howing trivially th
[f1> gl

Therefore all along the semicircular contour, we have that |f| > |g|, which indicates a — z — e™* has
the same number of zeros as f, a linear function with only zero. Sending R — oo, we can decide that the
equation has only one root in the right half-plane. O
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8. Problem 8

EXERCISE 10.8 (Another semicircular contour). Integrate

(500) / Eahy

2 2
0o Lt a

PROOF. To evaluate this, we integrate the complexified function

(s01) )= o5

e
along a semicircular contour which captures the pole z = ai. Letting R — oo will capture the desired integral
in the real part. The residue theorem implies

R iz
(502) / s / F(2)d= = 2mi Res(f, ai)

_pa?+4a®

The arc integral can be shown to vanish

|e*|
(503) / f(z)dz| < /7dz
arc |Z|2 —a?
When z = a + bi, we know |e*] = |e!(®t?)| = ¢7? 50 in the upper half-plane, we know sup |e??| = 1.
Therefore,
TR
(504) /|z|2—a2dZ</R2—a2 “m_a 0
As R — oo we are left with the residue
505 % e =2niRes(f,ai
2 + 2
o T2t a
(506) — o lim =T
z—ai (2 — ai)(z + at)
iz
(507) = 2mi lim -
z—at 2 + al
(508) = 2mie” % /2ai
me” ¢
509 =
(509) a
Taking the real part shows
*  cosx me ®
510 dr =
(510) / 2 + a? v a
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CHAPTER 11

Winter 2022

1. Problem 1

EXERCISE 11.1 (Dini’s Theorem). Suppose that {f,} is a sequence of continuous functions from [0,1],
where each fn(z) is monotone increasing. And suppose that fn(x) converges to a continuous function f(x)
pointwisely on [0, 1].

(a) Show that f(x) in fact uniformly converges to f(z) on [0, 1].
(b) Give an example where the uniform convergence fails if the limit function f(x) is not continuous.

PrOOF. For (a), let f, — f as described. Define

(511) E,={x€[0,1]]| f(z) < fu(x) + €}.
Since f1(x) < fo(x) < --- < f(x), we have
(512) By C By C--C[0,1]

and by pointwise convergence it follows that

3.

n=1

(513) [0,1]
Extracting a finite subcover, we find

(514) 0,1 =] E, =Ex

C=

n=1

Now show the convergence is uniform. Let n > N. Then z € Ex and

(515) 1 fn = fIl = sup | fa(@) = f(2)|
(516) =sup f(z) — fn(2)
(517) <e

For (b), consider f,(z) = 1— 2", converging to 1 —1y1}. A uniformly converging sequence of continuous
functions converges to a continuous function, so we can see that the convergence must not be uniform by
contradiction. 0
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2. Problem 2

EXERCISE 11.2 (Urysohn’s Lemma in a Metric Space). Suppose that X is a metric space with the distance
function d(-,-). For a point x € X and a subset A, let

(518) d(z, A) ;= inf{d(z,y) | y € A}.
(a) Let A and B be two disjoint closed subsets in X. Show that
d(z, A)
1 = ¢ X 1

s continuous.

(b) Use (a) to verify that, for a closed subsets A and an open subset U such that A C U, there always exists
an open set V such that ACV CV CU.

PROOF. The verification that f is continuous and f|4 = 0 and f|g = 1 is left for Exercise
[Exercise 5.2| or IFall 2021 Fxercise 2l

Now for part (b), set B = U¢ and V = f~1([0,1/2)). We show that V C U and V C U. Let z € V.
Then f(x) € [0,1/2). Since f|p = 1, this means x ¢ B = U°®, so that © € U. Let {x,} C V be a sequence
converging to x. The continuity of f yields f(z) = lim f(x,) < 1/2, so that = ¢ B again indicating x € U.

Finally, A C V because A = f~1(0), so that

(520) ACVCVCU.

