Monotonicity in distributivity with binominal each

Jess H.-K. Law

Rutgers, The State University of New Jersey

Take-home message

Distributivity establishes dependency with internal mereological structure (van den Berg 1996, Brasoveanu 2008, Champollion 2017, a.o.) - Binominal each joins forces with a measure function to track this mereological structure

Puzzles of binominal each

The distributivity (1) and variation (2) inferences of binominal each has motivated dynamic accounts (Champollion 2015, Kuhn 2017, see also Henderson 2014).
(1) Scenario: the boys made two kites together
\# The boys made two kites each.
(2) Scenario: the boys watched the same two films in a film study class.
a. Every boy watched two films.
b. \#The boys watched two films each.

However, two puzzles remain open:
-Counting Quantifier Constraint (Sutton 1993)
(3) The boys saw $\left\{\begin{array}{c}2 \\ \text { at least 2 } \\ \text { more than } 2 \\ * \emptyset \\ \text { *some/*most/*every } \\ \text { *the }\end{array}\right\}$ films each.
(3) The boys saw $\left\{\begin{array}{c}2 \\ \text { at least } 2 \\ \text { more than } 2 \\ * \emptyset \\ { }^{*} \text { some/*most/*every } \\ \text { *the }\end{array}\right\}$ films each.
(3) The boys saw $\left\{\begin{array}{c}2 \\ \text { at least } 2 \\ \text { more than } 2 \\ * \emptyset \\ { }^{*} \text { some/*most/*every } \\ \text { *the }\end{array}\right\}$ films each.
(3) The boys saw $\left\{\begin{array}{c}2 \\ \text { at least } 2 \\ \text { more than } 2 \\ * \emptyset \\ { }^{*} \text { some/*most/*every } \\ \text { *the }\end{array}\right\}$ films each.
(3) The boys saw $\left\{\begin{array}{c}2 \\ \text { at least 2 } \\ \text { more than } 2 \\ * \emptyset \\ \text { *some/*most/*every } \\ \text { *the }\end{array}\right\}$ films each. -Extensive Measurement Constraint (Zhang 2013)
(4) The angles are 60 degrees each.
(5) *The coffees are 60 degrees (Fahrenheit) each.

A single root: measure function
 A single root: measure function

- Counting quantifiers have a measure function component not shared by other quantifiers (Hackl 2000, Kennedy 2015), as evidenced by their compatibility with unit functions like pounds.
(6)
$\left\{\begin{array}{c}2 \\ \text { at least } 2 \\ \text { more than } 2 \\ \text { *some/*most/*every } \\ \text { *the }\end{array}\right\}$ pound(s) (of chicken)
- So do quantity expressions (Schwarzschild 2006, Rett 2014, Solt 2015), which can also host binominal each.
(7) The boys saw $\left\{\begin{array}{c}\text { a few } \\ \text { many } \\ \text { a lot of }\end{array}\right\}$ films each.
(3) The boys saw $\left\{\begin{array}{c}2 \\ \text { at least 2 } \\ \text { more than } 2 \\ * \emptyset \\ \text { *some/*most/*every } \\ \text { *the }\end{array}\right\}$ films each.
wh unt functions like pounds.
at least 2
more than 2
pound(s) (of chicken)
*the

Take-home message
- Distributivity establishes dependency with
internal mereological structure (van den Berg
1996, Brasoveanu 2008, Champollion 2017, a.o.)
- Binominal each joins forces with a measure
function to track this mereological structure

Proposal in a nutshell

Monotonicity relative to distributivity (d-monotonicity)

- Use dynamic semantics to construct and store distributivity-induced dependency in an info-state H (a set of variable assignments, van den Berg 1996, Nouwen 2003, Brasoveanu 2008, Henderson 2014, a.o.)
$\begin{array}{llll}H & x & y & =\{b o y 1, \text { boy2, boy3 }\}\end{array}$ the boys
h_{1} boy1 film1 \oplus film $2 \quad H y=\{$ film $1 \oplus$ film2, film3 \oplus film 4$\} \quad$ the films
h_{2} boy 2 film $1 \oplus$ film $2 \quad h_{1}, h_{2}, h_{3} \quad$ the dependency between x and y
h_{3} boy 3 film $3 \oplus$ film $\left.4 \quad H\right|_{x \in\{\text { boy } 1\}} y=\{$ film $1 \oplus$ film 2$\}$
(2 Find a measure function $\mu_{\text {dim }}$ in the host, i.e., the NP preceding binominal each
- Check that $\mu_{\text {dim }}$ and H together satisfy:
(8) non-decreasing mapping
$\forall A, A^{\prime} \subseteq H x . A \subseteq A^{\prime} \rightarrow \mu_{\operatorname{dim}} \bigoplus\left(\left.H\right|_{x \in A} y\right) \leq \mu_{\operatorname{dim}} \bigoplus\left(\left.H\right|_{x \in A^{\prime}} y\right)$
(9) non-constant mapping
$\exists B, B^{\prime} \subseteq H x . \mu_{\operatorname{dim}} \bigoplus\left(\left.H\right|_{x \in B} y\right) \neq \mu_{\operatorname{dim}} \bigoplus\left(\left.H\right|_{x \in B^{\prime}} y\right)$

Evaluating d-monotonicity

Dynamic distributivity $\left(\delta_{x}\right)$

$\{0\} \stackrel{\max ^{x}(\text { boy } x)}{\Rightarrow}$
$G \quad x$
g_{1} boy1
g_{2} boy 2
g_{3} boy 3 δ_{x}
δ_{x}
g_{3} boy 3