Note that [Winter 2019 Exercise 2| provides an alternative construction of V.
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3. Problem 3
EXERCISE 11.3 (Radon-Nikodym). Repeat of Ezercise|3.4)
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4. Problem 4

EXERCISE 11.4 (Absolute continuity).
(a) Let f and g be absolutely continuous functions on [0,1]. Show that their product is also absolutely

continuous.
(b) Give an example of a function on [0,1] which is uniformly continuous but not absolutely continuous.

PROOF. Part (a) is proven in Exercise

For part (b), consider the Devil’s staircase. It is a continuous function on a compact set and thus
uniformly continuous. But an absolutely continuous function has bounded variation, which the Devil’s
staircase does not, so we know the function is not absolutely continuous by contradiction. O
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5. Problem 5

EXERCISE 11.5 (Scaling Mean Operator). Let X = C([0,1]) be the Banach space of all continuous
complez-valued functions on [0, 1] with the maximum norm. Consider the linear operator A : X — X defined

by
(521) (Af)(@) = = / f(y)dy,x € [0,1].

(a) Show that A is bounded and determine its operator norm.
(b) Determine the spectrum of the operator A.

PrROOF. To show A is bounded, estimate

(522) 4= s[4S
1

(523) — sup swp | / f(y)dy‘
[[fllec=1z€[0,1] 0

(524) < sup sup |1 If( Jldy
[[fllco=1z€[0,1]

(525) sup / 1F()ldy
Hf“oo_l

(526)

To compute the operator norm, consider A : L%([0,1]) — L2([0,1]), extended by density. By applying

Fubini’s theorem
1 1 L
(527) (Af,g) = (w / f(y)dy>gx)dx
0

|

(528) _ /O

(529) - /0

(530) -/ ) / g(ededy
|
|

(531)

(532) =
(533) =(f,A"g)

we can find the adjoint of A is equal to

(534) Af = /0 yf(y)dy



which we can also verify is bounded. To apply the formula ||A|] = /||A*A||, determine the composed
operator

(535) awap= | Y (v] 1 fla)dz ) dy
(536) = /0 ldey /0 1f(x)dw
(537) -3/ ' f(a)da

Taking norms shows

(538) jarag) < 11t

with equality on constant functions, so that |A*A| = 1/3 and ||A| = 1/v/3.

To find the spectrum, we first prove that A is a compact operator. Let {f,} be a sequence in the unit
ball. Then A({f,}) is bounded because A is bounded. To prove the sequence is equicontinuous, let € > 0 be
given. If |z — y| < ¢, then the estimate

(539) Aa(e) = AR =[x [ 10—y [ f<t>dt\
(540) <lz—yl / o

(541) <lo—yl

(542) <e

is true for any f,,. Therefore the hypotheses of Arzela-Ascoli apply, so that a converging subsequence exists,
proving that A is compact. Therefore it suffices to find the eigenvalues of A*, which we do now. Let

(543) A*f=\f

Because A* f is constant, this means f(y) = f is constant, so we in fact have

(544) A'f = / yfdy = f / ydy = 5

so that A = 1/2. Therefore, o(A4) = {0,1/2}. O
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6. Problem 6
EXERCISE 11.6 (Banach Space Decomposition). Repeat of Exercise .
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7. Problem 7

EXERCISE 11.7 (Product of real and imaginary part Liouville). Let f = u+iv be an entire function such
that |u]|v| is bounded. Prove that f must be a constant function.

Proor. Expand
(545) —if? = —i(u® + 2iuv — v?) = 2uv + i(v? — u?)
If sup |u||v] = M, then the entire function e~*/* has a bound:

(546) ‘e—if2| _ ‘e2uv+i(v2—u2)| — e2uv < e2\uv| — 62|u\|v| < 62M.