H	x
h_{1} boy1 1 film1 \oplus film2	
h_{2} boy2 film1 \oplus film2	
h_{3} boy3 film3 \oplus film4	

Evaluating d-monotonicity against $H: \checkmark$

$\left\{h_{1}, h_{2}, h_{3}\right\}=H$	$\mathrm{f} 1 \oplus \mathrm{f} 2 \oplus \mathrm{f} 3 \oplus \mathrm{f} 4$	4
$\left\{h_{1}, h_{2}\right\}\left\{h_{1}, h_{3}\right\}\left\{h_{2}, h_{3}\right\}$		
$\left\{h_{1}\right\} \quad\left\{h_{2}\right\} \quad\left\{h_{3}\right\}$	f1 $¢ \mathrm{f} 2 \mathrm{f} 3 \oplus \mathrm{f} 4$	2

Consider an alternative H^{\prime} without variation: (9) is violated
$\left\{h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right\}=H^{\prime}$
$\left\{h_{1}^{\prime}, h_{2}^{\prime}\left\{h_{1}^{\prime}, h_{3}^{\prime}\right\}\left\{h_{2}^{\prime}, h_{3}^{\prime}\right\}\right.$
$\left\{h_{1}^{\prime}\right\}\left\{h_{2}^{\prime}\right\} \quad\left\{h_{3}^{\prime}\right\}$
$\left\{A: A \neq \emptyset \wedge A \subseteq H^{\prime} x\right\}\left\{\left.\bigoplus H^{\prime}\right|_{x \in A} y: A \neq \emptyset \wedge A \subseteq H^{\prime} x\right\}$$\quad\left\{\mu_{\text {card }}\left(\left.\bigoplus H^{\prime}\right|_{x \in A} y\right): A \neq \emptyset \wedge A \subseteq H^{\prime} x\right\}$

Extensive Measurement Constraint

Extensive measurement

 (angle degree)$$
\begin{array}{lll}
& \vee_{123} \tag{180}\\
\vee_{12} & \vee_{13} & \Sigma_{23} \\
L_{1} & L_{2} & L_{3}
\end{array}
$$

60

Non-extensive measurement

 (temperature)

Extensive Measurement Constraint still holds when a measure phrase has a modified numeral, thanks to (8).
(10) a. The angles are more than 60 degrees each.
b. *The coffees are more than 60 degrees each.

Composing d-monotonicity

Binominal each

- attaches to the measure function component of a host
- turns the host into a higher order dynamic GQ capable of taking split scope (Charlow to appear)

$$
\begin{aligned}
& \lambda c . c\left(\lambda P . \exists y\left(\text { films } y \wedge \mu_{\text {card }} y=2 \wedge P y\right)\right) \wedge \mathrm{dm}_{x, y}\left(\mu_{\text {card }}\right) \\
& (\mathrm{Q} \rightarrow \mathrm{t}) \rightarrow \mathrm{t} \\
& m \rightarrow Q \\
& (\mathrm{~m} \rightarrow \mathrm{Q}) \rightarrow(\mathrm{Q} \rightarrow \mathrm{t}) \rightarrow \mathrm{t} \\
& (e \rightarrow t) \rightarrow \mathrm{m} \rightarrow \mathrm{Q} \quad \mathrm{e} \rightarrow \mathrm{t} \quad \mathrm{~m} \rightarrow \mathrm{~m} \rightarrow(\mathrm{~m} \rightarrow \mathrm{Q}) \rightarrow(\mathrm{Q} \rightarrow \mathrm{t}) \rightarrow \mathrm{t}
\end{aligned}
$$

two many ${ }^{y}$

Basic types			
e	entities	Derived types	
s	assignents	$\mathrm{t}::(s \rightarrow e$	individual-drefs
d	degrees	$\mathrm{m}: \mathrm{e} \rightarrow \mathrm{e} \rightarrow(s \rightarrow t) \rightarrow t$	propositions
t	truth values	$\mathrm{Q}:: \mathrm{e} \rightarrow \mathrm{t} \rightarrow \mathrm{t}$	measure functions

-The basic meaning of the host is reconstructed inside the scope of a distributivity operator (to the Q position).
-D-monotonicity is introduced outside the scope of the distributivity operator.

- A pair of indices are used to retrieve the values stored in the dependency anaphorically (see Dotlačil 2012, Safir \& Stowell 1988 for similar claims).

$\underbrace{\substack{\text { saw } \\ u^{\prime}}}_{Q^{\lambda u}}$

Selected References
Brasoveanu, A. (2008). Donkey pluralities. Linguistics and Philosophy. Champollion, L. (2015). Every boy bought two sausages each. WCCFL-32. Charlow, J. (2017). Dependent indefinites. Journal of Semantics. Safir, K. and Stowell, T, (1988). Binominal each. NELS-8. Sutton, M. (1993). Binominal each. Master's thesis. van den Berg, M. (1996). Some aspects of the internal structure of discourse. PhD thesis. Zhang, L. (2013). A ratio analysis of binominal each. MACSIM-3.

> Acknowledgements

I am indebted to Lucas Champollion, Simon Charlow, Gennaro Chierchia, Veneeta Dayal, Robert Henderson, Haoze Li, Ken Safir, Anna Szabolcsi, Philippe Schlenker, Kristen Syrett, and Yimei Xiang for comments and criticisms.