Therefore e~/ is constant, so that its absolute value e?“? is also constant, which indicates uvv = £M. If we
set u = +M /v, then the Cauchy-Riemann equations for f may be applied:

ou Ov
(547) P a—y

ou ov
(548) a—y =~

In particular, the equations yield

ou Mov Ov
549 = g _ =
(549) oz 0% oz Ay

ou M Ov ov
550 — =F 57— =——
(550) Oy T2 Oy Ox
Substituting the right half of the first equation into the right half of the second equation shows

M? ov ov M? ov

551 - = il T R\
(551) vZ Ox or ( v2 + ) ox
Since M2 /v? 41 > 0, this implies the partial derivative equals zero. The symmetry of the equations dictates
that each partial derivative {ug,u,, vy, vy} vanishes, so that u and v are both constant, proving that f is

constant. O
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8. Problem 8

EXERCISE 11.8 (Series for a Complex Integral). Prove that

e S |
(552) — [ et => ——.
27'[' 0 ne0 (TL.Q ))
PROOF. Substitute z = €%, so that
1 dz
553 0=— 1 df = —
(553) cos 5 (z+1/z2) -
Then the above integral can be interpreted as a winding number about the unit circle.
27 1/2(z+1/z)
(554) L7 eosogy L / sz _ L[l 2EE
21 27 J, %3 27 J, z
To summon the appropriate poles to integrate over, expand
=1
1/22 _
(555) et =" TP
k=0
Then

1/2 z+1/z) 1 00 Z/Q
(556) Z k'?kz’“ FE Z kJ'Z’fzk P Z k;le k+1 (L+2/2+ (2/2)/2!+ -+

Integrating ignores all the terms which are not a multiple of 1 / z, so we note that the coefficient of 1/z equals

(1/2)F/k 1
K12k (k12k)2

by finding the numerator from the expansion of e*/? and the denominator from the denominator in the
expansion involving e'/2%. Therefore

(557)

1 [ =1

- cos 6 _
(558) or ), €0 kzzo(mk)z'

For a version of this problem with an arbitrary scaling factor, see Problem 5.10.6 of [13].
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CHAPTER 12

Virtuoso Section

1. Fall 2000 Problem 7
EXERCISE 12.1 (The Volterra Operator). Write

(559) Tf(z) = / F(s)ds.
0
(a) Show that T defines a bounded linear operator on the Banach space C([0,1]), endowed with its usual
norm.

(b) Show that this operator on C([0,1]) is compact.

PROOF. For part (a), linearity follows by the linearity of the integral. For boundedness, determine an
(560) ITflloc = sup

upper bound as follows:
x
| s
ze€f0,1] [Jo

Therefore, || T|| < 1, indicating T is bounded.
For part (b), let {f,} C C([0,1]) be a sequence in the unit ball. Then we verify T'({f,}) is precompact.
Because T is bounded, so is its image. All we have to show is equicontinuity. Let € > 0 be given. If |x —y| < ¢,

x 1
< sup / 1£(s)lds = / F()lds < 11 loe

z€[0,1]

then
(561) 1,0 = Th) = | [ s = [ suoas| =| [ < [Tl
0 0 Y y
(562) <z = ylllfll
(563) < |z —yl
(564) <e
Therefore the hypotheses of Arzela-Ascoli apply, indicating a converging subsequence exists. O
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2. Fall 2001 Problem 1

EXERCISE 12.2 (Integrals are continuous in mean). Show that if f € L'(R) then [*_|f(z + h) —
f(z)|dr — 0 as h — 0.
PRrROOF. Let h,, — 0. Set f,(x) = f(x + hy). Select F C R such that u(F) < co and

(565) / 2|f| < e

R\F
From this arises the estimate
(566) [lta=t1=[ =1+ [ 18- 1

R R\F F

(567) <[ s+ [1n-1

R\F F
(568) §e+/ | fr = [l

F
Now select 6 > 0 so that if ;(B) < ¢, then
(569) / 2f| < .
B
By Egorov’s theorem there exists E C F such that pu(F \ E) < § and f, — f uniformly on E. Then
(510) [in=a1= [ =11+ [ 1511
F F\E E

(571) < [ 2l u®)ls - Sl

F\E
(572) <et+uE)fo—fle-
Sending n — oo and € — 0 shows
(573) lim / fu— f] = 0.

n—oo R

108



3. Fall 2001 Problem 2

EXERCISE 12.3 (Basel problem with Fourier analysis).

ny 2mikx

(a) Find the Fourier coefficients f(k) for the function f(x) = x with respect to the exponential system e
(k€Z)on|-%,1].

(b) Use the result of part (a) to compute

— 1
(574) }:ﬁ.

k=1

PRrROOF. Introduce the inner product on L' N L?
1 -
(575) uﬂ>=/l5me@Mx
Then the functions {€>*%**} form an orthonormal system and
(576) f(CL') — Z <f7 e27rikac>62m'k-a: in L2
k=—o00

Let us compute these inner products for the given f(z) = z.

(577) (x,eQ’”km> _ /2 xe—Qﬂ’ikszj
(578) - / o (e 2k ) (“omik)) da

z672ﬂ'ikz % ik

- _ —2mik /(oo
(579) | / (e=27h2 | (_omik)da
1 e—ﬂ'ik eﬂ'ik Comike )

(580) =5 [ 5t 3 ] —/(e /(=2mik))dx
(581)

For the part:

(582) J/(672”Mw/(42ﬂdk))dz::l/kef2“““/(42ﬂdk)Y/(AQﬂdk)dx
6727rika: %

(583) == |,

(584) — _47;]# [e=mik — emik)

Combining these shows

) 1 e*ﬂ'ik eﬂ'ik ) )
585 2mikzy\ _ —mik _ _mik
(585) (@, e = ok [ 2 T2 } o L ]
_icos(mk)  isin(mk)

(586) - 2nk 22k
It k = 0,

1

3
(587) (x,1) = / xdxr =0

1

2



SO

(588) w= > f(k)e*mike
k=—o0

B icos(mk)  isin(mk)| orike
(589) N l;) [ 2k om2k? | €

_ Z(_l)k 2mikx
(590) = kZ#O o€
Apply the Parseval identity for our f(z) ==
(591) IFlla = 1F(R)?

k=—o
1
(592) "2 T
S|
(593) =2 ;; yer
Then
3 1/2
1/8 1/8
(594) e = [atar= T LB IS
~1/2
so that
1 I 1
(595) =
and finally
2 =1

(596) 5= ; =



4. Fall 2001 Problem 6

EXERCISE 12.4 (Bounded only on the irrationals). Show that there does not exist a sequence of continuous
functions f, : R — C such that the sequence {f,(x)} is bounded if and only if x is irrational. (Hint: Show
that the set {x | {fn(x)} is bounded} is an F.)

PROOF. Per the hint, we write

o0 o0
(597) {o | {fa(@)} is bounded} = | J ({= | Iful@)] < M}
M=1n=1
The intersection is over closed sets, so it is closed, indicating this is indeed an F, set. At this point we are
done because R\ Q is definitely not an F,. In fact, Q is an F, set, because it is a countable union of points,
so that the irrationals form a Gg set. O



5. Fall 2008 Problem 2

EXERCISE 12.5 (Countable product of the interval). Consider the space X = [0,1] x [0,1] x --- (the
countably-infinite product of [0,1] with the product topology). An element of X may be thought of as a
sequence {x,}22 1 with each x,, € [0,1]. Show that the function from X to R defined by

(598) {zn} — i 27"z,

s continuous.

PROOF. Let U C R be an open set. Select f(y) € Be(p) CU. Let € = e—|f(y) — p|. By a metric space
argument, Be (f(y)) C Bec(p) C U. Select N such that

o0

2
(599) > o<l
n=N
Define a basic open set in X
N-1 0o
(600) V=[] Besalyn) x [] [0,1].
n=1 n=N
Certainly y € V', and we show that V is interior to the inverse image. Let y € V. Then
— Yn _ Un
(601) P~ f@) =3 e
n=1
N v =Gl = lye — Gl
< n n n - dn
(602) < on T > o
n=1 n=N
N-1 , 00
€'/2 2
< R
(603) <> 5t
n=1 n=N
<e€ +e€
(604) "12+€/2
(605) <¢

Therefore, f(y) € B (f(y)) C U, indicating y € f~1(U). O
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